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Abstract

Estimation Theoretic Analysis of Motion in Image Sequences

by

M. Dirk Robinson

Estimating the motion (or dynamics) manifested in a set of images or an image se-

quence is a fundamental problem in both image and video processing and computer vision.

From a computer vision perspective, much of what is interpretable in any real-world scene

is reflected in the apparent motion. For instance, estimating the apparent motion in a video

sequence provides the necessary information for many applications including autonomous nav-

igation, industrial process control, 3-D shape reconstruction, object recognition, robotic motion

control, object tracking, and automatic image sequence analysis. In image and video process-

ing, the estimation of motion plays a vital role in video compression as well as multi-frame

image enhancement. Disparate as they may seem, these many applications share one common

thread: in all such applications, the demand is high for accurate estimates of motion requiring

minimal computational cost.

In this thesis, we offer an estimation theoretic perspective on the problem of esti-

mating motion from an image sequence. In particular, we focus on the various performance

tradeoffs in both accuracy and computational efficiency associated with motion estimation. It

is our goal that this work provide a common framework with which to evaluate and understand

motion estimation performance.

To this end, this thesis offers contributions in three main areas. The first contribution

is the proposal of a mechanism to greatly reduce the computational complexity in estimating

complex motion vector fields from image sequences. In particular, we develop novel algorithms

for estimating motion vector fields using tomographic projections. For example, we show that

by incorporating tomographic projections into a multiscale gradient-based algorithms, we may



achieve dramatic computational speedups while sacrificing little in the way of estimator accu-

racy. The second contribution is a thorough analysis of the widely popular class of gradient-

based motion estimation algorithms. We derive and analyze the bias for this class of estimators

and propose novel methods for optimizing gradient-based estimator performance. The third

contribution is the analysis of the fundamental bounds limiting the accuracy of motion estima-

tion. Specifically, we study the Cramér-Rao bounds associated with the problem of estimating

translational motion in both aliased and non-aliased images. Finally, we show the intimate re-

lationship between the performance bounds for motion estimation of aliased images and the

problem of multi-frame image reconstruction.
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Chapter 1

Introduction

Estimating the motion (or dynamics) manifested in a set of images or an image sequence is a

fundamental problem in both image and video processing and computer vision. For instance,

a goal of computer vision is that of enabling a computer system to interpret the world using

visual information sensed using a video imaging systems. Much of what is interpretable in

any scene is reflected in the apparent motion. For instance, estimating the apparent motion

in a video sequence provides the necessary information for many applications including au-

tonomous navigation, industrial process control, 3-D shape reconstruction, object recognition,

robotic motion control, object tracking, and automatic image sequence analysis [2–9]. In the

field of video coding, the predictive power of accurate motion estimation is used to compress

video sequences [10–12]. In image sequence processing, accurate motion estimates are used

to improve overall image resolution. Disparate as they may seem, these many applications

share one common thread: in all such applications, the demand is high for accurate estimates

of motion requiring minimal computational cost. Therefore, numerous algorithms have been

developed over the years to address the problems associated with motion estimation.

Because these high-level imaging applications are increasingly more pervasive in to-

day’s society, understanding the issues relating to performance is essential to build dependable

and predictable systems. Generally, image processing applications are complex due to the large
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quantities of information present in the form of two and even three dimensional data signals.

As such, the design and construction of motion estimation algorithms naturally offer substan-

tial flexibility in trading off the computational complexity of a motion estimation algorithm

with overall estimator accuracy. In one particular class of applications, the ideal tradeoff is

one which sacrifices minimal accuracy to realize substantial gains in computational complexity.

For example, in real-time motion compensated video encoders, the computational efficiency of

motion estimation is critical. In fact, most real-time video coders require special hardware to

achieve the motion estimation efficiency necessary to support real-time encoding [13]. For other

applications, such as super-resolution, motion estimation accuracy is preferred without regard

to the computational expense. Whatever the application, it is important not only to utilize such

algorithmic flexibility but to understand the implicit associated tradeoffs.

Fundamental limits to estimator accuracy play a vital role in the analysis and devel-

opment of algorithms. The ideal performance limits offer the measuring stick with which to

objectively evaluate a host of algorithms. Furthermore, such limits suggest not only the need

for further improvement, but also suggest when particular problems are effectively solved. In

addition, the analysis needed to derive performance limits often generates significant insight

into the performance bottlenecks associated with a given task. Finally, performance bounds on

particular estimation problems provide understanding critical to the design of high level appli-

cations which rely on such lower-level estimation.

1.1 Introduction to Motion Estimation

In this section, we describe the models used to define the class of motion estimation

problems we analyze in this thesis. We suppose that the imaging system provides measurements

of the image intensity function f(x1, x2, t) which represents the light emanating from the ob-

served scene impinging on the 2-D focal plane of the imaging sensor. In this formulation, the

terms x1 and x2 represent the spatial coordinates in this image sensor plane and t the time vari-
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Figure 1.1: Example of a velocity vector field v(x1, x2) for the Yosemite Sequence

able. The image intensity functions we consider are modelled as temporally evolving according

to

f(x1, x2, t) = f(x− v1(x1, x2, t), x2 − v2(x1, x2, t), 0) (1.1)

which is also known as the Intensity Conservation Assumption [2]. Such an assumption states

that the intensity function for a given region remains the same even if the location of the region

moves as a function of time. This dynamics model encompasses a wide variety of imaging

scenarios. It does, however, ignore other factors influencing the dynamics of the images, such

as variation in the illumination or specular reflections.

The terms v1(x1, x2, t) and v2(x1, x2, t) denote the components of the velocity vector

field v(x1, x2, t) = [v1(x1, x2, t), v2(x1, x2, t)]T . Here, we use the bold lower case notation

to indicate vectors. For the purposes of this thesis, we assume that the vector fields are linear

in time. In other words, v(x1, x2, t) = v(x1, x2)t. This velocity vector field is sometimes

called the optical flow field referring to the apparent image motion as opposed to the actual

motion present in the 3-D real-world scene. Figure 1.1 shows a pair of images taken from the

Yosemite Sequence of [14] and the motion vector field characterizing the image dynamics. The

sequence simulates the measurements obtained while flying through the Yosemite valley. Here

we immediately see the effect of perspective as the nearby valley wall in the lower left-hand

portion of the sequence moves much faster than the ridges in the distance.

3



In general, the objective of motion estimation problems is that of estimating the vector

field v(x1, x2), given measurements of the image sequence f(x1, x2, t). In practice, we are

given only sampled versions of the image sequence corrupted by measurement noise. As such,

this task represents a challenging nonlinear estimation problem. For our purposes, we assume

that the spatial sample spacing is Tx and the temporal sampling period is Tt reflective of the

imaging system characteristics. For the remainder of the thesis, we will use the indices n1, n2 to

refer to the discrete spatial sampling indices f(n1Tx, n2Tx, kTt), and refer to k as the temporal

sampling index. To simplify the notation, we shall drop the sample periods T and use only

n1, n2, k. Thus, the measurement model for the imaging system becomes

z(n1, n2, k) = f(n1 − v1(n1, n2)k, n2 − v2(n1, n2)k) + ε(n1, n2, k) (1.2)

The ε terms represent the additive measurement noise inherent to the imaging system.

Such measurement noise represents a variety of sources such as image sensor thermal noise,

stochastic randomness associated with photon arrivals, and electronic or readout noise. For the

duration of this work, we model this random noise as being zero-mean, white (uncorrelated)

Gaussian noise with variance or noise power σ2. In practice, such a noise model has been found

to accurately capture the effects of random noise in typical imaging systems [15].

In this thesis, we study several scenarios differing in the complexity of the motion

vector field v(x1, x2). There are algorithms intended to estimate a completely arbitrary motion

vector field such as [2]; however, in this thesis we focus on the class of vector fields which are

parametric. The affine vector fields of interest are characterized by

v(x1, x2) = v0 + M

⎡⎢⎣ x1

x2

⎤⎥⎦ , (1.3)

where

v0 =

⎡⎢⎣ v01

v02

⎤⎥⎦ , (1.4)

4



Figure 1.2: Example of global translational motion for the Washington DC satellite images.

is a constant vector representing global translational motion, and

M =

⎡⎢⎣ m11 m12

m21 m22

⎤⎥⎦ (1.5)

captures dynamics of rigid body motions as manifested in the image plane.

At first glance, such a restriction seems overly constricting given that a general im-

age sequence may indeed contain highly complicated and arbitrary motion vector fields. As

we show, however, such a model is applicable to a wide variety of scenarios. The utility of

the affine motion model depends on the particular region of interest. For instance, the simple

motion of global translation finds application in many scenarios where the imaging system is

sufficiently far from a rigid object. A canonical example of such an imaging system is that of

satellite imaging, where the apparent motion arises from relative motion between the satellite

and the portion of earth under observation. Figure 1.2 shows a pair of satellite images which

are related by a simple global translation. For such an imaging scenario, only the constant term

v0 defining global translation is of interest. Within the context of our research, we refer to the

problem of global parametric motion estimation between a pair of images as the problem of

image registration.

Often times, only a portion of the scene under observation is of interest. In many

scenarios, the full affine motion model works well to capture image dynamics produced by a

5



stationary camera observing rigid object motion where the rigid object fills a significant portion

of the camera’s field of view. For example, Figure 1.3 shows a simple example of affine motion

with respect to a moving book. As the book moves towards the camera, the motion vector field

Figure 1.3: Example of affine motion.

exhibits the effect of zooming in. The estimated motion vector field shown in Figure 1.3 was

estimated from the cropped portion of the image containing the book.

In the previous example, we saw that within a local window, the motion was accu-

rately captured by the affine motion model. As we shrink this window, the apparent motion

becomes better modelled by simple translational motion. In fact, this observation forms the
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Figure 1.4: Example of local translation estimation.

basis for many motion estimation algorithms [14]. Figure 1.4 shows a typical example of lo-

cal translational motion estimation. Finally, proper tiling of these local translational motion

estimates can produce an overall estimate of very complicated motion vector fields v(x1, x2).

1.2 Applications of Motion Estimation

Motion estimation finds application in a very wide variety of research fields, each

with its own specific operational characteristics, language, and methodology. In this section,
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we outline several research areas where motion estimation surface. In particular, we divide the

applications of motion estimation into the two categories of image and scene analysis, and video

processing, and compression.

Image and scene analysis, refers to those applications that focus on making infer-

ences about the real-world scene under observation, using information related to the motion

vector field. Traditionally, research related to such applications has arisen from the field of

computer vision, a field whose foundations lie within the realm of computer science and specif-

ically robotic vision. For example, in [9], the motion vector field is used to estimate the three-

dimensional motion of the imaging system, sometimes referred to as ego-motion. Often the

three-dimensional properties of rigid objects can be inferred from the motion vector field us-

ing what is known as structure from motion [4]. Other applications range from motion-based

segmentation of objects in the scene [6] to human tracking and movement recognition [5]. In

some sense, these applications are challenging in part because of the extremely varied oper-

ating scenarios. Much of the work is focused on completely arbitrary scenes imaged through

video systems. As such, much of the development process has tended to utilize a qualitative

or comparison-based performance evaluation. Traditionally, estimation theoretic analysis has

been overlooked when examining these estimation problems. Most likely this is because of the

general complexity of these applications and their origins in the computer science community.

Other applications where motion estimation plays a vital role fall into the category of

video processing and compression. Many of these applications have traditionally been rooted

in the field of signal processing. For instance, in video processing, motion estimation forms an

essential component to most modern video compression algorithms [16], [10], [11]. Like com-

puter vision applications, video compression applications make very few assumptions about the

underlying video signals. In medical imaging, the sub-category of unimodal image registration

is analogous to global motion estimation, often employing simple parametric models such as

the affine motion model [17] as well as more general models [18]. Such registration is useful

for diagnosing medical conditions and evaluation of medical procedures. The medical imaging
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scenario is distinct in that the types of images are constrained to be those of anatomical parts.

Furthermore, medical imaging systems often have much poorer resolution and noise character-

istics than optical systems.

Finally, we focus on the application of multi-frame image enhancement which orig-

inally motivated much of the research contained in this thesis. In multi-frame image enhance-

ment, a set of images containing relative motions is fused to produce a single image of greater

quality. Specifically, we focus on the problem of superresolution whereby the enhanced image

is of greater resolution than the measured images. For instance, Figure 1.5 shows an example

of superresolution using the robust algorithm described in [19]. In this example the rear of

the vehicle is tracked through the sequence producing a set of images containing global affine

motion. Using the estimates of these motion vector fields, a higher resolution image is recon-

structed with less noise. It has been shown that motion estimation plays a critical role in the

overall image enhancement performance of superresolution. Because of this, it is critical that

the performance of motion estimation be well understood and characterized.

1.3 Contributions of the Dissertation

In this thesis we analyze the performance of motion estimation from the perspectives

of computational efficiency and overall accuracy. We analyze the general problem from an es-

timation theoretic perspective, offering insight into the fundamental challenges and limitations

associated with motion estimation. It is our goal that this work provide a common framework

with which to evaluate and understand motion estimation performance. Hopefully, such a struc-

ture will form a bridge between the many fields using different forms and applications of motion

estimation. To this end, this thesis offers contributions in two main areas. The first involves the

analysis of the fundamental bounds limiting the accuracy of any estimation algorithm. The sec-

ond contribution is a thorough analysis of the widely popular class of gradient-based algorithms

and the proposal of a mechanism to greatly reduce their computational complexity.
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Figure 1.5: Example of superresolution enhancement.
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• In Chapter 2, we propose using tomographic projections within the context of motion

estimation as a vehicle to achieve dramatic computational speedups while sacrificing little

in the way of estimator accuracy. Specifically, we explore the use of projections for

gradient-based motion estimation.

• In Chapter 3, we bound the performance of a class of motion estimators using the Cramér-

Rao bound, exploring the fundamental performance limits associated with translational

motion estimation. In this chapter, we assume that the images are sampled above the

Nyquist rate. We compare the performance of several popular algorithms with this bound,

including the projection-based estimators proposed in Chapter 2.

• In Chapter 4, we characterize the bias for the class of gradient-based motion estima-

tors. Using this bias formulation we construct rule-of-thumb performance limits for the

gradient-based estimators. In addition, we suggest a novel method for improving estima-

tor performance for low-noise scenarios where this estimator bias dictates performance.

• In Chapter 5, we extend our fundamental performance limits associated with translational

motion estmiation to the sub-Nyquist (aliased) case, showing the implicit relationship

between registration of aliased images and the problem of image reconstruction. We also

show how such analysis relates to the problem of superresolution.

• In Chapter 6, we conclude the thesis and detail several possible directions for future work.
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Chapter 2

Using Projections for Gradient-Based

Motion Estimation

As we have shown, motion estimation represents a critical task for a variety of computer vision

and video processing applications. Disparate as they may appear, these many applications share

one common thread: in all such applications, the computational cost of performing accurate

estimation of motion is very high, and this is often the bottleneck for both performance and

real-time implementation. For instance, fast and accurate motion estimation is critical for any

real-time motion compensating video encoder. In fact, most real-time video coders require

special hardware to achieve the necessary motion estimation efficiency to support real-time

encoding [13].

In this chapter, motivated by the need for fast and accurate motion estimation for com-

pression, storage, and transmission of video, as well as for other applications, we present novel

algorithms for estimating affine motion from video image sequences. Our methods utilize prop-

erties of the Radon transform to estimate image motion in a multiscale framework to achieve

very accurate results. We develop statistical and computational models that motivate the use of

such methods, and demonstrate that it is indeed possible to improve the computational burden

of motion estimation by more than an order of magnitude, while maintaining the degree of ac-
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curacy afforded by the more direct, and less efficient, 2-D methods. We further demonstrate that

multi-scale implementation of motion estimation algorithms using projections yields even more

accurate and speedy estimates. The ability to improve computational complexity by almost an

order of magnitude makes a compelling case for the routine use of projection-based methods in

motion estimation [20–22].

2.1 Using Projections to Estimate Motion

The aim of this section is to show that a variety of motion estimation methods can

be implemented in the Radon transform domain to yield very fast and accurate estimates of the

motion parameters. The Radon transform (tomographic projection) of an image is defined as

line integrals across the image [23]. It is well-known that pure translational motion in an image

results in translation of the projections [23] along the direction of projection. This property has

been used successfully in the past to estimate motion using projections [20–22, 24–32]. More

recently, much of the (mostly ad-hoc) work in this area has been unified, producing a more

general model of motion vector fields in the Radon transform domain [33] [34]. In particular,

we show that affine motion in the image leads to affine motion in the projections as well1. We

will use this property to derive efficient and accurate affine motion vector field estimators using

projections.

2.1.1 Motion Under Projections

Before we begin the discussion of the use of projections in motion estimation, let us

define the Radon transform. The Radon transform [23] of an image f(x1, x2) is defined as

r(p, φ) = Rφ [f(x1, x2)] =
∫ ∫

f(x1, x2)δ(p − x1 cosφ− x2 sinφ)dx1dx2 (2.1)

where δ is the Dirac delta function. A projection of the image can be thought of as the Radon

transform evaluated at a particular projection angle φ. As an example, Figure 2.1 shows a pair

1However, as we will elaborate later, the curl of the motion field is not directly measurable in the projections.
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Original Image

Image Projection

at 90 degrees

Image Projection

at 0 degrees

Figure 2.1: Set of tomographic projections of the forest image

of image projections at 0o and 90o. In this example, the projected image at 0o represents the

function created by summing all of the image intensity values in each column of the image.

Similarly, the projection at 90o represents the summation of each image row. In general, each

point in the projection represents an integration along a line through the original image. From

the definition we see that image projections are symmetric as r(p, φ) = r(−p, φ + π). We

note here that while the above definition represents the model for the Radon transform of a

continuous image, in practice, we will use a discrete version of the Radon transform.

To understand how to estimate motion parameters indirectly using projections, we

must first explore the relationship between motion in the original image sequence and the in-

duced motion, or transformation in the projections. We begin our analysis for the simple case

of translational motion, which is completely characterized by the shift vector v0. The simple

relationship known as the shift property of the Radon transform [23] relates motion in images

to the motion in projections by

Rφ [f(x1 − v01 , x2 − v02)] = r(p− vT0 nφ, φ) = r(p− u0(φ), φ), (2.2)
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where nφ = [cos(φ), sin(φ)]T is a unit direction vector. Intuitively, each projection at angle φ

“sees” the component of the vector v0 in the direction of the vector nφ. Thus, a pure translation

or shift given by v0 in the image domain results in a corresponding shift in the projection given

by u0(φ) = vT0 nφ.

The question of how general dynamics in image sequences behave under tomographic

projection was addressed in [33], where it was shown that under certain smoothness conditions

on the image function f(x1, x2) and the vector field v(x1, x2), for sufficiently small ∆t, there

exists a unique function u(p, φ) such that

Rφ [f(x− v1(x1, x2)∆t, y − v2(x1, x2)∆t)] = r(p− u(p, φ)∆t, φ) (2.3)

where

u(p, φ)
∂r(p, φ)
∂p

= Rφ[v(x1, x2)T∇f(x1, x2)] (2.4)

and ∇f = [fx(x1, x2), fy(x1, x2)]T denotes the spatial gradient of f(x1, x2). As in [33], we

refer to (2.4) as the Projected Motion Identity (PMI). This relationship suggests that for small

transformations (where small depends on the product of the magnitude of the displacement

vector field and the time elapsed ∆t), the projections of a dynamic image sequence evolve in

a qualitatively similar fashion as the original image sequence. That is, the projection function

r(p, φ) evolves as a transformation or warping of the domain coordinates p by the function

u(p, φ). It is important to note here that while the PMI is valid for small transformations of the

image, it is more universally applicable when applied in a multiscale setting where at coarse

scales, large warpings of the image are manifested as small transformations. We will elaborate

on this point in a later section.

In the specific case of affine motion, it is shown in [33] that an affine motion vector

field v(x1, x2) under projection behaves as

u(p, φ) ≈ vT0 nφ + (nTφMnφ) p = u0(φ) + α(φ) p. (2.5)

This suggests that the projected motion u(p, φ) is also an affine function of the radial parameter

p, and is parameterized by u0(φ) and α(φ). We note that the translational component of pro-
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jected motion u0(φ) depends only on the translational components of the original affine vector

field, and the linear term α(φ) depends only on the linear term in the original domain. This is

part of a more general set of interesting properties of projected motion explored in detail in [33].

For the sake of completeness, it is worth mentioning that the exact form of the affine

apparent motion in the projections is known and can be computed using properties of the Radon

transform [23]. Namely, the exact form of the projected motion function is

uexact(p, φ) = vT0 nφ +
(

1 − |det(P)|
‖PTnφ‖2

)
p, (2.6)

where P =

⎡⎢⎣ 1 −m22 m12

m21 1 −m11

⎤⎥⎦ satisfying (I − M)−1 = 1
| det(P)|P. Comparing (2.5) and

(2.6), we observe that the only difference appears in the second term. Indeed, as is shown in

Appendix 2.A, the term α(φ) in (2.5) can be obtained by linearizing the term
(
1 − | det(P)|

‖PT nφ‖2

)
in (2.6) about M = 0.

In any event, the exact form of the projected motion is highly nonlinear in the param-

eters of M, and is not easy to use for motion estimation from projections. By contrast, in our

approach, we estimate the affine parameters in a linear estimation framework. Employing this

linear framework, as we will show, has the dual advantage of producing not only very fast but

also quite accurate results.

It is instructive for the affine case to compare the exact formulation to the PMI for-

mulation for a few specific cases:

1. Pure Scaling - For the case of pure scaling (e.g. zooming magnification) the affine pa-

rameters will have the form M =

⎡⎢⎣ s 0

0 s

⎤⎥⎦. Using the exact form of the projected

motion function we obtain

uexact(p, φ) =
(

1 − |det(P)|
‖PTnφ‖2

)
p =

(
1 − |1 − s|2

(|1 − s|)‖nφ‖2

)
p

= (1 − |1 − s|)p.
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On the other hand, using the linear form of (2.5) we obtain

u(p, φ) = (nTφMnφ) p = s(nTφnφ) p = s p.

We observe that for scaling values of s less than 1, the two equations are equivalent.

2. Pure Rotation - For the case of pure rotation by angle ϑ the affine parameters will have

the form M =

⎡⎢⎣ 1 − cos ϑ − sinϑ

sinϑ 1 − cos ϑ

⎤⎥⎦. Thus, the exact form of the projected motion

function is

uexact(p, φ) =
(

1 − det(P)
‖PTnφ‖2

)
p =

(
1 − 1

‖nφ‖2

)
p

= 0.

This indicates that pure rotation, even in the exact formulation, conveys no information

in a single projection. Meanwhile, the PMI approximation yields

u(p, φ) = (nTφMnφ) p = (1 − cos ϑ) p. (2.7)

Here we see that the approximation is close to the exact expression for small angles of

rotation ϑ. We will again later elaborate on the difficulty of estimating rotation using

projections and how this difficulty may be overcome.

2.1.2 Previous Work

The use of projections to estimate motion efficiently is not new. Very early works

such as [24] use image projections at 0o and 90o to register translated images using a relative

phase approach. More recently [22], and [26] have incorporated projections into correlation-

based block motion estimators to speed up motion compensated video coding. In these works,

the projections used to estimate translational motion were confined to 0o and 90o. Similarly,

in [27] the authors use correlation between pairs of image projections at 0o and 90o to register

translated images. Furthermore, they find that the use of projection effectively nullifies certain
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types of pattern noise, yielding improved performance over the direct methods. These works do

not, however, address the question of estimating more general image dynamics such as affine

motion.

A few researchers have utilized the Radon transform to estimate various forms of

affine image motion. The authors of [28–30] use only a pair of image projections to accelerate

motion detection and estimation of a subclass of affine motions, for use in video sequence

processing and classification. They constrain the affine motion to that of global magnification

and global translation to extract camera movement in video sequences. The work of [32] and

[31] describes how the Radon transform could be used to estimate global rotation and translation

in image sequences. In particular, [31] uses a set of 360 half image projections (approximately

the set of projections at all angles) to accurately estimate global rotation and translation for

manufacturing process control.

The above methods have not addressed the performance issues concerning the appli-

cation of projections in estimating both global and local motion, particularly within a multiscale

framework. The present work unifies most, if not all, of the above proposed approaches in a

single framework, establishing a theoretical foundation for their use. In addition, the present

work is the first to justify and use a gradient-based estimation scheme using projections based

directly on the analysis of performance vs. computational complexity.

2.2 Gradient-Based Motion Estimation with Projections

In this section, we introduce the very accurate and widely-used class of motion es-

timation algorithms called the gradient-based algorithms. In particular, we propose a variant

of the gradient-based motion estimation algorithm which utilizes tomographic projections to

improve the computational efficiency of motion estimation.
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2.2.1 Direct (2-D) Gradient-Based Affine Motion Estimation

The gradient based approach is a commonly used and effective method for directly

estimating an optical flow field. Gradient based techniques or differential techniques compute

image velocity directly from the image pixel intensities by expanding the right side of (1.1) in

a Taylor series to obtain

f(x1, x2, t) = f(x1, x2, 0) − v1(x1, x2)tfx1 − v2(x1, x2)tfx2 + . . .

where fx1 = ∂
∂x1

f(x1, x2, 0) represents the partial derivative of the image function with respect

to x1. Without loss of generality, we assume that we are examining a pair of images at times

t = 0, Tt, and truncate the Taylor expansion to the first order thereby reducing this expression

to the well known gradient constraint equation [14]

−ft = ∇f · v, (2.8)

where ∇f = [fx1, fx2]
T denotes the spatial gradient of f and ft denotes the difference between

two adjacent frames f(x1, x2, Tt) − f(x1, x2, 0). Inserting the affine motion model (1.3) into

(2.8), one obtains a linear equation in the unknown affine motion parameters:

−ft = v01 fx1 + v02 fx2 +m11 x1 fx1 +

m12 x2 fx1 +m21 x1 fx2 +m22 x2 fx2. (2.9)

This constraint can also arise from a more general assumption of intensity conservation where

it is assumed that df/dt = 0, or the total derivative of the image brightness values does not

change over some interval of time. Under this intensity conservation assumption, the model

of (2.8) exactly characterizes the optical flow in the image sequence. Hence, ft becomes the

approximation of the partial derivative of the image sequence with respect to time.

In general, the spatio-temporal gradients must be approximated from the given image

data using derivative filters

f̃x1 ≈ g1(n1, n2) ∗ ∗z(n1, n2, 0) (2.10)

f̃x2 ≈ g2(n1, n2) ∗ ∗z(n1, n2, 0) (2.11)
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where ∗∗ represents a 2-D convolution operation with the gradient filters g1 and g2. Typically,

these gradient filters are chosen to be short finite impulse response (FIR) filters which are finite

approximations to the ideal infinite impulse response (IIR) derivative filters. We will revisit

these choice of these filters in Chapter 3.

This motion model of (2.9) is assumed to apply to a spatiotemporal region of the

image sequence represented by Ω. Thus, over the region Ω (which may in fact be the entire

image) we obtain a linear system of equations of the form

−z = AΦ + e. (2.12)

Here, z denotes the vector whose elements are each pixel differences z(n1, n2, 1)−z(n1, n2, 0)

in the region Ω scanned in some particular fashion (e.g. raster-scanned). e represents noise

or other departures from the assumed model. The vector Φ is the vector of unknown motion

parameters defining the motion vector field in the region Ω, as in

Φ = [v01 v02 m11 m12 m21 m22]
T . (2.13)

Finally, the matrix A contains the terms of (2.9) where the spatial gradients have been approxi-

mated using (2.10) and (2.11). In other words, the rows of A are given by:[
f̃x1 f̃x2 x1f̃x1 x2f̃x1 x1f̃x2 x2f̃x2.

]
(2.14)

Each row vector corresponds to a pixel location in the region Ω scanned in a fashion similar to

z.

Typically, it is assumed that the noise term e is zero-mean Gaussian noise. Under this

assumption, the best (minimum variance) linear, unbiased estimate of the parameters of interest

is given by the least-squares approach [35]:

Φ̂ = − (
ATA

)−1
ATz, (2.15)

Cov(Φ̂) = (ATA)−1. (2.16)

At times, it is appropriate to associate different weights with the pixels in the region

Ω. For example, it is common to apply a weighting function which focuses the estimator on the
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center of a block. Such weighting takes the form of a diagonal matrix W where the elements

along the diagonal are the weights associated with a particular pixel. When the weighting is

applied the estimator becomes

Φ̂ = − (
ATWA

)−1
ATWz, (2.17)

Cov(Φ̂) = (ATWA)−1. (2.18)

In practice, even for a reasonably small region (5 × 5 pixels), the gradient-based es-

timator usually provides quite accurate estimates of the affine parameters of the vector field v.

The performance of this method and its variations has been studied at some depth in [36–38].

The work of [37] originally outlined the methods for estimating optical flow in a global para-

metric framework, describing both the models used in this chapter for the global translational

and global affine model and other more complicated models. In [36], the authors propose a

region-based optical flow estimation scheme where the blocks are assumed to contain affine

motion. Furthermore, the work of [38] explores the use of robust estimators within the con-

text of gradient-based optical flow estimation. While the methods contained in these articles

achieve high degrees of accuracy, the computational complexity of the methods is often quite

high. The purpose of this chapter is to introduce motion estimation using tomographic projec-

tions. As we will show, the use of tomographic projections can be incorporated into a variety of

motion estimation schemes to achieve substantial speedup with little or no loss in performance.

Specifically, we explore the use of projections in gradient-based motion estimation.

2.2.2 Estimating Projected Motion Parameters

Earlier, we showed that the motion in the projections, or the projected motion, is ac-

curately characterized by the projected motion function u(p, φ) which, in turn, is parameterized

by u0(φ) and α(φ). We now present a method for estimating the projected motion parameters

u0(φ) and α(φ) from projections at a fixed angle φ over time based on a one-dimensional analog

of the gradient-based method.
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As we did in the derivation of the direct gradient-based estimator, we expand the right

side of (2.3) in a Taylor series

r(p, φ, t) = r(p− u(p, φ)t, φ) = r(p, φ) + rp(p, φ)u(p, φ) + . . . .

Ignoring the higher order terms, we obtain

−rt(p, φ) = rp(p, φ) u(p, φ). (2.19)

where rp denotes the partial derivatives of r(p, φ, t)2 with respect to the location variable p

and rt = r(p, φ, t) − r(p, φ, 0). Interestingly, a corollary of the result (2.3), proved in [33],

is that if the intensity conservation assumption df/dt = 0 is invoked in the image domain, the

corresponding constraint holds in the projection domain: dr/dt = 0. As before, this assumption

implies that the model of (2.19) exactly describes the relationship between image derivatives

and image motion. Again, in the context of this assumption rt refers to the partial derivative of

the projected image sequence with respect to time.

Similar to the 2-D case, inserting the affine model (2.5) into (2.19) we obtain

−rt = u0(φ) rp + α(φ) rp p

As in the direct method, we assume the motion model applies over the projection of the region

Ω which we denote Ωp. Note that we refer to the projection of z(n1, n2, k) at an angle φ as

zp(np, φ, k). The subscript p refers to data or functions in the projected domain.

As with the 2-D case, gathering the measurements over the region Ωp we generate an

overdetermined system of linear equations

−zp(φ) = Ap(φ)Φp(φ) + ep(φ) (2.20)

where zp(φ) is the a vector containing the projection pixel difference zp(np, φ, Tt)−zp(np, φ, 0)
for np ∈ Ωp at a particular angle φ. The vector Ψp is the vector of unknown projected motion

parameters

Φp(φ) = [u0(φ) α(φ)]T

2We note here that r(p, φ, t) is the Radon transform of f(x1, x2, t) for each fixed t
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Finally, the rows of the matrix Ap are given by

[r̃p pr̃p]

measured at every location in Ωp. Here, the approximation of the partial derivatives r̃p(p)

is done in a special fashion that takes into account the geometry of the image region. The

discussion of this calculation is presented in Appendix 2.B. It is worth noting here an interesting

relationship between the noise e in the image domain formulation of (2.12) and the noise ep(φ)

in the corresponding projection domain (2.20). The noise term ep(φ) is a projection of the

random field e, and as such will still be assumed to be zero-mean. However, assuming the

random field comprising the error term e to be white, with variance σ2, the noise vector ep(φ)

will have a diagonal covariance matrix Cφ = σ2diag[S−1(φ)], where the function S(φ) reflects

the geometry of the random field region (See Appendix 2.B for further details).

Thus, solving equation (2.20) in a weighted least squares sense we obtain:

Φ̂p(φ) = −(AT
pC−1

φ Ap)−1AT
pC−1

φ zp(φ) (2.21)

Cov(Φ̂p(φ)) = (AT
p C−1

φ Ap)−1 (2.22)

As before, if we choose to apply an additional weighting function to the data within

Ωp, captured by the diagonal matrix Wp, the weighted estimates of the projected motion pa-

rameters become

Φ̂p(φ) = −(AT
p WpC−1

φ Ap)−1AT
pWpC−1

φ zp(φ) (2.23)

Cov(Φ̂p(φ)) = (AT
p WpC−1

φ Ap)−1 (2.24)

The covariance terms of (2.22) and (2.24) are 2 × 2 matrices of the form⎡⎢⎣ Cu0,u0(φ) Cu0,α(φ)

Cα,u0(φ) Cα,α(φ)

⎤⎥⎦ (2.25)
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2.2.3 Estimating Motion Parameters From Projected Motion Parameters

Having just described the method for estimating the motion parameters in the Radon

transform domain in the previous section, we are now in a position to present the final step in

estimating the parameters of the original 2-D motion model. Namely, the model (2.5), which

relates affine motion in the image domain to the motion in projections can now be invoked. By

comparing terms on the left and right-hand sides of (2.5), we can directly observe that

u0(φ) = nTφv0,

α(φ) = nTφMnφ

This pair of identities allows the estimation of parameters of both the translational part v0 and

the purely linear part M of the vector field v(x1, x2).

Assuming the projected motion parameters have been estimated as û0(φ) and α̂(φ) at

a set of angles φi, i = 1, · · · , Nφ, we can collect all such estimates and write⎡⎢⎢⎢⎢⎣
û0(φ1)

...

û0(φNφ
)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
cosφ1 sinφ1

...
...

cosφNφ
sinφNφ

⎤⎥⎥⎥⎥⎦v0 + ε0,

⎡⎢⎢⎢⎢⎣
α̂(φ1)

...

α̂(φNφ
)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
cos2 φ1 sin2 φ1 2 cosφ1 sinφ1

...
...

...

cos2 φNφ
sin2 φNφ

2 cosφNφ
sinφNφ

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

m11

m22

m12 +m21

⎤⎥⎥⎥⎥⎦+ εα,

or equivalently,

y0 = R0v0 + ε0 (2.26)

yα = Rαm + εα

Because the noise terms ε0 and εα are in general correlated, we combine these estimates into

one system of the form⎡⎢⎣ y0

yα

⎤⎥⎦ =

⎡⎢⎣ R0 0

0 Rα

⎤⎥⎦
⎡⎢⎣ v0

m

⎤⎥⎦+

⎡⎢⎣ ε0

εα

⎤⎥⎦ or y = RΦr + ε
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where the subscript r indicates the reduced set of 2-D affine motion parameters. Here, we use

the subscript r to reflect that we are estimating a reduced set of 2-D motion parameters due to

the inability to estimate the curl component.

The error vector ε is assumed to be zero-mean with a banded covariance matrix Cε.

The covariance matrix Cε is constructed from the collection of covariance matricesCov(Φp(φ))

of (2.25). Then the matrix Cε is constructed as

Cε =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Cu0,u0(φ1) 0 0 Cu0,α(φ1) 0 0

0
. . . 0 0

. . . 0

0 0 Cu0,u0(φNφ
) 0 0 Cu0,u0(φNφ

)

Cα,u0(φ1) 0 0 Cα,α(φ1) 0

0
. . . 0 0

. . . 0

0 0 Cα,u0(φNφ
) 0 0 Cα,α(φNφ

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Finally, we estimate Φr via weighted least squares:

Φ̂r = (RTC−1
ε R)−1RTC−1

ε y (2.27)

When estimating only the translational component of motion, the forward model reduces to

(2.26). The covariance matrix for ε0, namely Cε0, is a diagonal matrix whose terms are given

by Cu0(φi); the final estimate of the 2-D translation parameters is given by

v̂0 = (RT
0 C−1

ε0 R0)−1RT
0 C−1

ε0 y0. (2.28)

Ultimately, we will compare the performance of these projection-based estimators with that of

the original 2-D estimation methods.

2.2.4 Vector Field Curl under Projections

It is important to recall that a drawback of using a projection-based estimator is the

inability to directly estimate all of the parameters of M uniquely. Namely, we cannot estimate

the component m12 −m21 under projection. While the m12 +m21 term represents a measure
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of the shearing of the image sequence, the missing term m12 − m21 corresponds to the curl

of the motion vector field. As we indicated earlier, this suggests that pure rotation will not be

distinguishable in a single projection even in the case of the exact projected affine model of

(2.6). At first glance, it would appear that estimating rotational motion is then not at all possible

from projections; however, this is not the case. Indeed, if the complete set of projections of

the images were computed, then the angle of rotation could be easily determined by computing

pairwise correlation coefficients between a projection (at, say, φ = φ0) and the many other

available projections. The angle of rotation is then determined by the difference in the projection

angles of the pair of projections with highest spatial correlation coefficient. In our method, in

order to keep the computational complexity to a minimum, we deal with only a small number

of projections (3 or 4) sampled sparsely in the range [0, π]; therefore, the correlation approach

is impractical.

Fortunately, our method can still be modified and employed to estimate purely rota-

tional motion. Though we do not pursue this specific problem in this chapter, we shall indicate

how this can be done by recalling an important property of projected motion. It was proved

in [33], and mentioned earlier in this chapter, that projected motion satisfies the linearity prop-

erty so that translational motion maps to a single component u0 in the projections and the linear

part M maps to another separate component α(φ) in the projections. This linearity idea can

be further exploited to show that the complementary rotational and irrotational components of

motion also are separated in the projections. The implication here is that if we simply ignore the

fact there is a rotational component in the vector field of interest, or equivalently, if we assume

that m12 − m21 = 0, then the resulting estimated motion vector field is purely irrotational.

With this fact in mind, given an arbitrary affine motion vector field, we can proceed by first esti-

mating the irrotational component according to the projection-based approach described above.

The images then can be warped according to this estimated vector field, and the resulting pair

of images will then be known to be related by a vector field that is a combination of transla-

tional and purely rotational components. While the rotation can not be estimated using a global
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application of the projection-based method, it is possible to estimate rotation by applying the

method locally in smaller windows of the image. It is true that in a window of fixed size, as we

move away from the center of rotation the curl component becomes increasingly small. There-

fore, the component of pure rotation in a window away from the center of rotation is measured

effectively as a translation. Combining these local estimates with the knowledge that the un-

derlying motion field is purely rotational with an unknown center of rotation (the translational

component), the curl component of the overall global vector field very likely can be accurately

estimated as well. Of course, the computational complexity of the overall projection-based

method process is worsened if this additional rotational motion estimation is carried out. We

leave further analysis of this problem for future research.

In the present framework, in order to generate estimates for all of the affine parame-

ters, we assume that m12 −m21 = ρ where ρ is some known curl value, typically set to zero.

In closing this section, it is also worth observing that we need at least two projection angles

to determine the shift vector v0 and at least three projection directions to estimate all of the

curl-free affine parameters of M. Given an arbitrary affine vector field, we typically employ

four projection angles at φ = 0, 45, 90, and 135 degrees. The choice of these angles can also

be optimized as a function of the given image (spatial frequency) content to produce the best

possible estimates – this is another interesting topic worthy of future research.

2.2.5 Global, Local, and Multiscale Estimation

Until now, we have not specified the region of interest where we apply the above

estimators. In this section we explain how the previously described models can be applied to

the image sequence in a global or local fashion to estimate more complex vector fields. Then,

we show how the estimators can be embedded into a hierarchical or multiscale framework to

yield improved performance as well as computational efficiency.

In earlier sections, estimators (2.27) and (2.15) were applied to an unspecified region

in the image Ω where the affine motion model was assumed to characterize the image dynamics.
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The simplest such region to apply the estimator is the entire image. For this case, we obtain

parameters that describe the global motion. When the motion model applies in the global sense,

this form of estimation usually produces a very good estimate as often there are thousands of

equations used to estimate only six parameters.

Another popular approach for estimating more complex vector fields is that of divid-

ing the images into small overlapping or non-overlapping regions. This region-based approach

assumes that the simple parametric model characterizes the motion present only in a small

region. The more complex vector field v(x1, x2) is then approximated as a piecewise collec-

tion of simpler parametric vector fields. These piecewise vector fields are sometimes forced to

satisfy some constraint such as smoothness [39]. The simplest form of local estimation is to

find translational motion for small image regions. The translational model of image dynamics

f(x1 − v01t, x2 − v02t) is likely to be valid for small spatio-temporal regions in the image se-

quence. The vector field estimation process begins by estimating the translational motion for

each region in the image. Then, these estimates are combined to generate an estimate of the

vector field v(n1, n2). The estimated translational motion for each block represents a sample

of the overall vector field. Thus, the dense vector field estimate v̂(n1, n2) is usually generated

by some form of interpolation of these vector field samples. One such form of interpolation is

the replication of the vector samples, where the final vector flow field has regions of constant

velocity such as in Figure 2.2. This approach is common in video coding where the motions

of each block are estimated using a variety of approaches. Some of these approaches include

matched filtering, correlation and phase-based methods.

As shown in [40], this local vector field estimation method can be understood as a

special case of variable sized region-based motion estimation. Multiscale motion estimation

attempts to estimate a vector field by estimating the velocity components for variable sized re-

gions at different scales of image resolution. Basically, the multiscale framework estimates a

vector field by combining the coarse motion properties in large image regions at low image res-

olution with the finer motion vector estimates estimated in smaller regions at higher resolution.
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Figure 2.2: Region Based Vector Field Estimation

To understand the utility of the multiscale framework, we first describe the iterative

estimation process. Recall from Sections 2.2.1 and 2.2.2 the truncation of the Taylor series ex-

pansion to the first order used to produce (2.8) and (2.19). This approximation assumes a small

motion vector v(x1, x2) (assuming unit time between frames) and is not accurate for regions

where the velocity vector v(x1, x2) is large. The multiscale approach attempts to remedy this

inaccuracy by iterating over scale. More specifically, the multiscale approach decomposes the

image sequence into a dyadic pyramid of successive sequences of lowpass filtered and down-

sampled images, as shown in Figure 2.3. Such multiscale decomposition is applied to each

frame in the video sequence. This creates an image sequence pyramid with sequences at the

top having the lowest resolution and size while the original sequence lies at the bottom. The

motion vectors describing the dynamics in the downsampled images will necessarily be reduced

by a factor of 2 at every level of the pyramid. This reduction in magnitude improves the accu-

racies of the models (2.8) and (2.19) by “shrinking” the magnitude of v(x1, x2). Furthermore,

it has been shown that the lowpass filtering used to construct the image pyramid also serves to

regularize the optical flow estimation problem [40].
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Figure 2.3: Dyadic pyramid used in multiscale estimation.

When the assumption of intensity conservation is violated in an image sequence, the

estimates produced by by (2.15) and (2.27) contain errors. These errors partially result from

modelling errors arising from the linearization of a nonlinear problem. One generic method to

mitigate these errors is to use multiple estimation iterations in a Gauss-Newton type scheme

[37]. In general, the performance of the iterative nonlinear least squares estimators depend on

both the convexity of the objective function (sum of the squared image differences) as well as

the accuracy of the relative estimate at each iteration.

An iterative nonlinear least squares estimation can be combined with the multiscale

framework. The iterative multiscale estimation begins by estimating motion in the image se-

quence at the coarsest scale (the top of the pyramid), working in a coarse-to-fine strategy using

the 2-D estimator (2.15) or the projection-based estimation (2.27) at each level of the pyramid.

The image sequence at a particular level of the pyramid is denoted by zl(n1, n2, k) where the su-

perscript of z indicates the level of the pyramid where L is the total height of the pyramid. Each

level of the pyramid is constructed by first filtering the sequence by a low-pass filter h(n1, n2)

followed by a downsampling operation by a factor of 2. In other words

zl(n1, n2, k) =
[
h(n1, n2) ∗ ∗ zl−1(n1, n2, k)

]
↓2 (2.29)
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where ↓2 represents a downsampling by a factor of 2. Because of the image downsampling, the

velocity vector field vl(n1, n2) for a given level of the pyramid is reduced in magnitude by a

factor of 2l from the original v(n1, n2). Initially, the vector field v̂L(n1, n2) is estimated from

the image sequence zL(n1, n2, k) at the coarsest level. Secondly, the image sequence at the next

finer resolution level of the pyramid zL−1(n1, n2, k) is warped according to twice the velocity

estimates 2v̂L(n1, n2), creating a warped image sequence žL−1(n1, n2, k) with the estimated

coarse image motion removed from the image sequence. Finally, the residual motion vr(n1, n2)

is estimated from this warped image sequence yielding an updated velocity vector field estimate

given by

v̂L−1(n1, n2) = 2v̂L(n1, n2) + v̂r(n1, n2). (2.30)

This process repeats down the pyramid iterating in a coarse to fine fashion. The multiscale

aspect of the iteration serves the additional role of reducing computation since the images at

the coarsest levels are downsampled (smaller). Thus, the computation time required to warp the

image sequences as well as the time required to estimate the residual motions is reduced.

The multiscale iteration can be applied to both the direct and the projection based

method for estimating vector fields. Using of multiscale iteration for direct estimation has been

shown to produce very accurate results [37]. The multiscale iteration can also be combined

with projection based estimation to produce equally good results while realizing significant

computational savings. For example, Figure 2.4 shows the Fake Trees image at the coarsest

resolution (L = 3) and at the original image resolution. The corresponding image projections

also are shown and are used to estimate global motion. Initially, the global motion parameters

are estimated from a set of projections of the coarsest image sequence. The process proceeds

as detailed, only at every step a projection-based motion estimation algorithm is employed.

In Section 2.3, we present experiments showing the performances of the multiscale methods

relative to the non-iterative methods.
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3=L

1=L

Figure 2.4: Fake Trees image at two pyramid resolutions and the corresponding projections.
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Gradient-Based Estimators 2-D 1-D
Projection 0 NφN

2

Gradient 10N2 5NφN
Motion Estimation 36N2 4NφN
Inverse Estimation 0 36N2

φ

Table 2.1: Complexity of Gradient-Based Direct and Indirect Methods

2.2.6 Computational Complexity

In this section we compare the computational complexities of the direct and the

projection-based estimators for estimating global motion. We will examine the computational

cost of estimating the parameters of affine motion between a pair of N × N images (without

a loss of generality we assume that the images are square). We are not including any of the

cost associated with multiscale estimation as it will pertain to both estimators equally. We dis-

tinguish the original estimator from the projection based estimator as being the 2-D and 1-D

methods respectively. We assume that Nφ is the number of projections used (typically 3 or 4).

For our evaluation of image gradients, we use convolution kernels such that 10 multiplications

and additions are required to estimate the 2-D gradient at each pixel and 5 multiplications and

additions are required to estimate the derivative at each point in the projection. We obtain the

cost for motion estimation as a general cost of solving a linear system from [41] where six

parameters are estimated in the 2-D case and two are estimated in the 1-D case. Finally, we as-

sume that Nφ 	 N so that the final cost of estimating the 2-D affine parameters from projected

motion parameters is negligible. This leads us to a general overall computational complexity

of O(46N2) for the direct 2-D estimation and O(NφN2 + 9Nφ) for the projection-based 1-D

estimator. We find in practice that using Nφ = 4 projection angles to estimate affine motion

requires at worst only about 25 percent of the computational time required by the 2-D method,

thus realizing significant computational savings. It is important to note that the cost of comput-

ing projections, which is the leading term in the complexity of the 1-D method, involves only

additions, while the leading N2 term in the direct 2-D method involves multiplications. Fur-
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thermore, we point out that many motion estimation methods typically employ some form of

presmoothing of the images prior to motion estimation. We have not included this presmoothing

step in our analysis or experiments and we have ignored its computational cost. But we mention

here that the computational cost of presmoothing is again significantly lower if this operation is

performed on the projections instead of on the images.

2.3 Experiments

We present a set of experiments exploring the performance of the direct and indirect

(projection-based) methods for estimating affine motion. We begin with experiments estimating

global affine vector fields for a set of images in both a non-iterative and multiscale iterative

framework. Then, we compare the direct and indirect estimation of general vector fields using

local estimation methods. For our experiments, we use a combination of well-known benchmark

image sequences as well as our own synthesized image sequences.

2.3.1 Error Measures and Test Image Sequences

Following [14], we measure mean angular error between the correct motion vector

field v(n1, n2) and the estimated motion vector field v̂(n1, n2). In keeping with the method

of [14], we utilize two difference performance measures. The first is called the mean angular

error (MAE). To compute the MAE, we write the 2-D vector field as a 3-D vector function over

a 2-D scalar field as

V(n1, n2) = [v1(n1, n2), v2(n1, n2), 1]T

where v1, v2 are the velocities in the 2 spatial dimensions. The mean angular error between

V(n1, n2) and V̂(n1, n2) is measured by:

MAE =
1
N2

∑
n1,n2

arccos

(
V(n1, n2)T V̂(n1, n2)

‖V(n1, n2)‖2 ‖V̂(n1, n2‖2

)
(2.31)
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Figure 2.5: Experimental Test Images: Forest (left) and Lab (right)

where the sum is taken over all N2 pixels of interest. To gather more information about the

motion estimation performance, we also compute the mean magnitude error (MME) as:

MME =
1
N2

∑
n1,n2

‖v(n1, n2) − v̂(n1, n2)‖2 (2.32)

Again, this represents the average magnitude of the error vector over all pixels in the image.

In our experiments, we evaluate the performance of our projection-based estimator

both for well-known image sequences and for our own synthetic image sequences. To generate

a synthetic image sequence, we warp an individual image according to the affine transformation

model of (1.3) to create an image pair. The second image in the pair is a linearly interpolated

version of the reference image, where the interpolation is based on a known motion vector field.

We then estimate this vector field from the image pair. The images we used to generate synthetic

image sequences are shown in Figure 2.5.

1. Forest - Picture of a forest containing similar image statistics to those of a natural scene

with rich textures. The image is 300 × 440 pixels.

2. Lab - Picture from a webcam at the researchers’ office. The webcam was rotated about

45o so as to create an image in which the majority of image texture is not aligned at 0o

and 90o. The image is 240 × 320 pixels.

In addition to our own synthetic image sequences, we measure performance on a well

known set of benchmark image sequences from [14]. While these image sequences contain
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many frames, we limit the image sequences to only 5 frames. In practice, this represents a

reasonable number of frames; in real image sequences the vector field v often remains static for

only a short period of time. The image sequences that we use are the following:

1. Diverging tree - The image sequence imitates a camera zooming into scene creating a

divergent motion vector field.

2. Translating tree - The image sequence contains mostly global translational motion aris-

ing from camera motion in the x1-direction. The translational motion vectors are approx-

imately 2.5 pixels per frame.

3. Yosemite - The image sequence contains a more complex motion field from perspective

effects of an imaging system flying through Yosemite valley. A sample of the image

sequence and corresponding motion vector field is shown in Figure 1.1.

Both the Translating and Diverging tree sequences are based on the image shown in Figure 2.12.

We apply both the global and local estimators to these benchmark sequences.

For each set of global estimation experiments we add zero-mean Gaussian noise to

produce the specified image signal to noise ratio 3(SNR). The motion vector fields were es-

timated from these noisy image sequences and the corresponding error measures for the esti-

mates were calculated. For each experiment, we repeated the estimation process 100 times at

each SNR and averaged both the MAE and MME performance measures. Figure 2.6 shows an

example of the Tree image at different SNRs.

We evaluate the performance of the local estimation methods without adding noise to

the sequences to allow a comparison of our results with those of [14].

2.3.2 Global Affine Estimation

We begin our experimental performance analysis by estimating global affine vec-

tor fields described by the affine motion model of (1.3). As mentioned in Section 2.2.4, the

3Signal to noise ratio (SNR) is defined as 10 log10
σ2

c
σ2 where σ2

c and σ2 are the variances of a clean frame and
the noise respectively.
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Figure 2.6: Tree image at different SNR values (70db, 30db, 15db, 10db)

rotational component of the affine vector field cannot be directly estimated using the global

projection-based estimator. Therefore, we first examine the performance of the method in esti-

mating affine vector fields constrained to have no rotational component, and compare the results

to the performance of the direct 2-D method4. We then extend the experiments to include es-

timation of the general affine model to understand the indirect estimator’s performance in the

presence of image rotation. For the projection-based estimation, we use four projection angles

of 0o, 45o, 90o and 135o in each experiment.

We initially examine the performance of the projection based global estimator on the

benchmark Translating and Diverging Tree sequences, which contain no rotational component.

The plots of Figures 2.7 and 2.8 show the performance of the 1-D and 2-D methods

using no multiscale iteration (L = 1, dashed lines) and for a multiscale pyramid of height L = 3

(solid lines). The triangles indicate the error of the 2-D method and the circles indicate the error

of the 1-D projection based estimator. We follow this graphical format for all of the experiments

on global affine vector field estimation.

From Figures 2.7 and 2.8, we see that the projection-based estimator outperforms the

direct 2-D method when the method is not iterated in multiscale, but the difference in perfor-

mance shrinks as the SNR improves. In both image sequences, when motion is estimated using

4In the interest of fairness, the 2-D method employed in estimating these irrotational vector fields employed
constrained least squares with the constraint that m12 − m21 = 0. The plots of Figures 2.7, 2.8, and 2.9 reflect the
use of this constraint in the 2-D case.
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Figure 2.7: Mean Angular and Magnitude Error for the Translating Tree sequence
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Figure 2.8: Mean Angular and Magnitude Error for the Diverging Tree sequence
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Figure 2.9: Mean Angular and Magnitude Error for the Forest image with constrained motion

multiscale iteration, the performance of the direct and projection based estimators are essen-

tially equivalent. Only for very poor SNR in the case of the Diverging Tree sequence (Figure

2.8) do we see a small performance difference between the 1-D and 2-D methods.

To evaluate the performance of the projection-based estimator more systematically

using simulated motion, we continue our experimentation using our synthetic image sequences.

Figure 2.9 shows the performance of both the 2-D and 1-D methods in estimating the global

affine vector field with parameters M =

⎡⎢⎣ .05 .01

.01 .06

⎤⎥⎦ and v0 = [.5, .5]T applied to the

Forest image.

As a point of reference, for a particular realization of noise at SNR of 5 dB, the 1-D

estimator using multiscale (L = 3) iteration produces estimates ofM̂ =

⎡⎢⎣ .0484 .0079

.0079 .0382

⎤⎥⎦
and v̂0 = [.3223, .4986]T which corresponds to mean angular error of 1.8 degrees and a

mean magnitude error of 0.39 pixels. Using the same data, the 2-D estimator producesM̂ =⎡⎢⎣ .0471 .0080

.0080 .0339

⎤⎥⎦ and v̂0 = [.3885, .1760] which corresponds to a mean angular error of 3.19

degrees and a mean magnitude error of 0.68 pixels.

Again, we see the non-iterative projection-based estimator outperforming the direct
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Figure 2.10: Mean Angular and Magnitude Errors for the Lab image with rotation

2-D estimator. Using the multiscale iteration, the 1-D projection based estimator continues to

outperform the 2-D method. As the SNR improves, both methods seem to converge to similar

performance. We present these results as a representative sample of the many experiments we

carried out using other irrotational affine vector fields as well as different reference images.

To analyze the performance for the case of general affine motion, we estimate image

dynamics for a vector field containing nonzero curl. Figure 2.10 shows the errors in estimating

a vector field applied to the Lab image with affine parameters M =

⎡⎢⎣ −.01 −.01
−.03 .02

⎤⎥⎦ and

v0 = [.5, .5]T .

As the plot indicates, without using multiscale iteration, the projection-based 1-D

estimator seems to outperform the 2-D estimator. Presumably, the 1-D method is more robust

when estimating gross motions than the 2-D method. However, when employing a multiscale

pyramid of height L = 3, the 2-D method clearly produces better estimates of the vector field.

While the multiscale iteration does improve the projection-based estimates, the iterations only

improve the estimate of the irrotational component of motion. For example, at a SNR of 5 dB

and multiscale height L = 3, the projection-based method produces affine parameter estimates
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Figure 2.11: Residual velocity vector field for projection-based estimation of general affine vector field.

of M̂ =

⎡⎢⎣ −.0093 −.0238
−.0238 .0178

⎤⎥⎦ and v̂0 = [−.6807, .0944]T . The residual motion vector field

v − v̂ is shown in Figure 2.11. This figure shows that the residual motion not captured by the

projection-based estimator is primarily the rotational component of affine motion. By contrast,

the 2-D estimator for the same image pair produces the estimatesM̂ =

⎡⎢⎣ −.0106 −.0097
−.0294 .0188

⎤⎥⎦
and v̂0 = [−.5291, .4231]T , effectively estimating the curl of the vector field.

These experiments indicate that when the motion is constrained such that there is no

image rotation, the 1-D method performs just as well if not better than the 2-D method for

global affine motion estimation. Even when rotation was present, the 1-D method appears to

offer more robust estimation in the presence of large scale motion as evidenced the performance

differences for the non-multiscale estimation. The notion that the 1-D method can perform bet-

ter than the 2-D method in some circumstances deserves systematic and careful future study.

The previous figures also show that the multiscale iteration can provide substantial improve-

ments in performance for both the non-iterative 1-D and 2-D estimators.
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2.3.3 Local Translation Estimation

Finally, we present experiments with the use of projections for estimating local mo-

tion in a block-based scheme as outlined in Section 2.2.5. As mentioned earlier, application of

the direct gradient-based translational estimation of Section 2.2.1 to small blocks in an image

sequence was first introduced by Lucas and Kanade [42]. Here, we compare the performance

of a projection-based block-wise translational estimation scheme with the direct 2-D gradient-

based method of [42]. The direct gradient method consistently performs well as shown in most

optical flow estimation survey papers such as [14] and [13]. We will show that this performance

also extends to the projection-based method, while significantly improving the computational

efficiency.

As indicated in Section 2.2.5, both the direct and indirect techniques require choosing

a set of operating parameters, ultimately affecting estimator performance. For instance, both

methods initially subdivide the image into blocks for which a motion vector is estimated. The

choice of block sizes plays a critical role in determining both the accuracy and the speed of the

techniques. Furthermore, depending on a desired density of the motion vector field, the size of

the blocks affects the amount of block overlap. Both methods must choose a number of images

to use in calculating one motion vector field. Finally, each of the projection-based approaches

requires a pair of projection angles.

To improve the performance of the block based estimators, we apply a weighting

vector to the least squares estimator which weights the pixels at the center of the block more

than the pixels at the periphery. We denote this weighting function w(x1, x2) for the direct

estimator and w(p) for the indirect estimator. Applying this weighting function to larger blocks

will maximize localization accuracy while minimizing the risk of an ill-conditioned system of

equations. Basically, the weighting function forces the estimator to estimate motion primarily

from the pixels at the center of the block, but also allows pixels at the periphery of the block

to influence the estimate slightly. To simplify the characterization of the weighting function,

we use Gaussian functions w(x1, x2) ≈ e
−x2

1+x2
2

� and w(p) ≈ e
− p2

� . The weighting function is
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Method 1-D Tran 2-D Tran 1-D Div 2-D Div 1-D Yos 2-D Yos
MAE (degrees) 11.385 14.108 5.888 6.112 18.820 21.195

Std 0.7064 0.6470 0.3325 0.3361 0.7245 0.7861
MME (pixels) 0.574 0.778 0.153 0.169 1.120 1.023

Std 0.0269 0.0231 0.0094 0.0110 0.0503 0.0359
Cpu Time (s) 1.920 23.880 1.930 24.030 7.530 96.160

Table 2.2: Results for Translating Tree, Diverging Tree, and Yosemite

parameterized by 
, or the variance of the Gaussian function.

To directly compare the 1-D block based estimator with the 2-D block based method

in a fashion similar to [14], we estimate the general motion vector fields for the Translating and

Diverging Tree and the Yosemite sequences using overlapping blocks of size 30 × 30 pixels

which appears to produce the best overall results for both methods. The width of the Gaussian

functions was ρ = 6 which suggests that the majority of the estimator weight is placed within

the center 5 pixels or so. We then use both estimators on each sequence using 5 frames and

tabulated the results in Table 2.2. The same table also includes the computation time required

to estimate the vector fields.

From Table 2.2, we observe that the accuracy of the 1-D and 2-D methods appear

to be statistically equivalent. The computational complexity, however, is dramatically reduced

in the projection-based approaches. The 1-D method’s total computation time was on average

about 90 percent better than the 2-D counterpart. As a visual example, Figure 2.12 shows

the estimated motion vector fields for the Diverging Tree image sequence overlaid atop one

image of the sequence. Note that the motion vector fields are visually quite similar. As one

might expect, the performance in estimating a globally affine vector using a local method is

inferior to that of estimating the parameters in a global fashion. The poor performance can be

explained by the sensitivity of local models to large motions. For example, the magnitude of

the motion vectors in the Translating tree sequence is about 2-3 pixels per frame, explaining the

performance degradation using local estimation. Similarly, portions of the Yosemite sequence

contain very large motions which are very difficult to estimate in a local fashion. Much of
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Figure 2.12: Estimated motion vector field superimposed on the image using 2-D (left) and 1-D (right)
estimators for the Diverging tree sequence.

the motion in the Diverging tree sequence is sub-pixel, explaining the significantly improved

performance on this sequence.

2.4 Conclusion

In this chapter we introduced a unified framework for the estimation of affine motion

parameters using tomographic projections. Previous attempts at the same were mostly ad-hoc

and, most importantly, did not address the question of relative performance between the direct

2-D methods and the proposed 1-D approaches. Here we have shown that projection-based

methods offer a computationally attractive alternative to the direct methods, while in most cases

maintaining or even improving the level of accuracy. The idea that projection-based methods

often can display improved performance is theoretically intriguing and deserves careful study in

the future. In Chapter 4, we compare the performance of projection-based and the standard di-

rect gradient-based algorithms for estimating translation. Such analysis offers some insight into

the observed improved estimator performance associated with the projection-based algorithms.

We have also shown that the projection-based method can be combined with a multiscale itera-

tive framework to provide further accuracy in motion estimation while minimizing computation

44



time.

These results suggest much room for future research in the area of estimating motion

using projections. For instance, the gradient-based method is only one of many methods for

estimating motion using projections. Phase-based methods are another possibility that should

be explored [43]. Improved performance may also be realized by using more sophisticated

statistically robust methods in place of the least squares approach presented in this chapter.

Finally, some of our preliminary experimentation has indicated that the choice of projection

angles plays a fundamentally important role in the performance of any projection-based motion

estimation method. Adaptively identifying the optimal set of projection angles, as a function of

the given images, for best estimator performance remains an open question.

2.A Linearized Projected Affine Motion

In this appendix, we derive the Maclaurin series approximation of the exact form of

the projected motion function u(p, φ) for affine motion. From (2.6) we see that the exact form

of the affine motion under projection is

uexact(p, φ) = vT0 nφ +
(

1 − |det(P)|
‖PTnφ‖2

)
p (2.33)

We show how the coefficient of the second term in the above expression can be linearized by

expanding it in a first order Maclaurin series. To begin, let us define

αexact(P) = 1 − |det(P)|
‖PTnφ‖2

. (2.34)

Next, we rewrite (2.34) as a function of the four affine parameters as follows

αexact(P) = αexact(m11,m12,m21,m22)

= 1 − |1 −m11 −m22 +m11m22 −m12m21|
[((1 −m22) cos(φ) +m21 sin(φ))2 + (m12 cos(φ) + (1 −m11) sin(φ))2]1/2

The first order Maclaurin series of α(P) will have the form

αexact(P) = α(I) +m11
∂α(I)
∂m11

+m12
∂α(I)
∂m12

+m21
∂α(I)
∂m21

+m22
∂α(I)
∂m22

(2.35)

45



To simplify the derivation, we write

αexact(P) = 1 − β(P)ζ−1/2(P)

where

β(P) = |1 −m11 −m22 +m11m22 −m12m21|

and

ζ(P) = ((1 −m22) cos(φ) +m21 sin(φ))2 + (m12 cos(φ) + (1 −m11) sin(φ))2 (2.36)

Thus, from the chain rule we see that the partial derivatives of αexact will have the form

αx = −
[
∂β

∂x
(ζ−1/2) − (β

1
2
ζ−3/2)

∂ζ

∂x

]
=
[
(β

1
2
ζ−3/2)

∂ζ

∂x
− ∂β

∂x
(ζ−1/2)

]
.

Next, we note that αexact(0) = 0, ζ(0) = 1 and β(0) = 1.

We now compute the partial derivatives of β evaluated at 0.

β11(0) = −1

β12(0) = 0

β21(0) = 0

β22(0) = −1

Likewise, we now evaluate the partial derivatives of ζ .

ζ11(0) = −2 sin2(φ)

ζ12(0) = 2 cos(φ) sin(φ)

ζ21(0) = 2 cos(φ) sin(φ)

ζ22(0) = −2 cos2(φ)
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Finally, we see that the partial derivatives of αexact are

α11(0) = 1 − sin2(φ) = cos2(φ)

α12(0) = cos(φ) sin(φ)

α21(0) = cos(φ) sin(φ)

α22(0) = 1 − cos2(φ) = sin2(φ)

Combining these calculations, we obtain the following linearization of αexact:

αexact(M) ≈ m11 cos2(φ) +m12 cos(φ) sin(φ) +m21 cos(φ) sin(φ) +m22 sin2(φ)

= nTφMnφ (2.37)

This is the same form of projected affine motion obtained using the PMI assumption, discussed

in (2.5).

2.B Calculating Derivatives in Image Projections

Here we will introduce the intuitive reasoning for applying a weighting to the pro-

jection images prior to calculating derivatives used in estimating projected motion. We shall

explain how this weighting acts as a modification of the spatial derivative operator. Because the

image under projection is defined over a rectangular region of samples, different points in the

projection are generated by integrating over lines of varying length. In terms of image pixels,

this means that different points in the projection integrate different numbers of pixels in the

original image. Thus, a rectangular constant valued image on [−X1
2 ,

X1
2 ] × [−X2

2 ,
X2
2 ] would

not appear flat in the projection image but rather as a piecewise linear function (see Figure 2.13)

given by

R[f(x1, x2) = c] =
∫ X2

2

−X2
2

∫ X1
2

−X1
2

c δ(p − x1 cos(φ) − x2 sin(φ))dx1dx2

=
∫ S+(p,φ)

S−(p,φ)
cds

= S+(p, φ) − S−(p, φ) = S(φ)
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Figure 2.13: Projection of a constant image

where

S+(p, φ) = min

[
p cotφ+

X1

2 sinφ
,−p tan φ+

X2

2 cosφ

]
(2.38)

S−(p, φ) = max

[
p cotφ− X1

2 sinφ
,−p tan φ− X2

2 cosφ

]
(2.39)

Here, the functions S+, S− come from the edges of the rectangular image region. See Figure

2.14. Thus, r(p, φ) is a piecewise linear function whose derivative will not be zero. Of course,

projections at 0 and 90 degrees do not suffer from this anomaly. We propose to normalize the

projections such that the projection of a constant image will produce a constant 1-D function.

To accomplish this we use a normalized Radon transform of the form

ř(p, φ) ≡ Řθ [f(x1, x2)] =
∫ ∫

f(x1, x2)δ (p− x1 cosφ− x2 sinφ) dx1 dx2

S(φ)
(2.40)

After computing the normalized Radon transform, we compute the derivatives of the

projection at a specific angle θ by

r̃p(p, φ) = ř(p, φ) ∗ g(p) (2.41)
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Figure 2.14: Integration Region

where g(p) represents the derivative convolution kernel. This will ensure that the proper spatial

derivatives are calculated in the projection based motion estimators.
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Chapter 3

Performance Analysis of Image

Registration

In the last chapter, we detailed an efficient mechanism for drastically decreasing computational

complexity while preserving and even improving performance. When evaluating the perfor-

mance of such estimators, a natural question arises regarding the the significance of our im-

provement. To formalize the process of algorithm development, we must understand the fun-

damental limitations inherent to the problem of motion estimation. In this chapter, we study

such performance limitations for the most basic form of motion estimation, namely, translation

between a pair of frames. As we noted in Chapter 1, the translational model plays a significant

role in a variety of imaging scenarios. This makes it a natural starting point when dealing with

the complicated nonlinear estimation problem that is motion estimation. In addition, studying

the two frame or image pair scenario not only offers insight into the more general problem

of motion estimation, but also addresses a very practical field of motion estimation known as

image registration.

The overall goal of this chapter is to quantify bounds on performance in estimating

image translation between a pair of images. Such analysis lays the foundation for the bounds

on multi-frame motion estimation performance bounds studied in Chapter 5. Because the prob-
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lem of image registration is of such fundamental importance, many estimation algorithms have

been developed over the years. In fact, there have been fairly comprehensive survey papers

describing and comparing the performance of such algorithms, including [14], [44], and [45].

Unfortunately, the benchmarks comparing the performance of such algorithms tend to preclude

the application of rigorous statistical analysis. These performance measures have ranged from

geometric error criteria such as the mean angular error [14] shown in the last chapter, to vi-

sual inspection of the vector field for situations where ground truth is not available. While these

measures have been very useful in advancing the methodology of motion estimation, they fail to

evaluate estimator performance from a statistically interpretable perspective. Furthermore, the

performance evaluation has relied on comparison between different algorithms, leaving open

the important question of how close the algorithms come to achievable limits.

The problem of translational motion estimation is analogous to the classical problem

of time delay estimation (TDE) as found in the signal processing literature [46]. For the TDE

problem, performance is measured based on the mean square error (MSE) of a given estimator.

In this chapter, we study the performance of image registration algorithms using this measure.

By using MSE we can explore the fundamental performance bounds using the Cramér-Rao

inequality. Surprisingly, while the Cramér-Rao inequality has been used widely in the field of

time delay estimation in communication, Radar, and Sonar, except for a few isolated attempts

[47], [48], it has not been utilized to understand the problem of image registration in general.

In this chapter, we analyze the form of the Cramér-Rao inequality as it relates to the specific

problem of registering translated images that have been sampled above the Nyquist rate. As a

precursor to Chapter 5, we also introduce the extension to the case where the image is sampled

below the Nyquist rate.

Developing such performance bounds provides a mechanism for critically comparing

the performance of algorithms. We will show how a great deal of the heuristic knowledge used

in motion estimation can be explained by examining this performance bound. Furthermore,

understanding these fundamental limitations provides better understanding of the limitations
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inherent to the class of image processing problems that require image registration as a prepro-

cessing step. In addition, analyzing the details of the bound offers insight into the very nature of

the problem itself, thereby suggesting methods for improved algorithm design. In particularly,

we will present the inherent performance tradeoff between bias and variance for several popular

motion estimators.

This chapter is organized into three sections. In Section 3.1, we introduce the Cramér-

Rao inequality. In Section 3.2, we derive the performance bounds in registering translated

images, based on the Cramér-Rao inequality. We show how these bounds depend on image

content by analyzing the Fisher Information matrix. We show the inherent problem of bias for

the problem of image registration. In Section 3.3, we present experimental evidence of such

bias for several popular estimation algorithms.

3.1 Introduction to the Cramér-Rao Bound

In this section, we introduce the Cramér-Rao lower bound (CRB) which we will use

to quantify the fundamental MSE performance bounds on image registration. We will use this

bound again in Chapter 5 to address a related estimation problem. Essentially, the CRB charac-

terizes, from an information theoretic standpoint, the difficulty with which a set of parameters

can be estimated by examining the given data model. In general, the CRB provides the lower

bound on the mean square error (MSE) of any estimate Φ̂ of an unknown parameter vector Φ

from a given set of measured data denoted Z. Specifically, the Cramér-Rao bound on the error

correlation matrix E[(Φ̂ − Φ)(Φ̂ − Φ)T ] for any estimator is given by

MSE(Φ) ≥ ∂E[Φ̂]
∂Φ

J−1(Φ)
∂E[Φ̂]
∂Φ

T

+ (E[Φ̂] − Φ)(E[Φ̂] − Φ)T (3.1)

where the matrix J(Φ) is referred to as the Fisher Information Matrix (FIM), and E[Φ̂] − Φ

represents the bias of the estimator [49]. We refer to the error correlation matrix as MSE(Φ)

since the diagonal terms ofE[(Φ̂−Φ)(Φ̂−Φ)T ] represent the MSE of the individual parameter

components. The inequality indicates that the difference between the MSE (left side) and the
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CRB (right side) will be a positive semidefinite matrix. From this formulation, we see that the

mean square error bound is comprised of two terms corresponding to a variance term and a term

which is the square or outer product of the of the bias associated with the estimator. Ideally, we

could construct an estimator devoid of bias. Assuming such an estimator exists, the bound (3.1)

simplifies to the more familiar

MSE(Φ) ≥ J−1(Φ) (3.2)

Thus, for any unbiased estimator, J(Φ) characterizes the minimum variance (and hence MSE)

attainable.

The Fisher Information Matrix J for an unknown deterministic parameter is given by

{J}i,j = −E
[
∂2l(Φ|Z)
∂Φi∂Φj

]
. (3.3)

where l(Φ|Z) is the log-likelihood of the measured data Z for a given value of the unknown

parameter Φ. The log-likelihood function is defined as

l(Φ|Z) = ln (pdfZ(Z|Φ)) (3.4)

where pdfZ(Z|Φ) is the probability density function (pdf) of the measured data Z given the set

of parameters Φ. Such a function gives the probability that the observed data was produced by

a model with the particular set of parameters. If the unknown parameter vector is stochastic

with a certain log-prior distribution l(Φ), the FIM is given by

{J}i,j = −E
[
∂2l(Φ,Z)
∂Φi∂Φj

]
= −E

[
∂2l(Φ|Z)
∂Φi∂Φj

+
∂2l(Φ)
∂Φi∂Φj

]
= {Jd}i,j + {Jp}i,j (3.5)

We use the subscripts d to denote information arising from the measured data and p to denote

the information from the prior [49]. For many inverse problems including motion estimation,

the data information matrix Jd can be very poorly conditioned or even rank deficient. In such
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situations, prior knowledge about the unknown parameter is key to solving the problem. Thus,

prior information does not allow one to break the performance limits, but instead makes the

fundamental limit more favorable. Such prior information will become essential in Chapter 5.

One important property of the CR bound is that if we are interested in estimating

some function (possibly a vector valued function) χ(Φ) of the unknown parameter vector, the

CR bound for estimating the unknown vector in the new parameter space is given by

MSE(χ(Φ̂)) ≥ ∇χ(Φ)J−1(Φ)∇χ(Φ)T (3.6)

where ∇χ(Φ) denotes the gradient of the function χ(Φ). We will exploit this property later in

Chapter 5.

Often it is more convenient to evaluate estimation performance for vector valued pa-

rameters using a scalar measure of performance. We propose measuring estimator performance

by

rmse(Φ) =

√
Tr(MSE(Φ))

d
(3.7)

where d is the dimension of the unknown parameter vector Φ. Such a performance measure is

useful when every element of the parameter vector of interest has the same units. The rmse(Φ)

has the interpretation of being the overall MSE averaged over the set of unknown parameters.

The square root ensures that the performance measure is in the same units as the unknown

parameters. Correspondingly, we may modify the CR inequality to bound this performance

measure as well. We use the following notation to capture this bound. For the class of unbiased

estimators, the bound becomes

T (Φ) =

√
Tr(J−1(Φ))

d
. (3.8)

For the class of biased estimators, we must use the complete CR bound whose corresponding

scalar performance measure is given by

T (Φ) =

[
1
d
Tr

(
∂E[Φ̂]
∂Φ

J−1(Φ)
∂E[Φ̂]
∂Φ

T
)

+
1
d
(E[Φ̂] − Φ)T (E[Φ̂] − Φ)

]1
2

. (3.9)
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The CR bound for the overall performance measure is expressed as

rmse(Φ) ≥ T (Φ) (3.10)

Such a performance bound has been justified and used in the past [50].

Finally, to address the utility of the CR bound in studying general estimation prob-

lems, we note that the overall usefulness of a performance limit depends on its ability not only

to limit, but predict actual estimator performance. For example, we might trivially bound MSE

performance as MSE(Φ) ≥ 0. While such a bound is provably correct, it offers no useful in-

formation about the estimation problem. The CR bound, however, can be shown theoretically to

be asymptotically attainable by the class of Maximum Likelihood (ML) estimators. While there

is no guarantee that such estimators are realizable, it does offer hope for predicting performance

for a wide class of estimators.

3.2 Performance Limits in Image Registration

In this section we derive the Fisher Information Matrix for the problem of image

registration. Analysis of the Fisher Information Matrix for image registration reveals interesting

structure associated with the nonlinear image registration problem.

3.2.1 Fisher Information for Image Registration

The Fisher Information matrix provides a measure of the influence an unknown pa-

rameter vector has in producing observable data. In our case, the unknown vector is the trans-

lation vector v0 = [v01 v02 ]
T . The FIM is derived by looking at the expected concavity of the

likelihood function. Intuitively, a likelihood maximizing estimator should have an easier time

finding the maximum of a sharply peaked likelihood function than a rather flat one.

We assume in this chapter that we are given only a pair of images with which to
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estimator v0. We relate this data model to our original motion model by

z0(n1, n2) = z(n1, n2, 0)

z1(n1, n2) = z(n1, n2, 1).

We model the noise as being additive gaussian noise with zero mean and variance σ2.

The conditional log-likelihood function for our data is given by

l(z|v0) =
−1
2σ2

∑
n1,n2

[z0(n1, n2) − f(n1, n2)]
2 +

[z1(n1, n2) − f(n1 − v01 , n2 − v02)]
2 + const. (3.11)

The Fisher Information matrix measures the sharpness or curvature of likelihood peak

as defined by equation (3.3). In deriving the FIM, we first compute the partial derivatives with

respect to the log-likelihood function:

∂2l(z|v0)
∂v2

i

=
∂

∂v0i

[
1
σ2

∑
n1,n2

(
z1 − f̃

) ∂f̃

∂v0i

]

=
1
σ2

∑
n1,n2

⎡⎣(z1 − f̃
) ∂2f̃

∂v2
0i

−
(
∂f̃

∂v0i

)2
⎤⎦ (3.12)

To simplify the notation, we refer to the transformed image f(n1 − v01 , n2 − v02) as f̃ . Since

only the term z1 is random, the negative expectation of (3.12) for each term becomes

−E
[
∂2 log P(z;v0)

∂v2
01

]
=

1
σ2

(
∂f̃

∂v01

)2

−E
[
∂2 log P(z;v0)

∂v2
02

]
=

1
σ2

(
∂f̃

∂v02

)2

−E
[
∂2 log P(z;v0)
∂v02∂v01

]
=

1
σ2

(
∂f̃

∂v02

)(
∂f̃

∂v01

)
.

Finally, the chain rule implies

∂f̃

∂v01

=
∂f̃

∂x1
= fx1(n1 − v01 , n2 − v02)

∂f̃

∂v02

=
∂f̃

∂x2
= fx2(n1 − v01 , n2 − v02).
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Hence, we get the Fisher Information matrix

J(v0) =
1
σ2

⎡⎢⎣ Jv1,v1 Jv1,v2

Jv1,v2 Jv2,v2

⎤⎥⎦ (3.13)

where

Jv1,v1 =
∑
n1,n2

f2
x1

(n1 − v01 , n2 − v02)

Jv1,v2 =
∑
n1,n2

fx1(n1 − v01 , n2 − v02)fx2(n1 − v01 , n2 − v02)

Jv2,v2 =
∑
n1,n2

f2
x2

(n1 − v01 , n2 − v02)

The subscripts indicate the partial derivative in the x1, x2 direction.

A comment is in order regarding these partial derivatives. The Fisher Information ma-

trix, and hence the performance bound, depend on the partial derivatives of the shifted version of

the continuous image f(x1, x2) evaluated at the sample locations n1, n2. While this is simple to

present theoretically, in practice, the partial derivatives of the image function are not available.

In fact, only samples of the image function are available, which presents a practical challenge

when trying to compute the Fisher Information matrix. There are a few approximations that can

be made in order to calculate the FIM depending on the information available prior to estima-

tion. For instance, if a relatively noise-free image is available, preferably of higher resolution

than the images being registered, then the partial derivatives may be approximated using deriva-

tive filters. For situations where the scene being observed is known prior to estimation, such as

in industrial applications, a continuous image function can be constructed to represent the scene

and differentiated analytically. Finally, if only the discrete images are available, then such an

image function can be approximated directly from the samples. One such method assumes that

the image can be expressed as a Fourier series of the form

f(x1, x2) =
N∑
n1

N∑
n2

F

(
2πn1

N
,
2πn2

N

)
ej2π(

x1n1
N

+
x2n2

N
) (3.14)

where F
(

2πn1
N , 2πn2

N

)
are the coefficients of the discrete Fourier transform (DFT) of the image.
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We use this last assumption throughout this chapter in our experiments. By construction, this

guarantees that the image is sampled above the Nyquist rate.

3.2.2 Analysis of the FIM for Image Registration

To gain further insight, we now consider the FIM in the Fourier domain. To do so,

we first must make certain general assumptions about our underlying image function f(x1, x2).

In particular, we assume that the image function is bandlimited and is sampled at a rate greater

than Nyquist. Then, the discrete time Fourier transform (DTFT) of the samples of the derivative

function fx1(n1− v01 , n2 − v02) can be written as ej(v01θ1+v02θ2)jθ1F (θ1, θ2) and similarly for

the x2 partial derivative. With such an image model, we then can write the terms of the FIM

using Parseval’s relation:

Jv1,v1 =
1

4π2

∫ π

−π

∫ π

−π
|F (θ1, θ2)|2θ2

1dθ1dθ2

Jv1,v2 =
1

4π2

∫ π

−π

∫ π

−π
|F (θ1, θ2)|2θ1θ2dθ1dθ2

Jv2,v2 =
1

4π2

∫ π

−π

∫ π

−π
|F (θ1, θ2)|2θ2

2dθ1dθ2.

Examining the FIM using this formulation, we see that it does not depend on the unknown

translation vector v0 and depends only on the image content. This observation depends on our

assumption that the image is periodic outside the field of view. This independence of the FIM

on v0 no longer holds when the image is sampled below the Nyquist rate. When the images

to be registered are aliased, as we shall show in Chapter 5, the FIM depends on the unknown

motion v0.

It is interesting to note that one can explain the well-known aperture problem [14]

by examining the FIM. This problem arises when the spectral content of the image is highly

localized. An example of this occurs when all of the spectral energy is contained along a slice

passing through the origin of the spectrum at an angle ψ0. Equivalently, in the spatial domain,

the texture of the image is one-dimensional in nature. Figure 3.1 shows an example of such

images in both the spatial and frequency domain.
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Figure 3.1: Example of the aperture effect in spatial (left) and frequency (right) domain

In polar coordinates, such a spectrum looks like

F (ψ, ρ) =

⎧⎪⎨⎪⎩ F (ψ0 , ρ), ψ = ψ0

0 , else
(3.15)

The terms of the corresponding FIM in polar coordinates are,

Jv1,v1 =
1

4π2

∫ π

−π
|F (ψ0, ρ)|2ρ3 cos2 ψ0dρ

Jv1,v2 =
1

4π2

∫ π

−π
|F (ψ0, ρ)|2ρ3 cosψ0 sinψ0dρ

Jv2,v2 =
1

4π2

∫ π

−π
|F (ψ0, ρ)|2ρ3 sin2 ψ0dρ

Since the determinant of the FIM is

detJ(v0) = Jv1,v1Jv2,v2 − J2
v1,v2

= (cos2 ψ0 sin2 ψ0 − cos2 ψ0 sin2 ψ0)K = 0,

(where K is a constant), J(v0) is therefor not invertible, and any unbiased estimator will have

infinite variance. Essentially, there is not enough information with which to register the pair of

images.

Next, we further observe that the information contained in a pair of images depends

only on the gradients or the texture of the image. The relationship between estimator per-

formance and image content has been noted in previous works and used to select features to
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Figure 3.2: Experimental images (Tree, Face, Office, Forest)

Figure 3.3: Tree image filtered filtered by low-pass filters with cutoff frequencies of 25, 50, 75, 100 %.

register [51]. This previous work, however, provided only the heuristic suggestion that features

with high frequency content are better for tracking by looking at one specific estimator. Here,

we suggest the performance bound T (v0) as a scalar predictor of performance as it relates to

image content. In general, as T (v0) decreases, improved estimator performance is expected.

Figure 3.4 shows T (v0) vs image bandwidth for the images shown in Figure 3.2.

The image spectral bandwidth was controlled by filtering the images with a low-pass

filter whose radial cutoff frequency θc was constructed to be a percentage of the full image

bandwidth. All of the images were normalized, in that they were cropped to the same size and

scaled to have the same intensity range. As seen in Figure 3.4, T (v0) decreases as the image

bandwidth increases. This corroborates the general intuition that highly textured images are

easier to register. For the purpose of intuition, Figure 3.3 shows an image with different cutoff

frequencies. Furthermore, we see from Figure 3.4 that while the performance may continue to

improve with greater frequency content, the improvement tapers off as the bandwidth increases

beyond about a quarter of the full bandwidth. This observation might be explained by the 1
θc

=
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Figure 3.4: Trace of J−1 vs image bandwidth

1√
θ21+θ22

spectral amplitude decay commonly found in natural images [52]. This suggests that

T (v0) could be approximated by a term such as 1
θc

where θc is the radial cutoff frequency (or

bandwidth of the image). Figure 3.4 exhibits a log 1
θc

type behavior. These results also suggest

that the inherent bandwidth limitations induced by the imaging system affect the fundamental

performance limits for image registration. Since the spectral bandwidth of the image predicts

the ability to register the image, the inherently bandlimited nature of imaging systems eventually

dominates the achievable performance limits.

Another interesting way to explore the registration performance limits as a func-

tion of image content is by examining the bounds along particular directions. Instead of es-

timating both the v01 and v02 components of translation, we consider the linear combination

vφ = v01 cosφ+ v02 sinφ = nTφv0 of the unknown parameters. The CRB inequality (3.2) can

be extended to bound the performance in estimating a linear combination of the unknown pa-

rameters using (3.6). In particular, we have V ar(nTφv0) ≥ nTφJ
−1(v0)nφ. From this inequality,
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Figure 3.5: Angular estimation information as a function of image content

it becomes apparent that, for a particular image, certain angles have better inherent performance

- these optimal angles depending on the eigenvectors of the matrix J−1(v0). Figure 3.5 shows

the variance bound on the estimation of the directional components of translation as a func-

tion of angular direction for the four example images in Figure 3.2. The face image and, to

a lesser extent, the office image, have specific directions in which estimates are most reliable.

Specifically, the vertical bars in the face image provide large amounts of spectral energy in

the x1 direction. This spectral signature correspondingly suggests small estimator variance in

this angular direction. Similarly, the office image is rotated about 45 degrees, so the dominant

derivative energy is located around 45 degrees.

3.3 Bias in Image Registration Algorithms

In this section, we show that many of the current algorithms used to solve the inverse

problem of image registration are inherently biased. This implies that the bound given by (3.2)

is overly optimistic and the complete bound (3.1) must be used to accurately predict estimator
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performance. Finally, it shows that many of the currently popular estimators would benefit from

further study.

To understand the inherent bias associated with any translational motion estimator, we

look at the class of maximum likelihood (ML) estimators. Many image registration algorithms

can be shown to produce approximate solutions to the maximum likelihood equation. To find

the ML solution, we again look at the log likelihood function for the shift parameters

l(z|v0) =
−1
2σ2

∑
n1,n2

[z0(n1, n2) − f(n1, n2)]
2 +

[z1(n1, n2) − f(n1 − v01 , n2 − v02)]
2 + const.

Since only the second term depends on the unknown parameters, the maximization problem can

be expressed as a minimization of the objective function

CLS(v0) =
∑
n1,n2

[z1(n1, n2) − f(n1 − v01 , n2 − v02)]
2 . (3.16)

This is the general nonlinear least squares objective function used in defining the ML solution.

By expanding the quadratic in (3.16) we get

∑
n1,n2

[
z2
1(n1, n2) − 2z1(n1, n2)f(n1 − v01 , n2 − v02) + f2(n1 − v01 , n2 − v02)

]
. (3.17)

Ignoring the first term since it does not depend on the parameter v0, and negating the entire

function we can rewrite the objective function as

∑
n1,n2

2z1(n1, n2)f(n1 − v01 , n2 − v02) −
∑

n1,n2
f2(n1 − v01 , n2 − v02). (3.18)

By normalizing the entire cost function with respect to the energy in the image, (the second

term of (3.18)), we obtain the direct correlator objective function

CDC(v0) =

∑
n1,n2

z1(n1, n2)f(n1 − v01 , n2 − v02)∑
n1,n2

f2(n1 − v01 , n2 − v02)
. (3.19)

In general, minimizing/maximizing these two objective functions with respect to the unknown

parameter v0 provides the ML solution.
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As previously noted, however, the function f(n1 − v01 , n2 − v02) is typically un-

known. An approximate ML solution is found using an estimate of the unknown function, most

commonly given by z0(n1−v01, n2−v02). In essence, the measured reference image z0(n1, n2)

becomes an estimate of the unknown image f(n1, n2). It is easy to see that at very high SNR,

this estimate should be very close to f(n1 − v01 , n2 − v02). As we shall see in Chapter 5,

however, when the images become aliased, a single measured image is an insufficient estimate

of the function f(n1, n2). Even in such high SNR (low noise) situations, however, the objective

functions (3.16) and (3.19) can be evaluated only for integer values of v01 and v02 , constraining

the estimates to that of integer multiples of pixel motion. While some progress has been made to

address this issue [46], [53], [45], the proposed algorithms often are based on overly simplified

approximations that are known to produce biased estimates [54].

For many applications in image processing, accurate subpixel image registration is

needed. To register images to subpixel accuracy, the image function f(x1, x2) effectively must

be reconstructed from the noisy samples of z0(n1, n2). In general, this reconstruction is an ill-

posed problem. All estimators contain inherent prior assumptions about the space of continuous

images under observation. These priors act to regularize the problem, allowing solutions to be

found. But, when the real underlying functions do not match the model assumptions, the esti-

mators inevitably produce biased estimates. There is only a small class of images for which the

problem is not ill-posed. The exception occurs when the underlying continuous image is con-

structed through the assumed forward model such as (3.14). Unfortunately, this requirement

is not likely to satisfied in general image processing scenarios, implying that estimation algo-

rithms may often be inherently biased. As we shall show, however, even under ideal conditions,

many of the current estimation algorithms contain bias.

To verify the presence of this bias in existing algorithms, we conduct a Monte-Carlo

simulation computing actual estimator performance for a collection of image registration algo-

rithms. The estimators used in the experiment are the following.

1. Approximate Minimum Average Square Difference (ASD) (2-D version of [46]) -
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Samples of the average square difference function,

ASD(v01 , v02) =
1

MN

∑
n1,n2

(z0(n1 − v01 , n2 − v02) − z1(n1, n2))2 (3.20)

(an approximation to (3.16)) are computed for pixel shift values of v01 and v02 in some

range. Then, the subpixel shift is computed by finding the minimum of a quadratic fit

about the minimum of the cost function given for integer pixel shifts.

2. Approximate Maximum Direct Correlator (DC) [45] - A sample correlation estimate

is used to approximate (3.19). Essentially, the denominator of (3.19) is assumed to be ap-

proximately constant, independent of the underlying image shift v0. Thus, the simplified

sample correlation estimate

Cor(v01, v02) =
1

MN

∑
n1,n2

z0(n1 − v01 , n2 − v02)z1(n1, n2) (3.21)

is computed for integer pixel shifts. Then, the subpixel shift is estimated as the maximum

of a quadratic fit about the maximum of the sample correlation function.

3. Gradient-Based Method (GB)- This method was introduced in Chapter 2.

4. Multiscale (Pyramid) Gradient-Based Method (Pyr)- For this method, we utilized a

multiscale pyramid with 3 levels. At each iteration the 2-D gradient-based method was

applied to estimate translation.

5. Projection Gradient-Based Method (Proj-GB)- This is the projection-based method

introduced in Chapter 2. For our experiments, we used only a pair of image projections

at 0 and 90 degrees (x1, x2 axes).

6. Projection Multiscale Gradient-Based Method- Again, this is the multiscale method

introduced in Chapter 2, using 3 levels in a multiscale pyramid. A pair of image projec-

tions was used at 0 and 90 degrees.
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7. Relative Phase (Phase) [43]- Using the shift property of the Fourier transform it is noted

that
F0F

∗
1

|F1|2 =
F0

F1
= ej2π(θ1v01+θ2v02 ). (3.22)

where F0 and F1 denote the Fourier transform of the image function f(x1, x2) and a

shifted version f(x1 − v01 , x2 − v02) respectively. The vector v0 is estimated by finding

the solution to the set of linear equations of the phase function

∠Z0

Z1
= j2π(θ1v01 + θ2v02) (3.23)

where Z1,2 represents the DFT of the input images z1,2 and ∠ indicates the measured

phase angle. We used the implementation of [43] wherein the solution is found using

weighted least squares.

To generate a pair of images for the experiment, we use the discrete Fourier trans-

forms (DFT) approach following the method of [55]. This effectively generates an image pair,

assuming the continuous model is given by (3.14). Such a model is necessary given that we

want to focus on the problem of estimating sub-pixel shifts. Furthermore, such a motion model

is entirely reasonable for a large image, where the modelling error associated with the assump-

tion that the image is periodic is negligible. We used the Tree image from [14], which is of

dimension 150 × 150, in the experiment. As the image region shrinks, the assumption that the

image region is periodic outside the region of observation is less likely to represent the image

data accurately. In this sense, our experimental setup examines a scenario where highly accurate

estimation is expected.

To synthesize the effects of noise in the imaging system, we add white Gaussian noise

to the image pair prior to estimation and the entire process was repeated 500 times at each SNR

value. We explore SNR values from 0 dB (very noisy) to 70 dB (effectively noiseless). To cap-

ture a single representation of error, we compute rmse(v0). Figure 3.6 shows this measure of

actual estimator performance as a function of of SNR for the estimators mentioned above. The

dashed line indicates the predicted performance using T (v0) for the class of unbiased estima-
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Figure 3.6: Magnitude error performance vs SNR v0 = [.5 .5]T

tors. While this bound suggests continued improvement as the noise decreases, above certain

SNR values, the performance of each estimator levels out. This flattening of the performance

curves is indicative of the bias present in each of the estimators.

Immediately, we observe a certain bias-variance tradeoff between various algorithms.

For instance, the multiscale 2-D gradient-based algorithm appears to offer superior performance

for the low SNR situations. At higher SNR, the phase-based method offers better performance.

However, at lower SNR, the phase-based approach is one of the worst estimators in the group,

suggesting a high sensitivity to noise. The multiscale gradient-based approach is less sensitive

to noise, but ultimately suffers from worse estimator bias.

While we can see the effect of this bias experimentally, the actual bias function for

a given estimator typically is very difficult to express. The overall bias is often a combination

of both the deterministic modelling error and the statistical bias of the estimator. If the estima-

tor is an ML estimator, the estimates theoretically should be asymptotically unbiased, leaving
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only the bias stemming from modelling error. This appears to be the dominant bias for high

SNR as seen in Figure 3.6 where the bias is independent of the noise in the images. This mod-

elling error has been addressed only infrequently in the image registration literature. In [56],

the approximate direct correlation method (DC) produces biased estimates resulting from the

quadratic approximation about the peak of the correlation function. Basically, the DC method

using the quadratic approximation about the mean of the sample correlation function makes im-

plicit assumptions about the underlying continuous function. In [56], and similarly in [54], the

resulting bias is derived for situations where the likelihood function is not quadratic about its

maximum as typically assumed. The gradient-based estimators have been studied in the context

of bias as well [57], [58], [59], [55]. Nevertheless, an accurate functional expression describing

the estimator bias is not available. In the next chapter, we describe these earlier attempts at

understanding gradient-based estimator bias, and we derive and verify a new functional form of

bias inherent to the class of gradient-based estimators.

3.4 Conclusion

In this chapter we derive the fundamental performance limits for translation estima-

tion using the Cramér-Rao bound. In doing so, we have defended the idea that MSE should

be used as a standard performance measure to prevent unfair comparisons between algorithms

and to motivate statistically accurate analysis. We have shown that studying this performance

bound, as it relates to image registration, provides much insight into the inherent tradeoffs be-

tween estimator variance and bias. We presented analysis as well as experimental evidence

suggesting that a large class of motion estimators are in fact biased.

The analysis and experimentation presented in this chapter lay the foundation for

rigorous statistical analysis of the motion estimation problem. The work opens several areas of

further research. For instance, we focused on the estimation of translational motion. One could

extend the analysis to more complex parametric motion models such as affine and bilinear
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motion. We hope that this type of analysis would offer guidance to the practitioner choosing

between complex motion models for large image regions, or simple translational models for

smaller or more local motion estimation.
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Chapter 4

Gradient-Based Translation

Estimation: A Case Study

In the last chapter, we compared the performance of several estimators with the fundamental

performance limits. We observed that for a large class of estimators, bias dominated the MSE

at higher SNR. While estimator bias is often difficult to express, in this chapter, we derive

such bias expressions for the popular gradient-based estimator. While the bias for this class of

estimators has been addressed in previous works [57], [58], [59], [55], [60] these works make

overly simplified generalizations about the bias. In this chapter, we present and analyze more

precise expressions for the estimator bias for high SNR situations. We will show that this bias

limits overall estimation for typical imaging systems. Finally, we will use this bias function to

propose a rule-of-thumb limit (based on our analytical results) for image registration accuracy

using gradient-based estimators.

In addition, we show that having an expression of estimator bias allows the practi-

tioner to optimize estimator performance. In particular, we show how we may improve gradient-

based estimator performance through a careful design of the gradient filters.
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4.1 Gradient-Based Estimator Bias

In this section we derive expressions for the bias associated with gradient-based es-

timators. To maintain clarity during the derivation, we focus on the 1-D analogue of gradient-

based estimation. Since much of the derivation for the 1-D case is similar to the projection-based

algorithm described in Chapter 2, we summarize 1-D estimator for a pair of signals as follows.

For the 1-D case, we suppose that the measured data is of the form

z0(n) = f(n) + ε2(n) (4.1)

z1(n) = f(n+ v0) + ε1(n). (4.2)

In the derivation of the gradient-based estimator, we must reformulate the data as z(n) =

z0(n) − z1(n) = f(n + v0) − f(n) + ε(n) where ε is a Gaussian white noise process with

variance σ2.

Gradient-based methods solve this equation for v0 by linearizing the function f(n+

v0) about a point v0 = 0 in a Taylor series. This expansion looks like

f(n+ v0) − f(n) = v0f
′(n) +R(n, v0) (4.3)

whereR is the remainder term in the Taylor expansion. This remainder has the formR(n, v0) =∑∞
r=2

vr
0
r! f

(r)(n). Thus, the new data model becomes z(n) = v0f
′(n) + R(n, v0) + ε(n).

When the remainder term R is ignored, the linearized model of the data becomes z(n) =

f ′(n)v0 + ε(n). Using the derivative values, we obtain the linear estimator for the velocity v0

using least squares,

v̂0 =
∑
f ′(n)z(n)∑
(f ′(n))2

, (4.4)

where the sum is taken to be over some region which may be the entire image. This type of

estimator commonly is referred to as the optical flow, gradient-based, or differential estimation

method [42], [2]. This estimator derivation assumes that in addition to the samples of f(n), we

also have samples of the derivative of the function f′(n). Later, we show how this assumption

is relaxed.
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It is interesting to note that the variance of the gradient-based estimator is var(v̂0) =

σ2∑
(f ′(n))2

if, in fact, the remainder term is zero. The variance is almost exactly the same as

the CR bound introduced in Chapter3 for unbiased estimators, which is σ2∑
(f ′(n+v0))2

. This

relationship implies that the gradient-based estimator would be a maximum likelihood estimator

for the case when the remainder term is, in fact, zero.

4.1.1 Bias from Series Truncation

One source of systematic error or bias in the gradient-based estimation method comes

from the remainder term R(n, v0) in (4.3), originally ignored to construct a linear estimator.

When we include the remainder term in the estimator, we obtain as the expected value

of the estimator (4.4)

E[v̂0] = v0 +
∑
f ′(n)R(n, v0)∑

(f ′(n))2
. (4.5)

So, unless the second term is zero, the higher order terms introduce a systematic bias into the

estimator.

This is more informative in the frequency domain. First, we define the Fourier trans-

form of the original function f(x) as F (ω). Here, we assume that the image signal is ban-

dlimited and has a cutoff spatial frequency of ωc. Thus, for the signal to be sampled above the

Nyquist rate, the sampling rate must satisfy 2π
Tx

≥ 2ωc, where ωc is the cutoff frequency for

the bandlimited signal. In other words, F (ω) = 0,∀ω ≥ ωc. Under the assumption that the

function is sampled above the Nyquist rate, the DTFT of the derivative sequence f′(n) can be

represented as jθF (θ), where θ = ωTx. By Parseval’s relation, we can rewrite the estimator

(4.4) as

v̂0 =

∫ π
−π jθF (θ)Z∗(θ)dθ∫ π

−π |F (θ)|2θ2dθ
. (4.6)

As a side note, we can also arrive at the same estimator form by modelling the data

itself directly in the frequency domain, as follows; the shifted sequence f(n+ v0) has a DTFT
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of F (θ)ejv0θ and the DTFT of the data model becomes

Z(θ) = F (θ)
[
ejv0θ − 1

]
+ ξ(θ). (4.7)

If we again expand the exponential in a Taylor series ejv0θ = 1+jv0θ− (v0θ)2

2 + ... and truncate

after the linear term, we obtain the linear relationship Z(θ) = [F (θ)jθ] v0 + ξ(θ) from which

we obtain the linear estimator as (4.6).

Returning to the case where the complete data model is used, we see that the expected

value of the estimate is

E[v̂0] =

∫ π
−π |F (θ)|2jθ(e−jv0θ − 1)dθ∫ π

−π |F (θ)|2θ2dθ

=

∫ π
−π |F (θ)|2θ sin(v0θ)dθ∫ π

−π |F (θ)|2θ2dθ
+ j

∫ π
−π |F (θ)|2θ(cos(v0θ) − 1)dθ∫ π

−π |F (θ)|2θ2dθ

=

∫ π
−π |F (θ)|2θ sin(v0θ)dθ∫ π

−π |F (θ)|2θ2dθ
(4.8)

where in the last equality we note that since Im[jθ(e−jv0θ − 1)] = θ(cos(v0θ) − 1) is an odd

function, it integrates to zero. Using the expected value of the estimate, we obtain the bias

function as follows

b(v0) = E[v̂0] − v0 =

∫ π
−π |F (θ)|2 (θ sin(v0θ) − v0θ

2
)
dθ∫ π

−π |F (θ)|2θ2dθ
. (4.9)

To verify this bias function experimentally, we measure the bias in estimating trans-

lation for a randomly constructed function such that the actual derivative values were available

to the estimator. The actual function f(n) used in the experiment is plotted in the left graph of

Figure 4.1. The magnitude spectrum for the function used was |F (θ)| = 1
θ modelled after the

spectrum of natural images. The phase angle of the Fourier spectrum was drawn from a uniform

distribution in the range [0, 2π]. To measure the bias which is purely deterministic, no noise was

added to the data prior to estimation. Figure 4.1 shows a plot of the experimental estimator bias

as it depends on translation v0. The plot shows three different curves which indicate the bias for

the full bandwidth function f(n) as well as two filtered versions of f(n) wherein the functions
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Figure 4.1: Plot of f(n) (left) and estimator bias (right), continuous is predicted bias

were bandlimited to 50% and 75% of full signal bandwidth. The continuous curves represent

the predicted performance using (4.9).

The bias function appears to follow the bias expression almost exactly. Furthermore,

Figure 4.1 indicates that as the bandwidth of f(n) increases, the bias becomes more severe.

Here we immediately see a tradeoff with the the Fisher Information which suggests that in-

creased bandwidth will improve estimator variance. We will examine this notion more closely

later in Section 4.2.

We note that functional expression of the bias when the images are sampled below

the Nyquist rate (and hence aliased) is much more complicated. To give an example of the

complexity, we present the calculations for the case where the sampling rate is half the Nyquist

rate. In other words, the DTFT of the sampled aliased signal denoted Fa(θ), is related to the

original DTFT signal F (θ) according to

Fa(θ) =
1
2

[
F

(
θ

2

)
+ F

(
θ − 2π

2

)]
, θ ∈ [−π, π] (4.10)

From this, we can study the numerator and denominator of (4.8) for the case when aliasing is
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present. First, we study the numerator which looks like∫ π

−π

[
jθ

2
F

(
θ

2

)
+
j(θ − 2π)

2
F

(
θ − 2π

2

)]∗
[
F

(
θ

2

)
(1 − ejv0

θ
2 ) + F

(
θ − 2π

2

)
(1 − ejv0

θ−2π
2 )

]
dθ

=
∫ π

−π
|F (θ)|2θ sin(v0θ)dθ +∫ π

−π
Re

[
F (
θ

2
)F (

θ − 2π
2

)
](

θ

2
sin

(
v(θ − 2π)

2

)
+
θ − 2π

2
sin

(
vθ

2

))
dθ

Thus, we see that the aliased component adds an additional term to the numerator of (4.8).

Likewise, we see that the denominator of (4.8) is given by∫ π

−π
|θ
2
F

(
θ

2

)
+
θ − 2π

2
F

(
θ − 2π

2

)
|2dθ

=
∫ π

−π
|F (θ)|2θ2dθ +

∫ π

−π
Re

[
F (
θ

2
)F (

θ − 2π
2

)
]
θ(θ − 2π)

2
dθ

which is again a perturbation of the denominator for the non-aliased case. For the remainder of

this chapter, however, we assume that the images are sampled above the Nyquist. We leave the

analysis of the bias for the aliased scenario to future research.

4.1.2 Bias From Gradient Approximation

In the previous section, we assumed that the derivative values at the sample points

were known prior to the estimation process. As mentioned previously, in most applications,

the derivative information is not available. Another source of error in gradient-based estimation

arises from the need to approximate the gradient or the derivatives of the signal f(n). These

gradients (derivatives) f′(n) must be approximated from the measured data using a gradient

filter g(n) applied to one of the available images:

f̃ ′(n) ≈ z0(n) ∗ g(n) = [f(n) + ε0(n)] ∗ g(n) (4.11)

(where ∗ represents convolution). It is common practice to apply pre-smoothing filters to each

image prior to estimation. Using gradient filters, the form of (4.3) is now modified to be

z(n) = v0f̃
′(n) + R̃(n, v0) + ε(n). (4.12)
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As expected, the remainder term R̃(n, v0) plays a critical role in the overall estimator bias.

The error resulting from such derivative approximation has been noted before in the

literature. For instance, in [55], the bias function was derived only for the case when f is a

single sinusoid function. In addition, the works of [57] and [58] explored the effect of approx-

imation errors in estimating the gradient for local estimation. Much of the analysis in these

works, however, starts from the assumption that the optical flow model applies to the image

sequence exactly, or that the remainder term is negligible. Specifically, in [58], the results

qualitatively described estimator bias in terms of image spectral content and were based on

overly simplified bias approximation by examining only the second order approximation error

specifically for the forward difference gradient approximation. The authors in [57] note that

the gradient approximation error increases as the image function exhibits higher energy in the

second derivatives f′′(n). Using this observation, they propose an estimator post-processing

scheme which examines the second order derivatives of the image and rejects specific estimates

according to a thresholding scheme. Other works, such as [59], have noted that errors in the

gradient approximation tend to produce biased estimates. In [59], however, it is assumed that

these errors are completely random in nature and drawn from some simple distribution. They

develop overly simplified statistical bias models based on these distributions for the gradient

approximation errors. Recently, the work of [60] investigates a method for minimizing the bias

associated with such random errors for an application in vehicle tracking. Instead of treating

these errors as random, as we shall show, approximation errors resulting from deterministic

systematic modelling error dominate the estimator bias for gradient-based estimators at SNRs

found in typical imaging systems.

When we use the gradient approximations, the estimator (4.6) becomes

v̂0 =

∫ π
−π jG(θ)Z2(θ)Z∗(θ)dθ∫ π

−π |G(θ)Z2(θ)|2dθ

=

∫ π
−π jG(θ) [F (θ) + ξ2(θ)]Z∗(θ)dθ∫ π

−π |G(θ) [F (θ) + ξ2(θ)] |2dθ
(4.13)

where G(θ) represents the DTFT of g(n) and ξ2(θ) represents the DTFT of the noise samples
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ε2(n). In general, the derivative filter g(n) is usually a symmetric, linear-phase, FIR filter whose

transform is jG(θ) where

G(θ) =
τ∑
i=1

ci sin(iθ). (4.14)

Such a filter is referred to as a 2τ + 1 tap filter. Unfortunately, taking the expectation of (4.13)

is very difficult. To simplify the equation, we ignore the noise in the derivative approximation.

As such, we can write the expected value of the estimator as

E[v̂0] ≈ E

[∫ π
−π jG(θ) [F (θ)]Z∗(θ)dθ∫ π

−π |G(θ) [F (θ)] |2dθ

]

=

∫ π
−π |[F (θ)|2G(θ) sin(v0θ)dθ∫ π

−π |G(θ) [F (θ)] |2dθ

This assumption is quite reasonable at high SNR situations where basically we are examining

the deterministic bias from modelling error as opposed to statistical error. In Section 4.3, we

will show the SNR region where this model accurately describes estimator performance and

demonstrate that this SNR region is typical for many imaging systems including commercial

video cameras. Using this approximation, we see that the bias function is given by

b(v0) =

∫ π
−π |F (θ)|2 [G(θ) sin(v0θ) − vG2(θ)

]
dθ∫ π

−π |G(θ)F (θ)|2dθ . (4.15)

We can see here that the this equation differs from the original equation (4.9) only in that the

exact derivative operator jθ is replaced by the approximate derivative kernel jG(θ).

To verify this approximation of the bias function, we measure the actual estimator

bias using the gradient kernel g(n) = [.1069 .2846 0 − .2846 − .1069] on the same function

shown in Figure 4.1. This derivative kernel comes from [1]. The left graph of Figure 4.2 shows

the results of the bias. The experimental bias again follows the bias predicted by (4.15) almost

exactly. The measured bias functions shown in [55] also appear to follow this trend, providing

further validation of our bias expression. Again, we note that the increased signal bandwidth

produces increased estimator bias.
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Figure 4.2: Plot of actual estimator bias and predicted bias (solid lines) from equation (4.15)-left graph
and equation (4.19)-right graph

4.2 Analysis of Gradient-Based Estimator Bias

In this section we further explore the deterministic bias approximation (4.15). We

will show how the structure of the bias function explains much of the heuristic knowledge

about gradient-based estimators and suggests methodologies for improving performance. In

particular, we will explore how the image spectrum, translation, and gradient kernel all affect

the bias of the gradient-based estimator. In keeping with our original presentation, all of the

analysis is presented for the 1-D scenario. Such analysis is also instructive as it is indicative of

the bias of a projection-based algorithm presented in Chapter 2. Finally, we note that a simple

comparison of the bias for the direct (2-D) estimation algorithm with that of a projection-based

algorithm is presented in Appendix 4.B.

We begin by analyzing the bias function (4.9) wherein the exact derivatives are avail-

able to the estimator. To understand the bias, we expand the sin function in a Taylor series about

v = 0 to get

b(v0) =

∫ π
−π |F (θ)|2 [vΛ1(θ) − v3

0Λ2(θ) + v5
0Λ3(θ) . . .

]
dθ∫ π

−π |F (θ)|2θ2dθ

where the terms of the sequence are Λ1(θ) = 0, Λ2(θ) = θ4

3! , Λ3(θ) = θ6

5! and so on. Since the

78



factorial in the denominator dominates these Λ functions, the coefficients of the Taylor approx-

imation die off quickly. Only for very large translations, often larger than is found in typical

registration problems, will these higher order terms affect the bias function. This suggests that

for small v0, the bias can be approximated as a cubic function of translation v0 according to

b(v0) ≈ −v
3
0

3!

∫ π
−π |F (θ)|2θ4dθ∫ π
−π |F (θ)|2θ2dθ

. (4.16)

This coefficient ratio can be interpreted as the energy in the second derivative over the energy in

the first derivative of f(x). In general, the Taylor series can be explained in the spatial domain

as

b(v0) = −v
3
0

3!

∑
[f ′′(n)]2∑
[f ′(n)]2

+
v5
0

5!

∑
[f (4)(n)]2∑
[f ′(n)]2

− . . . (4.17)

Basically, these higher order terms depend on the smoothness of the function f(x). For suf-

ficiently smooth functions the energy in these higher derivatives is negligible, suggesting that

the bias is well approximated by the cubic function given in (4.16). The accuracy of this bias

approximation is evident in right graph of Figure 4.1.

We repeat this analysis for the more complete bias function (4.15), expanding the

function in a Taylor series about v = 0 to produce

b(v0) =

∫ π
−π |F (θ)|2

[
v0Λ̃1(G, θ) − v3

0Λ̃2(G, θ) + v5
0Λ̃3(G, θ) . . .

]
dθ∫ π

−π |G(θ)F (θ)|2dθ (4.18)

where the terms are of the sequence are Λ̃1(G, θ) = θG(θ) − G2(θ), Λ̃2(G, θ) = θ3

3!G(θ),

Λ̃3(G, θ) = θ5

5!G(θ) and so on. From this approximation, we see that the polynomial coeffi-

cients depend on the relationship between the gradient kernel G(θ) and the image magnitude

spectrum |F (θ)|. Again, we simplify the bias expression by truncating the power series to that

of a cubic function of v0.

b(v0) ≈ v0

(∫ π
−π |F (θ)|2Λ̃1(G, θ)dθ∫ π

−π |G(θ)F (θ)|2dθ

)
− v3

0

(∫ π
−π |F (θ)|2Λ̃2(G, θ)dθ∫ π

−π |G(θ)F (θ)|2dθ

)
(4.19)
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Figure 4.3: Original (left) and Filtered (right) versions of Λ̃ and |G|2 functions. The filter function
h(n) = [0.035 0.248 0.432 0.248 0.035] is suggested in [1]

In the right graph of Figure 4.2, we show the same experimental bias curves as in the left graph

of Figure 4.2, this time using the cubic approximation of (4.19). We see that the approximation

is quite close for the sub-pixel region of v0.

4.2.1 Bias and Image Spectrum

The spectrum of the image/function plays an important role in the bias expression

(4.15). One way to shape the image spectrum is through the use of image filters. For instance,

it is well-known that pre-smoothing the images prior to estimation improves the performance

of the gradient-based estimators [14], [1]. This pre-smoothing operation takes the form of a

low-pass filter H(θ). To understand this, in the left graph of Figure 4.3 we plot the Λ functions

found in (4.18), again using the gradient kernel G(θ) from [1].

Basically, the Λ̃ functions and the |G|2 (where |G|2 = |G(θ)|2) term control the

numerator and denominator of the coefficients of the bias polynomial of (4.18). Looking at

the left graph of Figure 4.3, we see that the |G|2 term is larger than all of the Λ̃ functions

up to the frequency of about π3 for Λ̃1, π
2 for Λ̃2 and about 2π

3 for Λ̃3. If the spectrum of
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the function were bandlimited such that the image contained no spectral energy outside these

frequencies, we know that the coefficients of the bias function would be less than 1. Beyond

these critical frequencies the numerator Λ̃ functions weight the spectrum more heavily than

the denominator |G|2 function, which has the effect of increasing the bias coefficients. As

we will show, this explains the well-known assertion that pre-smoothing the images improves

estimator performance. In addition to removing noise, the image pre-smoothing has the effect

of minimizing the high frequency spectral components, thereby minimizing the polynomial

coefficients. Furthermore, since higher order terms place more emphasis on the high frequency

information than the lower order terms, the pre-smoothing also has the effect of reducing the

influence of the higher order terms.

For instance, the authors in [1] suggest using a 5-tap pre-smoothing low-pass filter

h(n). Effectively, this pre-smoothing changes the weighting functions into |GH|2, Λ̃1|H|2,

Λ̃2|H|2 and so on. In Figure 4.3 we also show the filtered versions of the Λ functions. Unlike

the original Λ̃ functions, the smoothed versions have much smaller magnitude than the |G|2

function and very small regions wherein the numerators would weight the spectrum F more

than the denominator. This phenomenon tends to minimize the bias polynomial coefficients.

For high SNR situations where the bias dominates MSE, pre-smoothing tends to minimize the

bias in general. This is shown in Figure 4.4, where the bias is plotted as a function of translation

wherein the function in Figure 4.1 is filtered by different pre-smoothing filters. Each of the

filters was a Gaussian kernel with 10 taps where the low-pass cutoff frequency was controlled

by the standard deviation (SD) of the Gaussian. These low-pass filters were not designed in

any optimal fashion, and yet we still see a significant reduction in bias. For this experiment, we

extended the range of translation beyond subpixel translation to show the dramatic improvement

for larger values of v0.

Pre-smoothing an image also has the benefit of averaging, essentially decreasing the

variance of the noise. Again, this pre-smoothing would, however, decrease the Fisher Infor-

mation by reducing the effective bandwidth of the signal. Interestingly, one could pose an
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Figure 4.4: Bias vs translation for different pre-filters.

optimization problem of finding the pre-filter H(θ) that minimizes the bias in a sense simi-

lar to [61]. Of course, this optimization would only make sense for very high SNR situations

since pre-smoothing the image tends to minimize the FIM, thereby making the estimator more

sensitive to noise. We leave this interesting problem for future work.

4.2.2 Bias and Gradient Kernel

Another important ingredient in the bias function is the choice of gradient filtersG(θ).

The gradient kernel defines the shape of the Λ functions which in turn controls the bias coef-

ficients. The left graph of Figure 4.5 exhibits the performance in estimating translation using

the three filters, and also the bias when the exact derivative were used. The experimental setup

was similar to previous experiments wherein the function used was shown in Figure 4.1 and no

noise was added to simulate infinite SNR.

Examining the bias curves, it might appear that the Nestares/Heeger filter minimizes

the bias, even producing better estimates than when the exact derivatives were known prior to

estimation. In the right graph of Figure 4.5 we examine the curves more closely in the range
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Figure 4.5: Bias vs translation for different gradient filters.

v0 ∈ [−2, 2], and display absolute value of the bias. In the subpixel range (v0 ∈ [−1, 1]), we

see that the Nestares/Heeger filer, in fact, produces estimators with largest bias magnitude.

We see from these plots that there is a tradeoff in performance in estimating large and

small translations. It appears that the tradeoff concerns the linear term in the bias polynomial

approximation. The central difference and Fleet derivative filters are the 2nd and the 4th order

optimal approximations to the infinite ordered ideal derivative filter. Thus, these filters produce

derivative estimates closer to the exact derivative than the filter of Nestares/Heeger. This more

accurate derivative approximation tends to minimize the linear term of the bias polynomial leav-

ing basically the cubic term as in the case of (4.16). The filter of Nestares/Heeger, however, is

not an approximation to the ideal derivative filter. As such, it has a much larger linear coeffi-

cient. This larger linear coefficient explains its poor performance around the subpixel range, and

yet it produces a linear improvement for larger translations. Again, this phenomenon suggests

a certain optimization framework similar to [61] where the gradient kernel may be optimized

over some range of translations. We will address this idea later in the chapter.
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4.2.3 Bias and Translation

Finally, we examine how the bias varies with the unknown translation v0. As ex-

pected, the first order approximation used to generate the linear gradient-based estimator is

accurate only for small translations. Thus, with perfect knowledge of the image derivatives, the

magnitude of the bias tends to increase with the translation and the estimates are always biased

towards zero, or underestimated. When the derivatives are only approximated using a gradient

kernel, however, there are essentially two regions of operation wherein the estimates could be

overestimated and underestimated. These regions are easy to identify when examining the cubic

approximation of the bias (4.19). Setting (4.19) equal to zeros, the resulting roots of the cubic

polynomial are

ṽ0 = 0, ±
(∫ π

−π |F (θ)|2Λ1(G, θ)dθ∫ π
−π |F (θ)|2Λ2(G, θ)dθ

) 1
2

. (4.20)

Instead of biasing the estimates towards 0 as in the case where the derivatives were known

exactly, the estimator produces estimates that are biased towards ±ṽ0. Examination of the bias

in the right graph of Figure 4.5 shows that these values are around ṽ0 = 1.5 for Nestares/Heeger,

ṽ0 = 1 for the central difference, and ṽ0 = .5 for the Fleet gradient filters. In fact, we find that

these value of ṽ0 do not vary much across different images, for any reasonable derivative filter.

Whichever gradient kernel is used, if the kernel approximates the derivative, the mag-

nitude of the bias will tend to worsen for values of |v0| > |ṽ0|. In fact, the cubic approximation

of bias suggests that even the relative bias b(v0)
v0

increases as a quadratic function of v0. This

partly explains the success of multiscale gradient-based methods in estimating large transla-

tions. The multiscale pyramids are constructed through a process of low-pass filtering and

downsampling. We have already shown how the low-pass filtering improves estimator perfor-

mance. The downsampling reduces the magnitude of the translation by the downsampling fac-

tor, the common factor being 2. Using this downsampling factor, the translation to be estimated

at the lth level of the pyramid becomes vl0 = v0
2l . This synthetic reduction in translation mag-

nitude allows for estimation with smaller relative bias. The reduction in bias is most effective
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when the unknown translation is greater than a few pixels. In this case, the downsampling maps

the translation into a range of reasonably small bias. In practice, the height of the pyramid L is

designed such that the expected downsampled velocity at the coarsest level is in vL0 ∈ [−2, 2]

pixels/frame where the magnitude of the relative bias is not very large.

The iterative nature of the multiscale pyramid raises an important question concerning

the general convergence of iterative gradient-based estimators. Iterative methods for gradient-

based estimation have been used to improve performance [37], [1], [42]. These methods work

by iteratively estimating motion, undoing this estimated motion, and estimating the residual mo-

tion not captured by the previous estimate. At very high SNR, the residual motion is dominated

by the estimator bias. In practice, different methods are used to undo the previously estimated

motion, often relying on some warping/resampling scheme. We would like to know if these

iterative methods will converge, and if so, whether they will converge to an unbiased estimate

of v0.

To simplify the analysis, we assume that the warping methods work perfectly to syn-

thesize a shifted version of the images 1. In fact, we see that the error in the gradient ap-

proximation could lead to oscillatory instability in the iterative gradient-based estimator. To

see this, assume that an initial estimate of translation using the gradient based estimator was

given by v̂00 = v0 + b(v0) (where superscript 0 indicates the iteration number). After perfect

warping, the residual translation would simply be r = −b(v0). The estimate of this resid-

ual motion will be r̂ = −b(v0) + b(−b(v0)) such that the updated motion estimate becomes

v̂1
0 = v̂0

0 + r̂0 = v0 + b(−b(v0)). Thus, if |b(v0)| < |v0| for all v0, then |b(−b(v0))| < |b(v0)|
and so on, suggesting convergence to an unbiased estimate. Practically speaking, we are only

interested in this relationship for very small v0 since the residual motions are often within the

range [−ṽ0, ṽ0]. In this region, we use the cubic approximation of (4.19) represented as

b(v0) =
γ1

γ2
v0 − γ3

γ2
v3
0 (4.21)

where the γ variables represent the numerator and denominators of the polynomial bias ap-
1unlikely given the ill-posed nature of image resampling
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Figure 4.6: Original (left) and filtered (right) plot of θG(θ) − 2G2(θ).

proximation. Because of the symmetry of the bias function, we must examine whether or not

|b(v0)| < |v0| for all v0 ∈ [0, ṽ0]. In this region, we see that the condition |b(v0)| < |v0| will be

satisfied if
|γ1|
γ2

≤ 1. (4.22)

Furthermore, it can be shown that under the very general assumption that the filter G(θ) is in

fact a derivative-type operator, we have γ1 ≥ 0. Thus, if γ2 ≥ γ1, then we can safely assume

that |b(v0)| < |v0| for small translations assuring that the iterative method will converge to an

unbiased estimate since the bias is reduced at every iteration. However, if γ2 < γ1 then the

estimator will oscillate between v̂0 = v0 ± v∗0 .

Since the condition of convergence depends on

γ1 − γ2 =
∫ π

−π
|F (θ)|2 [θG(θ) − 2G2(θ)

]
dθ, (4.23)

we plot θG(θ)−2G2(θ) in left graph of Figure 4.6. For the iterative estimator to converge, most

of the spectral energy must be located in the low frequency range where the weighting function

θG(θ) − 2G2(θ) applies negative weight. If too much high frequency content is present, the

difference γ1 − γ2 will be positive and the algorithm will not converge to an unbiased estimate.
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Pre-smoothing the image minimizes the likelihood that γ1 − γ2 > 0 since most of the weight-

ing function θG(θ) − 2G2(θ) is negative. Although multiscale iterative methods significantly

decrease estimator bias in practice as evidenced in Figure 3.6, they still may contain estimator

bias.

4.3 MSE Performance of the Gradient-Based method

Armed with an approximate expression for the bias function, we can now examine

the full performance bound given by (3.1) for the gradient-based estimators. In examining

this bound, we find that the bias dominates the MSE performance for typical imaging systems

with high SNR. Finally, we show experimental evidence justifying a general rule-of-thumb for

performance of 2-D gradient-based image registration.

In order to use the performance bound given by (3.1), we must first examine the

derivative of the bias function. Using the bias expression (4.15) we see that

b′(v0) + 1 =

∫ π
−π |F (θ)|2G(θ)θ cos(v0θ)dθ∫ π

−π |G(θ)F (θ)|2dθ . (4.24)

Using these expressions, we see that the complete MSE performance bound is given by

MSE(v0) ≥ [b′(v0) + 1]2

J(v0)
+ b2(v0)

= J−1

(∫ π
−π |F (θ)|2G(θ)θ cos(v0θ)dθ

)2

(∫ π
−π |G(θ)F (θ)|2dθ

)2 +

(∫ π
−π |F (θ)|2 [G(θ) sin(v0θ) − v0G

2(θ)
]
dθ
)2

(∫ π
−π |G(θ)F (θ)|2dθ

)2 (4.25)

where the Fisher Information is independent of v0 and is given by

J =
1
σ2

∫ π

−π
|F (θ)|2θ2dθ. (4.26)

In practice, we calculate the Fisher Information using derivative approximations.
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Here we conduct a Monte-Carlo (MC) simulation to verify the accuracy of our com-

plete MSE bound. Ideally, at high SNR the complete bound given by (4.25) predicts actual

estimator performance. We construct a bandlimited signal using

f(n) =
D∑
i=1

1
i

sin
(
πni

100
− φi

)
, n = 1 . . . 100 (4.27)

where φi is a fixed phase generated by drawing from a uniform distribution. We chose to use a

closed-form expression for f so that that the exact values of the function derivative are available.

These derivatives were used to calculate the exact FIM used in the complete CR bound of (4.25).

Actual estimator performance is measured by performing 500 MC runs at each value of SNR

and averaging the error. The gradient kernel used was the Nestares filter from [1].
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Figure 4.7: Experimental RMSE and the corresponding complete CR bound vs SNR.

The results of the simulation are shown in Figure 4.7 which compares the RMSE

for the gradient based estimator with both the unbiased CR bound (3.2), and the full bound

(4.25). The actual estimator performance seems very close to the performance bound predicted

by (4.25) at high SNR. This verifies that the bias function given by (4.15) is in fact accurate.

For low SNR, however, both bounds are overly optimistic. This could be due in part to the

88



approximation made in obtaining the simplified bias function. In general, nonlinear estima-

tion problems suffer from what is known as the threshold effect [35]. This threshold effect is

characterized by a significant departure from the CR bound as the SNR degrades.
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Figure 4.8: Experimental RMSE and corresponding complete CR bound vs SNR as it relates to signal
bandwidth.

To understand the relationship between bandwidth and performance bound, we plot

the expected performance bound for v0 = 0.1 for different values of D in (4.27), (which essen-

tially encodes the bandwidth in the definition of f ) in Figure 4.8. This figure shows the tradeoff

between bias and variance as it relates to image bandwidth where D is the percentage of full

bandwidth. As mentioned before, energy in higher frequencies tends to increase the Fisher In-

formation, thereby improving estimator variance, but tends to worsen the effect of bias. Overall,

it is apparent that bias dominates the MSE for images with much high energy in the high spatial

frequencies.

Lastly, we extend this complete MSE performance bound for the case of 2-D image

registration. The equations for 2-D bias can be found in Appendix 4.A. To provide a rule of
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thumb value for expected estimator performance, we use the following performance measure.

∆v01
∆v02

∑
v01

∑
v02

rmse(v0) (4.28)

where ∆v0i
defines the sampling grid over the space of translations. This provides a measure

of the average magnitude error over a range of unknown translations. The corresponding CR

bound used to compare actual estimator performance is given by

1
4V1V2

∫ V1

−V1

∫ V2

−V2
T (v0)dv01dvv2 . (4.29)

For our experiment, we examine estimator performance for sub-pixel estimation where

v0 ∈ [−1, 1] × [−1, 1]. The tree image was again shifted synthetically as before using the

method of [55]. For each value of SNR, 500 MC runs were performed and averaged to obtain

the MSE matrices. To evaluate the improvement using image pre-smoothing, we apply a 9-tap

Gaussian filter with standard deviation of 1 and 2 pixels. To compute the MSE bound, we esti-

mate the spectrum F (θ1, θ2) using the DFT coefficients of the clean Tree image. To take into

account the noise reduction resulting from image pre-smoothing, we modified noise variance

used to compute the FIM by σ̃2 = σ2∑
h2(n)

where h(n) are the coefficients of the Gaussian fil-

ter. Again, the gradient filter used was from [1]. Figure 4.9 shows the performance predicted by

(4.29) and actual experimental performance of (4.28) from the Monte-Carlo experiments using

the Tree image as the base signal.

The performance bound appears to be a good predictor of actual estimator perfor-

mance at high SNR situations. The estimator performance for SNR’s at about 20-40 dB shows

unexpected improvement over the high SNR situation. Most likely, this results from the statis-

tical bias present in the estimator for low SNR situations. It was shown in [59] and [60] that the

statistical bias for noisy images tends to produce underestimates of translation or negative bias.

Since the deterministic bias using the [1] filter is positive for subpixel motion, we deduce that

these two biases tend to cancel each other out, thereby improving performance at low SNR. As

significant low-pass filtering is applied to the image, estimator performance improves dramati-

cally. Basically, the deterministic bias again dominates estimator bias and we have predictably
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Figure 4.9: Predicted and measured average performance measured by (4.28)

improved estimator performance. This experiment presents the possibility of subpixel image

registration accuracy down to almost one hundredth of a pixel for the gradient-based estimator

under the ideal situation when the image is known to be sampled above the Nyquist rate. Again,

this experiment correlates well with the results shown in Figure 3.6 of Chapter 3. Thus, we can

expect a rule of thumb performance bound limiting the performance of image registration under

ideal situations to an accuracy of over one hundredth of a pixel for non iterative gradient-based

estimation.

4.4 Filter Design for Gradient-Based Motion Estimation

In the previous section we characterized the bias associated with gradient-based es-

timators for high SNR situations. Much of this estimator bias is dependent on the choice of

gradient filters used during the estimation process. Very little work has been done addressing

the design of filters specifically for application to the problem of motion estimation. To our

knowledge, such an approach was first studied in [61] which extends the generic (not neces-
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sarily application specific) gradient filter design principles of [62]. In this section, we briefly

review previous work in the area of filter design for motion estimation.

To begin, we modify the previous gradient-based forward model to take into account

the use of a pre-smoothing filter h(n) prior to estimation. We modify (4.12) to include these

pre-smoothing filters as

z̃(n) = h(n) ∗ z1(n) − h(n) ∗ z0(n)

= v0f̃
′(n) + R̃(n, v0) + ε̃(n). (4.30)

The work of [62] suggested that the filters should be designed to match the actual derivative

of a reconstructed continuous function. Such a design philosophy attempts to minimize the

approximation error associated with the use of FIR filters to estimate image gradients. The error

is minimized assuming the image has the spectral amplitude of a natural image or |F (θ)| ≈ 1
|θ| .

With these assumptions in place, [62] propose a cost function to design the filters h(n) and

g(n). The cost function is expressed in the Fourier domain as

C1(h,g) =
∫ π

−π

1
|θ| [jθH(θ) −G(θ)]2 dθ (4.31)

where H(θ) and G(θ) are the Fourier transforms for the desired filters given by

H(θ) = {h}0 + 2
τh∑
i=1

{h}i cos(iθ)

G(θ) = 2
τg∑
i=1

{g}i sin(iθ).

In [62], the solution was found by formulating the optimization problem as an eigenvalue prob-

lem. While [62] did not directly address the application of such filters to estimate motion, the

filters have been noted to improve estimator performance [58].

As noted in [61], such a design procedure can also be used to find optimal filter

coefficients both for the gradient filter and for a pair of pre-smoothing filters to be applied

to gradient-based motion estimation. To do so, the form of (4.30) is generalized to take into
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account the application of distinct pre-smoothing filters to each image as in

z̃(n) = h1(n) ∗ z1(n) − h2(n) ∗ z0(n)

= v0f̃
′(n) + R̃(n, v0) + ε̃(n) (4.32)

where h1(k), h2(k) are both linear phase FIR filter kernels. The filter coefficients are repre-

sented using vector notation as g,h1,h2.

Using the more general formulation of (4.30), the authors of [61] derive a cost func-

tion taking into account a specific image as well as a range of possible translations v0 ∈ [−V, V ].

This cost function has the form

C2(h1,h2,g) =
∫ V

−V

∫ π

−π
|F (θ)|2

∣∣∣ejθv0H1(θ) −H2(θ) − v0G(θ)
∣∣∣2 dθdv0

=
∫ V

−V

∫ π

−π
|F (θ)|2 |Υ(θ)|2 dθdv0. (4.33)

We know heuristically that the filter should be designed to minimize the energy in the modelling

error R̃(n, v0) weighted by the image spectrum over a range of unknown translations. The au-

thors note that minimizing the error alone will not provide good filters, since the optimization

tends to create ”non-informative” filters which contain most of their spectral energy at frequen-

cies where the image spectral energy F (θ) is lowest. They correct this by adding an additional

penalty term balancing the desire to optimize the filter for the given image with the desire to

optimize the filter for an image with a flat spectrum (F (θ) = 1). This modified cost function

looks like

C2(h1,h2,g) =
∫ V

−V

∫ π

−π

[
α+ (1 − α)|F (θ)|2] |Υ(θ)|2 dθdv0

where α is a tuning parameter to be applied during the filter design process. The authors also

find a solution to this problem by again solving an eigenvalue problem. The paper provides

experimental results displaying the advantage of using such image-adapted filters.

While these previous works have made fundamental contributions to gradient-based

motion estimation, they ignore the the particular structure of the gradient-based motion estima-

tor that ultimately characterizes the statistical performance of such estimators. In this chapter,
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we use the statistical performance of the estimator to guide the design process. Specifically,

we present a scheme for designing filters which minimize the bias of the gradient-based image

registration algorithm.

4.4.1 Designing Bias-Minimizing Filters

As we have shown, the general gradient-based motion estimators have significant

estimator bias. In the previous section, we verified our bias expressions for high SNR scenarios.

For many computer vision and image registration applications, the effective SNR of the imaging

system falls into this high SNR regime.

In (4.15) we see that the bias depends on three factors: the image content f , the

choice of filters g(n) and h(n), and the unknown translation v0. Again, using the assumption

that translation is limited to (and equally likely to be in) some range v0 ∈ [−V, V ], we construct

the following cost function for a particular image for finding filter coefficients:

C(g,h) =
∫ V

−V
b2(g,h)dv0. (4.34)

Such a cost function captures the desired goal of minimally biased estimates of image transla-

tion. Note that a statistical prior on v0 could be incorporated into the integral of (4.34).

We now explore a simple method for minimizing such a cost function. Because of

the complex nonlinear relationship between g and h in (4.34), we focus on the design of only

the gradient filter coefficients g. It would be possible to efficiently minimize (4.34) in a cyclic

coordinated descent type algorithm which alternates between optimizing over g and h. How-

ever, in practice, we have found that optimizing both filters offers only modest improvement

in performance over optimizing the gradient filter alone. To a larger extent, the estimator bias

depends on the choice of gradient filters. Thus, to save on computational resources, we suggest

optimizing only the gradient filter. We note that the same simplifying steps used here to opti-

mize the gradient filter can also be applied to optimizing the pre-smoothing filter as well. Here

we present the algebraic simplifications useful for highly efficient filter optimization. Basically,
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we find the closed form solution to the integral associated with (4.34), allowing us to perform

the optimization with minimal computational cost. We note that similar simplifying operations

are applicable for the 2-D case as well.

Because we assume the signal is bandlimited and periodic, our Fourier transform

F (θ) has only N terms where the spatial frequency is indexed by θi = i2π
N , i = 1 . . . N . As

such, we rewrite the bias function (4.15) in vector form as

b(v0) =
s(v0)TKTg
gTTTKTg

− v0 (4.35)

where

[s(v0)]i = sin(v0θi)

[K]i,j =

⎧⎪⎨⎪⎩ |F (θi)|2|H(θi)|2, i = j

0, i �= j

[T]i,j = sin(jθi).

In these equations, the i enumerates the spatial frequencies used in the DFT For instance, θi =

π − i2π
N .

The cost function C(g) can be written in vector form as

C(g) =
∫ V

−V
b2(g)dv0

=
∫ V

−V

[
v2
0 +

gTTTKT s(v0)s(v0)TKTg
(gTTTKTg)2

− 2v0
s(v0)TKTg
gTTTKTg

]
dv0

=
2V 3

3
+

gTTTKT S̃KTg
(gTTTFTg)2

− 2
pTFTg

gTTTFTg
(4.36)

where

{S̃}i,j =
∫ V

−V
sin(v0θi) sin(v0θj)dv0

=
2 sin(V (θi − θj))

θi − θj
− 2 sin(V (θi + θj))

θi + θj
(4.37)

and

{p}i =
∫ V

−V
v0 sin(θi)dv0 =

2 sin(V θi) − 2V θi cos(V θi)
θ2
i

.
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It is the simple closed form solutions for such integrals that make such an optimization simple

to implement. While not obvious, it is important to note that matrixS̃ in (4.37) represents a con-

volution operation because of the spectral symmetry of |F (θ)H(θ)|2G(θ) about θ = 0. Thus,

the left-multiply by the matrix S̃ can be implemented using FFT operations, thereby removing

the necessity of constructing the large matrix S̃. In fact, none of the above computations are

performed by explicitly constructing the matrices. This saves space and improves numerical

efficiency. Such implementation details become critical for the 2-D scenario where matrix S̃

becomes a dense N2 ×N2 matrix, effectively precluding explicit construction of the matrices.

Using these terms, we rewrite (4.36) as

C(g) =
2V 3

3
+

gTΓ1g
(gTΓ2g)2

− 2qTg
gTΓ2g

(4.38)

where the terms

Γ1 = TTKT S̃KT

Γ2 = TTFT

q = pTFT

need to be computed only once during the optimization, greatly simplifying the overall compu-

tational complexity. The nonlinearity of the cost function becomes immediately apparent in the

form of the cost function. Because the dimensions of the filters are relatively small (2-4 unique

coefficients), we perform the filter design utilizing the black box Matlab optimization routine

fminunc. This optimization takes only fractions of a second to run. In our experiments, we

use a standard filter such as the filter of [1] as an initial guess for the optimization routine. While

such an optimization routine does not guarantee a global minimum, we have found in practice

that using such an optimization routine generates filters with improved performance.

4.4.2 Filter Design for 2-D Multiscale Iterative Registration

One important departure of our proposed method from the filter design methods of

[62] and [61], is the extension to the design of 2-D filters. Both of these previous methods
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have addressed only the filter design problem for the 1-D case. The extension to the 2-D case

involves designing generic 1-D filters. For example, in [61] it was recommended that 1-D filters

be designed using α = 1 (not image dependent) and applied to a 2-D image in a separable

fashion.

In our case, we continue to assume that the 2-D filters are separable (although this is

not a necessary assumption) to simplify not only the optimization routine, but also the appli-

cation of such filters. However, unlike the previous works, our filters are designed taking into

account the 2-D image spectral content. In this section, we show how the design of 2-D filters

is a natural extension of the 1-D case presented in the previous section. In addition, we propose

a methodology for designing filters for multiscale iterative image registration.

Filter Design for 2-D Registration

As in the 1-D case, we use a cost function of the form

C(g1,g2) =
∫

b(v0)Tb(v0)dv (4.39)

to design our pair of gradient filters g1 and g2. While somewhat tedious to present, the same

algebraic simplifications apply to C(g1,g2) as those shown in Section 4.4.1.

0

0

0

0

0

0

0

Figure 4.10: Tree, DC, and MRI, and Einstein images

To give an example of the performance improvement offered by such a filter design

methodology, we compare the bias magnitude for the range of translations v01 , v02 ∈ [−2, 2]

for several popular filter sets. We measure overall performance by averaging the magnitude of
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Tree DC Sat. MRI Einstein
Central 0.098 0.137 0.124 0.107
Fleet 0.130 0.183 0.162 0.150
Nestares 0.061 0.086 0.080 0.063
Elad 0.112 0.074 0.056 0.063
Optimized 0.048 0.064 0.061 0.045

Figure 4.11: Overall registration error Err for the range v 01 , v02 ∈ [−2, 2]

the registration RMSE for the different filter sets over a set of translations in this test range. The

performance measure is given by

Err =
1
NS

∑
v0∈Sv

rmse(v0) (4.40)

where Sv is the set of test translation points of size NS . We choose this performance measure

as it shows overall performance error in units of pixels. If SNR = ∞ (no noise added to the

pair of images), then rmse(v0) = 1
2‖b(v0)‖. In a sense, the overall error is a measure of the

average magnitude error over a range of translations. For our experiments, we assume that the

range of translations is uniformly sampled in the test range.

We first examine the zero-noise case where SNR = ∞. Such a scenario corresponds

to the typical experimental setup examined in gradient-based estimation literature where rarely

is noise added to the images prior to estimation [14, 61]. Under such conditions, only the

deterministic estimator bias affects the overall estimator performance. For our experiment, the

we uniformly sampled the region [−2, 2] × [−2, 2] in increments of [ 1
10 ,

1
10 ] pixels to generate

our test set Sv of translations. The filters compared were the simple central difference filter

(Central), the 2nd order derivative filter mentioned in [14] (Fleet), the Nestares filter and the set

of filters designed using the method of [61] (Elad). All of the filters have 5 taps (2 coefficients)

except the filters of [61] which were 9 tap filters. Prior to estimation, the images were pre-

filtered either with a sampled Gaussian pre-smoothing filter with standard deviation of
√

(3)

pixels or the specially tuned filters of Elad. The performance for each filter set are shown in the

table in Figure 4.11 for the images in Figure 3.2. The optimized filter shows improved overall
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performance for all images except for the MRI image, where the optimized filter performance

was only slightly worse than that of Elad. Recalling that the Elad filters were 9-tap filters

as opposed to the 5-tap optimized filters we see that, in general, the proposed filters improve

average estimator performance while realizing computational savings. Furthermore, we found

that when using larger optimized filters, we can achieve even greater improvement over the

other filters. This improved performance results from the increases degrees of freedom of the

optimization routine. Basically, larger filters allow for more precision in tuning the frequency

response of the filters. We shall show this momentarily.

To visualize the effect of the optimized filters, Figure 4.12 shows the bias magni-

tude ‖b(v0)‖ in registering the Tree. The top graph shows the bias magnitude when the [1]

(Nestares) filter was used (the second best filter). The bottom graph shows the bias magnitude

when using the filters designed by optimizing (4.39).

From the bias exhibited in Figure 4.12, we see that the bias magnitude primarily de-

pends on the magnitude of the translation ‖v0‖. Furthermore, Figure 4.12 reveals the polar

symmetry of the registration bias. Because of this symmetry, we plot the magnitude of reg-

istration bias for the collection of filter sets for the set of translations v01 = v02 ∈ [0, 2]

in Figure 4.13. This representative slice reveals the important performance characteristics of

each filter set. Figure 4.13 compares the bias magnitude for all of the filters when register-

ing the DC Satellite image. Here, we see that while the bias of all the filters becomes severe

as the magnitude of the translation increases, the bias for the optimizing filter is minimized.

The optimized filters have the coefficients g1 = [0.8792, −1.2459, 0 1.2459, −0.8792] and

g2 = [0.8969, −1.2606, 0 1.2606, −0.8969]T .

To evaluate the performance of the optimized filter in a more realistic scenario, we

must compare estimator performance in the presence of noise. To this end, we conduct Monte

Carlo (MC) simulations at SNR ranging from about 10 dB through 60 dB. 2 At each SNR,

we measure the MSE in estimating v0 along the line v01 = v02 ∈ [0, 2] in increments of 1
10

2The SNR is measured as SNR = 10 log10

σ2
f

σ2 where σ2
f is the variance of the clean frame and σ2 the variance

of the noise.
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Figure 4.12: Magnitude of estimator bias ‖b(v0)‖ vs translation using the Nestares gradient filters (top)
and the bias minimizing gradient filters (bottom).

pixels by averaging the square estimator error over 1000 MC runs. As before, we use the same

experimental setup used to produce Figure 4.13 in terms of filter sets. Here, we see that the

optimized filters continue to outperform the other filters over the wide range of SNR. We note

that the performance does not vary widely until very low SNR (12 dB) as the bias dominates

the MSE as shown in [76]. Essentially, Figure 4.14 shows that the optimized filters retain their

competitive performance over a wide range of imaging SNR for non-iterative registration.
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Figure 4.13: Magnitude of estimator bias ‖b(v0)‖ vs translation magnitude ‖v0‖ where v01 = v02
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Figure 4.14: Overall estimation error Err at different SNR over v01 = v02 ∈ [0, 2] for the Tree image.

Filter Design for Multiscale Iterative Registration

Traditionally, the same gradient filter has been applied at each level of the pyramid

during multiscale gradient-based estimation [36]. The performance and rate of convergence

of the multiscale method can be further improved using optimally designed bias-minimizing

filters. We suggest the novel approach of designing different gradient filters for each level of
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Tree DC Sat. MRI Einstein
Central 0.006 0.010 0.004 0.012
Fleet 8.14e-4 0.002 0.001 0.008
Nestares 0.012 0.018 0.011 0.020
Elad 0.010 0.006 0.001 0.015
Optimized 2.07e-4 5.57e-4 2.57e-4 0.006

Figure 4.15: Overall registration error Err for multiscale estimation over the range v 01 , v02 ∈ [−6, 6]

the pyramid, each according to the cost function (4.39). Optimizing gradient filters in such

a manner improves the convergence rates of the iterative estimation by reducing the residual

motion left over from biased estimates produced from earlier iterations. More importantly,

minimizing the estimator reduces the possibility of the iterative estimation process diverging,

thereby offering a more stable method of estimation. Furthermore, since at every iteration the

residual motion to be estimated is reduced, we propose designing filters which assume that the

ranges of translation shrink as the iterations proceed.

To show an example of such optimized filters for the multiscale registration scenario,

we design gradient filters for a three level multiscale pyramid. As in Section 4.4.2, we first

examine the zero-noise scenario (SNR = ∞) where only the bias contributes to estima-

tor MSE. The optimized gradient filters were designed for the translation ranges v01 , v02 ∈
[−2, 2], [−.5, .5], [−.2, .2] for each of the three pyramid levels. Figure 4.15 shows the overall

multiscale registration error over the translation test set v01 , v02 ∈ [−6, 6] uniformly sampled

with a spacing of [15 ,
1
5 ] pixels. Again, we see that the optimized filters offer superior perfor-

mance for multiscale estimation in terms of the registration error over a wide range of transla-

tions.

As before, to visualize the estimator performance in the multiscale setting, the regis-

tration error for the Tree image is plotted in Figure 4.16 along the line v01 = v02 ∈ [0, 6] for

the zero-noise scenario. While all of the estimators show significant improvement over the non-

multiscale iterative approach, the bias-minimizing 5-tap filters offer consistent improvement in

estimator accuracy over the entire range of translations. For practical applications, the registra-
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Figure 4.16: Magnitude of registration bias ‖b(v)‖ vs translation magnitude ‖v‖ where v 01 = v02 for
the Tree image.

tion error is so small as to be considered almost unbiased. Overall, we see that principled filter

design offers improvement for multiscale image registration.

Again, we evaluate the performance of the optimized filters at different imaging SNR.

As before, we perform MC simulations at each SNR to measure the MSE of the multiscale

approach in estimating v along the line v01 = v02 ∈ [0, 6] this time in increments of 1
2 . As

before, we use the same experimental setup used to produce Figure 4.14, only this time we use

the multiscale approach. Here, we see that the optimized filters outperform the other filters for

SNR greater than about 25 dB. In fact, below this SNR, the performance of the optimized filters

for multiscale estimation degrade substantially. In this SNR regime, the MSE is no longer

dominated by estimator bias. It is apparent that at this SNR, minimizing bias is no longer a

suitable objective for improving overall performance in the sense of MSE. We note, however,

that SNR below 25 dB represents a very noisy scenario not often encountered in typical video

imaging and rarely, if ever, addressed in the gradient-based motion estimation literature.
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Figure 4.17: Overall multiscale estimation error Err at different SNR over v01 = v02 ∈ [0, 6] for the
Tree image.

4.5 Conclusion

In this chapter we have presented detailed analysis of the bias associated with gradient-

based algorithms. Detailed analysis of the estimator bias gives the practitioner of motion esti-

mation a keen insight into the performance tradeoffs associated with gradient-based algorithms.

In particular, our analysis explores the bias as it relates to image content, motion magnitude, and

choice of gradient-filters. Using this bias expression we have been able to present a general rule-

of-thumb MSE performance bound using the complete CR bound for gradient-based estimation

at high SNR. We believe such information will prove critical to the design and understanding of

systems relying on the output of gradient-based algorithms. Lastly, we have presented a novel

approach to designing gradient filters for the gradient-based algorithm which reduce estimator

bias and have verified the bias minimizing properties of such filters. We believe that the next

step in filter design will address a MSE minimizing criterion.
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4.A 2-D Bias and CR Bound for Gradient-Based Estimation

In this appendix, we derive the bias equations for the 2-dimensional case similar to

those in Chapter 4 and incorporate this bias function into the complete CR bound of (3.1). Here

we use vector notation. Namely, v0 = [v01 , v02 ]
T and θ = [θ1, θ2]T and k = [n1, n1]T . Thus,

we write the data model as

z(k) = f(k + v0) − f(k) + ε(k) (4.41)

We proceed to derive the bias directly in the frequency domain. The shifted sequence f(k+v0)

has a DTFT of F (θ)ej(θ
T v0) and the DTFT of the data model becomes

Z(θ) = F (θ)
[
ej(θ

T v0) − 1
]

+ ξ(θ). (4.42)

We expand the exponential in a Taylor series ej(θ
T v0) = 1+ j(θTv0)− ... and truncate after the

linear term to obtain the formula Z(θ) ≈ jF (θ) θTv0 + ξ(θ) from which we obtain the linear

estimator

v̂0 = F−1

∫
|F (θ)|2jθZ∗(θ)dθ (4.43)

where F =
∫ |F (θ)|2 [θθT ] dθ.

Similar to the 1-D case, the expected value of the estimate is

E[v̂0] = F−1

∫
|F (θ)|2θ sin(θTv0)dθ. (4.44)

To obtain this form, we have made the same simplification as in Section 3 wherein the imaginary

portion of the integrand is removed as it is an odd function, hence integrating to zero. Thus, we

obtain the bias function

b(v0) = F−1

∫
|F (θ)|2θ sin(θTv0)dθ − v0 (4.45)

To analyze this bias function, we approximate the sinusoid function within the integrand as a

truncated Taylor series expansion about v = 0 as sin(θTv0) ≈ θTv0 − 1
6 (θTv0)3. Noting that
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θTv0 = |v0|θTnψ where nψ is the unit vector [cos(ψ), sin(ψ)]T we can approximate the bias

function as

b(v0) ≈ F−1

∫
|F (θ)|2θ [θTv0 − (θTv0)3

]
dθ − v0

= v0 − 1
6
F−1

∫
|F (θ)|2θ(θTv0)3dθ − v0

= −|v0|3
6

F−1

∫
|F (θ)|2θ(θTnψ)3dθ = −|v0|3

6
F−1d (4.46)

where d =
∫ |F (θ)|2θ(θTnψ)3dθ. Thus, the bias behaves as a cubic function of the translation

magnitude |v0| where the coefficient depends on the spectrum of the image.

As with the 1-D case, in practice we must approximate the gradients using gradient

kernels g1(k) and g2(k) which have corresponding frequency representations G1(θ) and G2(θ)

or in vector notation G(θ) = [G1(θ), G2(θ)]T . This produces the estimator,

v̂0 = F−1

∫
|F (θ)|2jG(θ)Z∗(θ)dθ (4.47)

where now F =
∫ |F (θ)|2 [G(θ)G(θ)T

]
dθ. Using the same low-noise assumptions that we

made in Section 3, we examine only the deterministic bias which is

b(v0) = F−1

∫
|F (θ)|2G(θ) sin(θTv0)dθ − v0 (4.48)

Using these equations for the bias, we can now derive the full CRLB for gradient-based estima-

tion of 2-D translation. We first note that

∂E[v̂0]
∂v0

= F−1

∫
|F (θ)|2 [G(θ)θT

]
cos(θTv0)dθ = Z. (4.49)

Using this equation, we obtain for the complete CR bound for the 2-D case as

MSE(v0) ≥ ZJ−1ZT + b(v0)v(v0)T (4.50)

where J represents the Fisher Information matrix derived in Chapter 3.
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4.B Projection-Based vs Direct Gradient-Based Estimator Bias

Armed with the bias expressions for the gradient-based algorithm, we can begin to

understand the performance improvement from the use of projections in estimating translation

reported in Chapter 2. We now offer some intuition behind the improved performance of the

gradient-based algorithm using projections. Basically, we compare the bias associated with the

projection-based algorithm, denoted bp(v0) with the bias associated with the direct estimation

which we denote as bd(v0).

From the well known Projection-Slice Theorem, we see that the Fourier transform

of the projection of the image f(x1, x2) at an angle φ is equivalent to a slice of the Fourier

transform of the 2-D image function F (θ1, θ2) through the origin at an angle φ [23]. Using this

theorem, we can relate the bias of the 1-D projection-based algorithm to that of the 2-D direct

algorithm.

We now address the simple case where only a pair of projections at φ = 0 and φ = π
2

are used in the projection-based algorithm. Thus, the corresponding Fourier transforms of the

projected image function r(p, φ) at these angles is given by

F [r(p, 0)] = F (θ1, 0)

F
[
r
(
p,
π

2

)]
= F (0, θ2)

(4.51)

Using (4.9), we see that the components of the bias bp(v0) for the projection-based estimation

are given by

[bp(v0)]1 =

∫ π
−π |F (θ1, 0)|2G1(θ1) sin(v01θ1)dθ1∫ π

−π |F (θ1, 0)|2G2
1(θ1)dθ1

− v01 (4.52)

[bp(v0)]2 =

∫ π
−π |F (0, θ2)|2G2(θ2) sin(v02θ2)dθ2∫ π

−π |F (0, θ2)|2G2
2(θ2)dθ2

− v02 (4.53)

We use the subscript p to indicate the 1-D or projection based estimator bias. Here we see that

the components of the bias function depend only on their respective translational component.

This separability does not apply to the bias associated with the direct 2-D estimation algorithm.
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To simplify the presentation we make the assumption that the image spectrum has the

following symmetry

|F (θ1, θ2)| = |F (−θ1, θ2)| (4.54)

|F (θ1, θ2)| = |F (θ1,−θ2)| (4.55)

We make this assumption to simplify the matrix F defined by in Appendix 4.A. With such

symmetry, the matrix F is given by

[F]11 =
∫ π

−π

∫ π

−π
|F (θ1, θ2)|2G2

1(θ1)dθ1dθ2

[F]12 = [F]21

=
∫ π

−π

∫ π

−π
|F (θ1, θ2)|2G1(θ1)G2(θ2)dθ1dθ2

= 0

[F]22 =
∫ π

−π

∫ π

−π
|F (θ1, θ2)|2G2

2(θ2)dθ1dθ2

In other words, because of the symmetry assumption, the off-diagonal terms of F are zero. In

practice, natural images whose magnitude spectra approximately follow |F (θ1, θ2)| ≈ 1√
θ21+θ22

posses such symmetry.

With the simplified form for the matrix F, the components of the estimator bias for

the direct 2-D algorithm bd(v0) can be expressed as

[bd(v0)]1 =
∫ ∫ |F (θ1, θ2)|2G1(θ1) sin(v01θ1 + v02θ2)dθ1dθ2∫ ∫ |F (θ1, θ2)|2G2

1(θ1)dθ1dθ2
− v01

=
∫ ∫ |F (θ1, θ2)|2G1(θ1) sin(v01θ1) cos(v02θ2)dθ1dθ2∫ ∫ |F (θ1, θ2)|2G2

1(θ1)dθ1dθ2
− v01 (4.56)

[bd(v0)]2 =
∫ ∫ |F (θ1, θ2)|2G2(θ2) sin(v01θ1 + v02θ2)dθ1dθ2∫ ∫ |F (θ1, θ2)|2G2

2(θ2)vdθ1dθ2
− v02

=
∫ ∫ |F (θ1, θ2)|2G2(θ2) cos(v01θ1) sin(v02θ2)dθ1dθ2∫ ∫ |F (θ1, θ2)|2G2

2(θ2)dθ1dθ2
− v02 (4.57)

Again, the subscript 2 indicates the direct or 2-D algorithm. The simplified form of (4.56) and

(4.57) results from the symmetry assumptions of (4.54) and (4.55).
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From (4.56) and (4.57), we see that the each component of the bias vector depends on

both components of the translation vector v0. For example, the bias associated with estimating

v01 also depends on the translation parameter v02 by way of the cos term in the numerator

of (4.56). For example, Figure 4.18 shows the bias magnitude surface ‖b(v0)‖ for both the

projection-based as well as the direct gradient-based estimation algorithms for the Tree image.

To generate these surface plots, no pre-smoothing filters were applied to the images. We see
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Figure 4.18: Magnitude of estimator bias ‖b(v0)‖ vs translation using the Nestares gradient filters [1]
for the projection-based algorithm (top) and the direct algorithm (bottom).

109



in Figure 4.18 that the difference in bias between the 1-D and 2-D algorithms is most severe

for large translation magnitudes ‖v0‖. We observe this behavior for a wide variety of images.

We have already shown that both the 2-D and 1-D bias expressions behave approximately as

a cubic function of ‖v0‖ and |v0| respectively. Because of the separability of the projection-

based algorithm, the 2-D bias of the projection-based algorithm grows approximately as a cubic

function of max(|v01 |, |v02 |). The bias of the direct 2-D algorithm, however, grows as a cubic

function of ‖v0‖. Thus, for large translation magnitudes ‖v0‖, the bias of the projection-based

is less than that of the direct algorithms. We note that the average bias magnitude ‖b(v0)‖ for

the surface plots shown in Figure 4.18 are 0.164 for the projection-based approach and 0.268

for the direct approach. In other words, on average, the bias of the projection-based approach

has significantly magnitude over the range [−2, 2] × [−2, 2] than the direct approach. This

property of the projection-based estimator explains, in part, the improvement in performance of

the projection-based algorithm over the direct for translation estimation.
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Chapter 5

Performance Analysis of Multiframe

Registration of Aliased Images

5.1 Introduction

In Chapter 3, we studied the performance bound for pair-wise image registration as-

suming that the images were sampled above the Nyquist rate. In this chapter, we extend these

results to the scenario where the images are sampled below the Nyquist rate and hence contain

aliased information. Furthermore, we show that a natural consequence of aliased imaging is

the need for multiframe registration. We will show that this estimation problem is intimately

related to the problem of super-resolution. In general, the problem of super-resolution can

be expressed as that of combining a set of noisy, low-resolution, blurry images to produce a

higher resolution image or image sequence. In the last decade, several papers have proposed

algorithms addressing the problem of super-resolution. [63] offers a broad review of the work

this area. With some simplifying assumptions, the estimation problem is typically divided into

the tasks of first registering the low resolution images with respect to the coordinate system of

the desired high resolution image followed by fusing the low-resolution data (reconstruction)

and finally deblurring and interpolating to produce the final high resolution image (restoration).
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Historically, most research in super-resolution has tended to focus on the latter stages assuming

that generic image registration algorithms could be trusted to produce estimates with a high

level of accuracy. As we shall show, however, such an approach is necessarily sub-optimal at

best or inherently biased. Relatively recently, researchers have noted the importance of solving

the estimation problems of image registration and super-resolution in a joint fashion [64–66].

Conversely, the only paper (to our knowledge) concerning registration of aliased (sub-Nyquist)

images [43], does not directly address the problem of image restoration during registration.

Instead, it focuses on mitigating generic (none image specific) effects of aliasing on the regis-

tration algorithm. The one other paper which claims to addresses sub-pixel translation estima-

tion between a pair of downsampled images, makes the assumption that ”no spectral fold-over

(overlap) occurs” after downsampling [70]. In other words, the images are downsampled, but

contain no aliased information. We shall show that the performance analysis (and algorithmic

design) for the sub-Nyquist scenario must study the problems of image registration and image

reconstruction in a joint fashion.

Similar to Chapter 3, we analyze the joint problem of image registration and its related

counterpart (high resolution image reconstruction) in the context of the Cramér-Rao inequality.

To date, no work has addressed the performance limits associated with the registration of aliased

images. In this chapter, we primarily study the MSE performance bound on sub-Nyquist image

registration. We also address the problem of image reconstruction as it is a natural byproduct

of proper image registration. Finally, we outline the relationship of the sub-Nyquist image

registration problem to the problem of super-resolution.

This chapter is organized as follows. In Section 5.2, we derive the Fisher Information

Matrix (FIM) for the joint problem of image registration and reconstruction. With the Fisher

Information, we present the Cramér-Rao (CR) inequality bounding the MSE for the class of

unbiased estimators. In Section 5.3, we analyze the performance bounds and offer insight into

the inherent challenges and tradeoffs in the registration of aliased images. In Section 5.4, we

study the influence of prior information on the joint problem of sub-Nyquist image registration.
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Finally, in Section 5.6, we summarize the contribution of this work and suggest future research

directions.

5.2 CR Bound on the Registration of Aliased Images

For the general problem of registering aliased images, it is assumed that we are given a

set of low resolution images which consist of noisy, warped, blurred, and downsampled versions

of an unknown high resolution image. As we studied in Chapter 3, we focus on the motion

captured by a global shift or a translation between frames.

To simplify the notation and remain consistent with the related problem of super-

resolution, we formulate the data model using matrix notation making a notational departure

from the model of 1.1. To do so, we represent the samples of image function f(x1, x2) at the

sample locations in vector form by raster scanning the samples as

f =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f(0, 0)
...

f(NH , 0)

f(0, 1)
...

f(NH , NH)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.1)

Using a similar raster scanning procedure we use zk to represent the measured image at the

sampled time t = kTt. For such an assumption, we represent the forward process by the linear

equation

zk = DU(vk)f + ek, k = 0 . . . K (5.2)

The vectors zk represent the samples of the measured images scanned in some fash-

ion to form NL dimensional vectors. Likewise, f represents the unknown original high reso-

lution image similarly scanned to form a NH dimensional vector. The matrix D captures the
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downsampling operation (which leads to aliased images), and U(vk) the translational motion

operation with vk = [vk1, vk2 ]
T being the unknown translation vector for measured frame k.

Finally, ek represents the vector of additive white Gaussian measurement noise with variance

σ2.

For the purpose of this chapter, we make several additional assumptions about our

forward model (5.2). First, we assume that the unknown high resolution image f is a bandlim-

ited image sampled above the Nyquist rate. In other words, the unknown high resolution image

does not contain aliasing, but the noisy measurement images do contain aliasing. From this as-

sumption, the matrix U(vk) (which we will refer to as Uk) representing the translational shift

of the image f(n1−v01, n2−v02), reflects a convolution operation with a shifted 2 dimensional

sinc function. In other words,

f(n1 − v01 , n2 − v02) = f(n1, n2) ∗ ∗sinc(n1 − v01 , n2 − v02)

Such a motion formulation allows arbitrary, possibly non-integer shifts. The matrix Uk has

the property that UT
kUk = I where I is the identity matrix. In other words, shifting the image

followed by a shift in the reverse direction does not change the pixel values of the high resolution

image. Furthermore, we note that when the motion vector vk reflects integer shifts (in units of

high resolution pixels), then the matrix Uk is simply a permutation of the identity matrix I.

Second, we assume that the downsampling operation is based on a known downsampling factor

M where NL
NH

= 1
M2 . For our purposes, we assume that the downsampling factor M is an

integer. The M2 come from the assumption that the downsampling factor for both the x1 and

x2 dimensions isM . Thus, D is anNL byNH matrix representing the downsampling operation.

Third, in our formulation, we suppose that K+1 low resolution measured images are available.

Without loss of generality, we assume that the initial image z0 dictates the coordinate system so

that U0 = I and hence we only have to estimate K unknown translation vectors vk during the

super-resolution process for a given set of K + 1 low resolution frames.

Depending on the application, it is natural to distinguish the problem of estimating the

translational motion parameters {vk} from the estimation of the image f . To simplify the nota-
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tion, we define�v to be the set of all unknown motion parameters, or�v = [v11 , v12 , . . . , vK1, vK2 ]
T .

Because of this dichotomy, we show the Fisher Information Matrix J(f ,�v) using the following

partitioned structure

J(f ,�v) =

⎛⎜⎝ Jff Jf
v

JTf
v J
v
v

⎞⎟⎠ (5.3)

where the matrix Jff captures the available information solely pertaining to the unknown image

f , and J
v
v the information pertaining the motion parameters �v, and Jf
v reflects the informa-

tion inter-correlation between the two sets of unknown parameters. Were Jf
v = 0, then the

problem of image reconstruction could be de-coupled from the problem of sub-Nyquist image

registration. As we shall show momentarily, such structure is impossible except for degenera-

tive cases which are of no practical interest. Thus, we argue that the problems of sub-Nyquist

registration and image reconstruction must be solved in a joint fashion. Consequently, through-

out this chapter we study the performance bound on image reconstruction as a byproduct of our

analysis.

Although the estimation must be performed jointly, based on the block decomposition

of (5.3), we can separate the performance analysis for the two estimation problems using the

block matrix inversion principle [67]. Using this principle, the inverted FIM (and hence the CR

bound) is given by

J−1(f ,�v) =

⎛⎜⎝ S−1
f J−1

ff Jf
vS−1

v

S−1

v JTf
vJ

−1
ff S−1


v

⎞⎟⎠ (5.4)

where the S matrices are the Schur matrix complements given by

S
v = J
v
v − JTf
vJ
−1
ff Jf
v (5.5)

Sf = Jff − Jf
vJ
−1

v
v JTf
v (5.6)

In this block partitioned formulation, we see a certain symmetry of the two estima-

tion problems. At first glance, we observe that there is a net loss in information due to the
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interdependence of the two estimation problems because the second terms in (5.5) and (5.6)

are positive semidefinite matrices. For instance, in the case of translation estimation, the term

JTf
vJ
−1
ff Jf
v represents the orthogonal projection of the information about the registration pa-

rameters projected onto the linear subspace encompassing the information about the unknown

image f̃ [68]. The Fisher Information captures the relationship between small perturbations of

the unknown signal parameters and the likelihood function of the measured data. As such, the

net loss of information reflects the ambiguity arising from a small perturbation in either sets of

signal parameters producing the same perturbation in the likelihood function. Simply put, such

a structure captures the ability to distinguish variations in the measured data as depending on

one parameter set versus the other.

Typically, for the problem of image reconstruction, we are interested in a performance

measure reflecting the goal of reconstructing an entire image f . One natural performance metric

is the component-wise MSE summed over all pixels in the image. The CR bound for such a

measure of image restoration over the entire image is given by

T (f) =
(
tr(MSE(f))

NH

) 1
2

≥
(
tr(S−1

f )
NH

) 1
2

(5.7)

As introduced in Chapter 3, the CR bound for such an overall performance measure is given by

rmse(f) ≥ T (f) (5.8)

where rmse was defined by equation (3.7). This performance measure offers a bound in units

of gray levels.

Similarly, an overall measure of registration performance for the set of unknown

translations is given by the average MSE in estimating the entire set of unknown motion vectors

�v. We denote the bound on such a performance measure by

T (�v) =

(
tr(S−1


v )
2K

)1
2

(5.9)

which gives the root average MSE error in estimating translation units of pixels over the given

set of K unknown translations. The 2 comes from the 2 components of vk. The corresponding
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CR inequality is given by

rmse(�v) ≥ T (�v) (5.10)

It is the structure and behavior of these performance measures which we analyze in the follow-

ing section.

5.3 Analysis of the CR Bound

In this section we explore the various aspects of the joint registration and restoration

problem as it relates to the CR bound. Specifically, we study the complex relationship between

image content, noise power, and motion vectors. We break down the analysis into the two

subproblems of sub-Nyquist image registration and image reconstruction. For each subproblem,

we first study the scenario where there is no available prior information about the unknown

parameters, or Jp = 0. Later, we study the effect additional prior information has on the

estimation performance bounds for each subproblem. To simplify the presentation and convey

the maximum intuition, we study the 1-D version of the problem. Where applicable, we denote

the unknown motion for the 1-D case by the scalar translation parameter vk. We show in the

appendix later that the extension to 2-D is straightforward.

Before we begin our analysis, we note that much of the analysis is simplified by

examining the problem in the Fourier domain. Furthermore, many of the relevant matrices are

diagonalized by the Fourier Transform allowing very efficient numerical implementations. To

differentiate between the Fourier domain and spatial domains, we use a tilde as inf̃ to indicate

vectors and matrices in the Fourier domain. Furthermore, we note that because the Discrete

Fourier Transform (DFT) operation (̃f = ΦDFT f ) is a unitary transformation, the global bounds

on image reconstruction (5.8) remains unchanged. In other words,

tr(S−1
f ) = tr(ΦDFTS−1

f ΦH
DFT ). (5.11)

because ΦDFT is a unitary operator [67]. This is basically Parseval’s relation.

117



For the duration of this chapter, we assume that the unknown image f and the mea-

sured images zk are both real-valued signals. Such a constraint induces symmetries in the

frequency domain signal. Thus, while there are 2NH coefficients (NH real and NH imaginary),

we only need to estimate NH of these components because of the symmetry. For instance, we

define the problem as that of estimating the spectral coefficients in the positive frequency half-

plane. Furthermore, to avoid the use of complex notation, we separate the real and imaginary

components of the Fourier domain signal and stack them as in

f̃ =

⎛⎜⎝ Re{F(θn)}
Im{F(θn)}

⎞⎟⎠ , θn =
n2π
NH

, i = 0, . . . ,
NH

2
(5.12)

where F(θ) is the DFT of the signal f0, f1, . . . (the components of f ). Here, the θn terms

indicates the spatial frequencies comprising the signal f . We note that the dimensions of the

image vectors f̃ and z̃ are equal to those of their spatial counterparts f and z.

The convolution operator U is block-diagonalized by the DFT. As such, the shift

matrix Ũk is given by

Ũk =

⎛⎜⎝ diag(cos(vkθn)) −diag(sin(vkθn))

diag(sin(vkθn)) diag(cos(vkθn))

⎞⎟⎠ (5.13)

Finally, the downsampling matrix D has the following structure

D̃ =
1
M

⎛⎜⎝ D̃R 0

0 D̃I

⎞⎟⎠ (5.14)

where

{D̃R}i,j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, i = j − 2aNL, a = 0, 1, . . .

1, i = 2aNL − j, a = 1, 2, . . .

0, else

(5.15)

{D̃I}i,j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, i = j − 2aNL, a = 0, 1, . . .

−1, i = 2aNL − j, a = 1, 2, . . .

0, else

(5.16)
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This structure reflects the spectral ’folding’ or aliasing due to the downsampling operation.

Figure 5.1 shows an example image of the matrix D̃ for M = 3. We note that in the Fourier
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Figure 5.1: Image of the matrix D̃ for M = 3.

domain, the upsampling operation (DT in the time domain) is noted D̃ᵀ where

D̃ᵀ =

⎛⎜⎝ D̃R 0

0 D̃I

⎞⎟⎠
T

(5.17)

differing from D̃ only in that the weight 1
M is not used.

Under these assumptions, we can show that the terms of the FIM J̃d are given by

J̃ff =
1
σ2

K∑
k=0

ŨT
k D̃ᵀD̃Ũk =

1
σ2

K∑
k=0

Q̃(vk) (5.18)

J̃f
v =
1
σ2

[· · · ŨT
k D̃ᵀD̃ŨkΘf̃ · · · ] =

1
σ2

[· · · Q̃(vk)Θf̃ · · · ] (5.19)

J̃
v
v =
1
σ2
diag[̃fTΘT ŨT

k D̃ᵀD̃ŨkΘf̃ ] =
1
σ2
diag[̃fTΘT Q̃(vk)Θf̃ ] (5.20)

where the matrix Θ arises from

∂

∂vk
Ũ(vk) = Ũ(vk)

⎛⎜⎝ 0 diag{θj}
diag{θj} 0

⎞⎟⎠ = Ũ(vk)Θ (5.21)

The matrix Θ corresponds to a derivative operation in the spatial domain. The derivation of

these terms for the 2-D case can be found in Appendix 5.A. To simplify the notation, we

represent the derivative signal by d̃ as in

d̃ = Θf̃
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The matrix D̃ᵀD̃ can be interpreted as a projection operator which maps the high

resolution (dimension) image onto a lower dimensional measurement space. Simple calcula-

tions will verify that D̃ᵀD̃ = D̃ᵀD̃D̃ᵀD̃. Furthermore, because the operator Ũk is a unitary,

Q̃(vk) = ŨT
k D̃ᵀD̃Ũk is also a projection operator [67]. Finally, we note that the matrix Q̃k

can be expressed as a linear combination by

Q̃k =
1
M

(
I +

M−1∑
m=1

[Λc
m cos(mφk) + Λs

m sin(mφk)]

)
(5.22)

where φk = vk2π
M . The term φk can be thought of as the sampling phase offset for the kth mea-

sured low resolution image. This expansion is shown in Appendix 5.C. The matrices Λm are

all symmetric matrices with zeros along the diagonal. They represent the portions of the folded

spectrum due to the downsampling. As we shall soon show, the information content present in

the signal is dependent on the sampling phase offset φ. Or, the Fisher Information is a periodic

function of the the motion in the range v ∈ [0,M ]. In the following sub-sections we analyze

the CR bound matrices associated with subproblems of image reconstruction, registration, and

restoration. As we shall show, the CR performance bounds associated with the image recon-

struction problem possess a certain symmetric interdependence with the bounds on sub-Nyquist

image registration.

5.3.1 Bounds on Registration of Aliased Images

In this section, we analyze the performance bound for the problem of registering

aliased images. For this problem we must study the matrices J̃
v
v and J̃Tf
vJ̃
−1
ff J̃f
v of (5.5). To

date, the problem of registering aliased images has not been studied in relation to that of image

reconstruction. As we will show in this section, if the images to be registered are sampled

above the Nyquist rate, then image registration can be performed in a pairwise fashion and the

registration performance is independent of image reconstruction. When the images are sampled

below the Nyquist rate (hence are aliased), however, image registration and reconstruction are

tightly coupled problems and they must be solved jointly using the entire set of images. In this
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section, we study the overall registration performance bound T (�v), as measured by (5.9), and its

relationship to the image reconstruction performance arriving at a general CR bound for aliased

image registration.

We can learn much from the performance bound for sub-Nyquist image registration

by looking at the first term of S̃
v, which is J̃
v
v. In fact, this term is the FIM for image regis-

tration when the high resolution image f̃ is known prior to estimation. As such, J̃−1

v
v offers an

optimistic lower bound on sub-Nyquist registration performance. BecauseJ̃
v
v is a diagonal ma-

trix, we can infer that, were the high resolution image f̃ known prior to estimation, the process

of registering the measured images to the known high resolution image could be performed in

a frame-by-frame fashion. Such an observation is consistent with the intuition that, if given the

high resolution image f̃ , one need not look at other low-resolution frames to register a particular

low resolution image z̃k.

In looking at the diagonal terms of the FIM sub-matrix J̃
v
v, we can see that the

information for a particular frame {̃J
v
v}kk, depends directly on the unknown translation vk

according to the function

I(φk, d̃) ≡ d̃T Q̃kd̃

=
1
M

(
d̃T d̃ +

M−1∑
m=1

[
(d̃TΛc

md̃) cos(mφk) + (d̃TΛs
md̃) sin(mφk)

])
(5.23)

In other words, the information necessary for registration depends on the energy in the spatial

derivatives (texture) of the unknown signald̃ projected into the lower dimensional measurement

sub-space via the operator Q̃k defined in (5.18). We can make several observations about the

information function I as it relates to the signal f̃ , motion vectors vk, and the downsampling

factor M . First, recalling that d̃ = Θf̃ , we see that any low pass filtering due to the blurring of

the imaging system reduces the ability to register the images by damping the energy in the higher

spatial frequencies. For example, let us suppose that, prior to capturing the image, the image

function were to be blurred by a low-pass filter denoted H̃. Then, I(φ,Θf̃ ) ≥ I(φ,ΘH̃f̃) for

all sampling phase offsets φ. This generalizes the observation introduced earlier in Chapter 3
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that higher frequency information or texture improves the ability to register images. Naturally,

the amount of information lost due to the low pass filter H̃ depends on the spectral content of

the image f̃ . Second, we now see the periodicity of the Fisher Information I as a function of v

with a period ofM . For the super-Nyquist case studied in Chapter 3, the information matrix was

shown to be independent of the unknown translation v. Because of the downsampling operation

D̃, this observation no longer holds for sub-Nyquist registration. In general, the information

lost due to the downsampling operation can be quite significant.

As a first approximation, the downsampling operation alone reduces the information

on the order of 1
M . For example, Figure 5.2 shows the value of I(φ,d̃) of (5.23) throughout

the range of sample phase offsets φ using the signal f̃ shown in Figure 5.6. The function is

shown in polar coordinates about the angle φ. Immediately, we see that the information can
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Figure 5.2: Polar plot of I(φ, d̃) (in units of gray levels2

pixel2 ) verses φ (in degrees) for different downsam-
pling factors.

vary quite dramatically for different sampling offsets φ. Because the performance bound can

vary so widely for different values of φ, it is important to explore the entire space of translations

v when performing simulation-based experiments. We note that this has generally not been the

practice in the past.
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Perhaps more common is the scenario where the estimator has no knowledge of the

high-resolution ”reference” image prior to registration of the low resolution images. In this

situation, the information loss due to uncertainty about the high-resolution image is captured

by the term J̃Tf
vJ̃
−1
ff J̃f
v. By way of the matrix inversion lemma [67], we see that the complete

performance bound is given by

S̃−1

v = J̃−1


v
v + J̃−1

v
v J̃Tf
vS̃−1

f J̃f
vJ̃
−1

v
v (5.24)

From this equation, we see that the performance bound for sub-Nyquist image registration is

dependent on the image reconstruction performance bound S̃−1
f . Consequently, if the set of

translations is such that the image reconstruction is ill-posed (or S̃f is singular), then the cor-

responding problem of image registration is ill-posed as well. In other words, if the signal f̃

could not be reconstructed even if the sampling phase offsets were known perfectly (henceS̃f

is singular), then the problem of registering the aliased images is singular as well. When the

Fisher Information matrix is singular, any unbiased estimator of the set of translations will nec-

essarily have infinite variance [69]. This raises a very important point concerning the canonical

experimentation scenario used in [43, 70]. For such experiments, an image is downsampled ac-

cording to the forward model (5.2) and experiments which perform pair-wise image registration

are presented. For 2-D images, a pair of images is always insufficient to reconstruct the under-

lying high-resolution image. As such, these experiments fail to acknowledge the implicit bias

which necessarily accompanies such algorithms. Without prior information about the unknown

image, unbiased pairwise registration of aliased images is impossible.

In fact, even when M measured images are available with the translations falling

perfectly onto the high resolution sampling grid, the problem of multiframe image registration

is still ill-posed. While such image measurements can be shown to be optimal from a signal

reconstruction perspective (assuming the translations were known) [71], when the translations

must also be estimated from the data, the Fisher Information is singular. This is proved in

Appendix 5.B. Furthermore, it can be shown that the FIM is singular whenever the offset differ-

ences modulo M , {modM (vk−vj)|∀i, j} have less than M +1 unique elements. Furthermore,
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the FIM becomes very ill-conditioned when the offset vectors are even ’near’ singular regions.

For example, Figure 5.3 shows a surface plot of the CR bound T (�v) for a downsampling fact

M = 2 when three measured frames are available (K = 2) for the signal in Figure 5.6. We

see that near the boundaries v1,2 = v0, and along the line v1 = v2, the CR bound goes to

infinity (the values are cropped for display). The performance bound exhibits similar behavior
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Figure 5.3: Plot of T (�v) for the signal of Figure 5.6 with M = 2,K = 2.

when extended to higher dimensions. Here, we see that performance bound for equally spaced

translations v1 = 2
3 , v2 = 4

3 falls within the well of the performance bound plot. Thus, while

equally spaced translations may not offer the best set of translations, it ensures that the perfor-

mance bound does not exhibit the singular behavior. We note that such singular behavior is

independent of the signal under observation. Furthermore, as we will show later in Section 5.4,

such singular behavior can be mitigated with prior information. In this section, however, we

assume that the additional information comes from an additional low-resolution measurement

at a unique offset. This guarantees that the Fisher Information will not be singular.

Because of the complicated structure of the CR bound, henceforth we compute the

bound numerically for a given signal, translations, and noise power. For example, Figure 5.4

shows the overall performance bound T (�v), over the set of unknown motions for the signal

shown in Figure 5.6. Each point in the plot indicates the performance bound for a set of K + 1
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frames with equally spaced translations in the range [0,M ] assuming noise power σ2 = 1.

We note that increasing the number of frames does not affect the performance bound for the
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Figure 5.4: Overall Registration RMSE bound T (�v) for equally spaced translations.

super-Nyquist scenario when M = 1. This suggests that an algorithm that performs pairwise

registration could conceivably work as well as a more complicated algorithm which estimates

a set of registration parameters using a set of low resolution images. This is not the case when

the low resolution images contain aliasing. For downsampling factors greater than M = 1, we

see that increasing the number of measured frames improves the overall performance bound.

In some cases, the presence of additional frames cuts the overall performance bound in half.

We can interpret this to mean that optimal sub-Nyquist image registration algorithms must es-

timate the set of translations {vk} from a set of low resolution measurements in a joint fashion.

Estimating translations in using subsets of the collection of measured images {̃zk} will nec-

essarily result in a poorer performance bound. We shall see an example of such performance

degradation in our experiments section.

Ideally, we would like to study the performance bounds as a function of these offsets

as they deviate from the equally-spaced scenario. Because of the difficulty in characterizing

this explicitly, instead we study the average performance bounds when the offsets are drawn
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from a uniform distribution over the range [0,M ]. In doing so, we can observe the qualitative

behavior of the bounds as it relates to the set of translations {vk}. For example, the Figure 5.5

shows T (�v) for 1000 sets of such random translations as dashed curves (shown in log scale)

for the downsampling factors M = 2, 3, 4. For comparison, the dark-dashed lines represent
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Figure 5.5: Registration CR bound T (�v) vs number of framesK + 1 for randomly selected translations.

the performance bounds for the equally spaced motions and the dark-solid lines represents the

average of T (�v) over the 1000 random sets of translations. We can make several observa-

tions about the relationship between the performance bounds and the set of translations. First,

we observe that the performance bound can be significantly worse for random offsets than for

equally spaced offsets. While the random translations can sometimes offer slightly improved

performance bounds, the equally spaced offsets provides a good approximation to the overall

performance bound. Second, as the number of frames increases the average performance bound

for the random offsets approaches the bound for the equally spaced offsets. This suggests that

were the translations actually drawn from a random distribution, as the number of frames in-

creases, we can reasonably expect the performance bound to be approximated by the equally

spaced translations bound. Third, we see that the performance bound seems to flatten out sug-

gesting that after a certain point, additional frames do not improve the performance bound for
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sub-Nyquist registration.

5.3.2 Bounds on Image Reconstruction

As we saw earlier, the bounds on image registration depend, in part, on the perfor-

mance bounds in reconstructing the image f̃ . Therefore, we now study the performance bounds

for the problem of multi-frame image reconstruction. To study the performance bounds associ-

ated with image reconstruction, we must analyze the matrix S̃f of equation (5.6) in the context

of image reconstruction.

As in the last section, the first term of S̃f , which is J̃ff , reflects the available in-

formation for image reconstruction when the estimator has full knowledge of the translation

parameters prior to reconstruction. In fact, J̃ff is the FIM for such a scenario. Correspondingly,

J̃−1
ff offers an overly optimistic bound on the more general problem of image reconstruction

when the translation parameters must be estimated from the data. Another way to see this is by

noting that

J̃ff ≥ J̃f
vJ̃
−1

v
v J̃Tf
v (5.25)

in the sense that the difference between these two terms is a positive semi-definite matrix [67].

From this, we see that J̃−1
ff ≤ S̃−1

f . Even as a weaker lower bound, much can be learned about

the problem through analysis of J̃ff by itself.

When analyzing the problem in the presence of aliasing (M > 1), we can interpret

the matrix J̃ff as a generalization of accumulating the amount of measurements for each high

resolution pixel. We use the term amount rather than the number of measurements because

when the sampling offset falls in between two grid points (i.e. not an integer), the pixel mea-

surement is spread across the local pixels. By grid points, we refer to the common terminology

used to describe the M , (or M ×M for 2-D), sample locations corresponding to integer shifts

of the high resolution image. This observation about Jff has been noted for the case of integer

motion in [72]. Because of this, we expect the performance bound to vary spatially depending
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on the set of translations. In this section, we do not address the concern thatJ̃ff might not be

full rank. The condition number of J̃ff is related to the performance of signal restoration from

interlaced sampling. This problem has been well studied in the signal processing community.

For instance, [71] analyzes the stability of restoration for a given set of sampling offsets. It is

interesting to note that the authors show that the ideal sampling offsets (assuming the offsets

are known perfectly) corresponds to integer translations. We now show the more general prop-

erty that tr(J̃−1
ff ) is minimized by equally spaced motions v ∈ [0,M ] (not necessarily integer

motion). To see this we use the matrix inequality

tr(J̃−1
ff ) ≥

∑
i

1

{J̃ff}ii
(5.26)

which applies for all matrices J̃ff which are symmetric [73]. Thus,

tr(J̃−1
ff ) ≥

∑
i

1

{J̃ff}ii
=
σ2NHM

K + 1
(5.27)

Next, we note that the matrix J̃ff for equally spaced motions is given by

J̃ff =
1
M

K∑
k=0

(
I +

M−1∑
m=1

[Λc
m cos(mφk) + Λs

m sin(mφk)]

)

=
1
M

(
(K + 1)I +

M−1∑
m=1

K∑
k=0

[Λc
m cos(mφk) + Λs

m sin(mφk)]

)

=
K + 1
σ2M

I. (5.28)

where the trigonometric terms cancel since the motions are equally spaced. In other words,

the trigonometric sums are of the form
∑K

k=0 cos( 2πk
K+1) =

∑K
k=0 sin( 2πk

K+1) = 0. As such,

tr(J̃−1
ff ) = σ2NHM

K+1 showing that equally spaced translations, assuming they known prior to

image reconstruction, matches the weak lower bound (5.27). Thus, the set of all equally spaced

motions achieves the bound on image reconstruction performance. Uniformly or equally spaced

translations arise naturally if we assume that the image measurements are taken as samples in

time of a scene with constant motion v(t) = ct sampled uniformly at t = kT . Furthermore,

it is not unreasonable to assume that if the images are samples from a scene whose motion
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is very slowly varying, for short periods of time, and high frame rates, the motion model is

approximately constant.

To begin looking at the more general case, where the translations are not known a

priori, we analyze the simple scenario where M = 1, or no downsampling (and hence no alias-

ing). The performance bound for this case characterizes the general behavior of the performance

bound for M > 1. By way of the matrix-inversion lemma [67], we see that the general inverse

S̃−1
f can be written as

S̃−1
f = J̃−1

ff + J̃−1
ff J̃f
vS̃−1


v J̃Tf
vJ̃
−1
ff (5.29)

(Here again, we see that J̃−1
ff is a weak lower bound on reconstruction performance.) When

M = 1, we have

S̃−1
f =

1
K + 1

I +
K

(K + 1)
d̃d̃T

d̃T d̃
(5.30)

In this case, we see that for M = 1, the form for J̃ff is independent of the translations. The

second term is a rank 1 matrix composed of outer product of the spatial derivative signald̃.

Such a term reflects the idea that image reconstruction (and later restoration) is more difficult

in the textured regions. Essentially, this reflects the intuitive observation that errors in motion

estimation will be most detrimental to image restoration in highly textured or high spatial fre-

quency areas. For example, poor registration during multi-frame image reconstruction causes

an edge-like feature to be distorted, creating sawtooth type artifacts [63]. This presents an in-

teresting tradeoff in that the very image content which is easiest to register (highly textured) is

also the content which is most prone to errors in the reconstruction. The full derivation ofS̃−1
f

for the case M = 1 can be found in Appendix 5.D.

When M > 1, the second term J̃−1
ff J̃f
vS̃−1


v J̃Tf
vJ̃
−1
ff adds uncertainty in the regions

with large spatial derivatives. The graphs of Figure 5.7 shows the variance bound (diagonal of

S−1
f ) for estimating the coefficient for each pixel/frequency for the signal shown in the graphs

of Figure 5.6. The bound was calculated assuming four measured low resolution images with

the translations {0.5, 1, 2} and the reference frame, a downsampling factor ofM = 3 and noise
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Figure 5.6: Plot of the signal f (left) and its separated Fourier Transform f̃ (right).

power σ2 = 1. Here, we show the bound in the spatial domain to simplify its interpretation.

The per-pixel variance bound has two distinct characteristics. First, the sawtooth-like periodic

function comes from J−1
ff which reflects the amount of measured data associated with each pixel

location in the high resolution image. This term is independent of the signal f and depends only

on the number and the offsets of the low resolution images. Second, the spikes in performance

bound arise from the J̃−1
ff J̃f
vS̃−1


v J̃Tf
vJ̃
−1
ff term. Note that the spikes in the bound correspond to

the locations of the ’edges’ or high-frequency detail in the original spatial domain signal f .
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Figure 5.7: Variance bounds on image reconstruction shown for every pixel.
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We can obtain a weak lower bound on the overall reconstruction performance using

the inequality

Tr(S̃−1
f ) ≥ N2

H

Tr(S̃f )

from [68]. From this, we can bound on the RMSE bound T (̃f) by

T (f̃) ≥ σ

(
NH

Tr(J̃ff ) − Tr(J̃f
vJ̃
−1

v
v J̃Tf
v)

) 1
2

= σ

(
NH

NH(K+1)
M −K

) 1
2

= σ

(
MNH

NH(K + 1) −KM

) 1
2

= σ

(
MNH

NH(K + 1) −KM

) 1
2

(5.31)

To compare this bound with the actual performance bound as the number of frames increases,

we computed T (̃f) for the signal shown in Figure 5.6 assuming σ2 = 1. In Figure 5.8, sym-

bols show the value of T (̃f) for equally-spaced offsets. The solid lines indicate the weaker

bound of (5.31). We note that the generic bound is fairly accurate, but seems to weaken as the

downsampling factor M increases. This furthers the idea that equally spaced motions are nearly

ideal for the problem of image reconstruction. We note that the weak bound suggests that the

performance of image reconstruction depends primarily on the number of frames available.

Finally, to understand the sensitivity of the performance bound on the set of motion

vectors �v on the overall reconstruction performance bound, we compute the performance bound

for randomly selected motions. In other words, we compute the value T (̃f) for the signal

in Figure (5.6) for motion vectors drawn uniformly in the range [0,M ]. Figure 5.9 shows

the computed performance bound T (̃f) for these randomly drawn translations as the cloud of

points. The solid line indicates the average of T (̃f) over the random set for each value of

K + 1. As a point of reference, the dashed lines indicate the bound T (̃f) for the equally

spaced translations. While Figure 5.9 does not offer insight into the functional relationship

between T (̃f) and �v, it does show that as the number of frames increases, the variability of

T (f̃) diminishes quite substantially. To summarize, if given a large enough collection of images
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Figure 5.8: Plot of T (f̃) (symbols) and the weak bound approximation (5.31) (solid lines) vs K + 1 for
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Figure 5.9: Scatter plot of T (f) for random translations vs number of frames K + 1.

with reasonably random offsets, the performance bound can be expected to be very close to the

bound for equally spaced translations.
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5.4 CR Bound with Prior Information

In practice, it is not uncommon to have some information about the unknown image

prior to estimation. Such information is captured in the CR bound by the information term Jp

in (3.5). Perhaps the most common form of prior information comes in the form of a Gaussian

prior distribution over the space of unknown images f̃ [64, 72]. It suggests that the unknown

image comes from the distribution f̃ ∼ N (µ
f̃
, 1
λCf̃

), where µ
f̃

is the mean image with a co-

variance C
f̃

and λ is a parameter capturing the overall confidence in the prior knowledge. In

an algorithmic setting, often the λ term is used as a tuning parameter to control the strength of

the prior information and hence its effect on the final estimate. From a statistical perspective,

however, this term should reflect the true prior distribution. The Gaussian prior distribution has

the probability density function

P (f̃ ) =
1

(2π
λ )

N
2 |C

f̃
| 12

exp
{
−λ

2
(f̃ − µ

f̃
)TC−1

f̃
(f̃ − µ

f̃
)
}

(5.32)

Typically, the image distribution is assumed to have a diagonal covariance matrix C̃
f

of the

form

C
f̃

=

⎛⎜⎝ diag(Re[X (θi)]) 0

0 diag(Im[X (θi)])

⎞⎟⎠ (5.33)

where X (θ) is the the power spectral density for the image signal which is the Fourier transform

of the image autocorrelation function. Prior information of this sort stems from some physical

property relating to the functional smoothness of the image signal. In the Fourier domain, a

natural measure of functional smoothness is given by

|X (θ)| ≈ 1
|θ|η (5.34)

where η defines the global smoothness of the signal function [74]. Typically, the smoothness

is chosen such that η = 2. The foundations of this prior information can be traced to physical

properties inherent to natural scenes [52]. Such prior information can be interpreted to mean

that the variability of the image signal diminishes for higher spatial frequencies.
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Assuming that no prior information is available about the unknown translation pa-

rameters, the additional information provided by the prior on f̃ is given by

Jp = λ

⎛⎜⎝ C−1

f̃
0

0 0

⎞⎟⎠
T

(5.35)

Interestingly, when η = 2, we see that C−1

f̃
= ΘTΘ. In other words, the statistical prior offers

information about total energy in the first derivative of the signal. This form of prior information

is commonly utilized in the literature to motivate the regularization penalty term in a Maximum

A-Posteriori (MAP) estimator.

Typically, iterative super-resolution algorithms operating in the spatial domain use a

finite impulse response (FIR) filter to approximate C−1

f̃
, which for the case η = 2 turns out

to be an FIR derivative filter. For example, perhaps the most common filter used to regularize

the image estimates is the Laplacian approximation filter whose 1-D analogous filter is given

by [−1, 2, −1]. In practice, higher order filter approximations can, but are rarely, used to more

effectively incorporate prior information. Throughout the simulations which follow, we assume

that the 1st order Laplacian filter approximation is used.

The prior information examined thus far is generic in the sense that it can be applied

to a large class of images. Unfortunately, the generality of such prior information ultimately re-

duces its effectiveness in improving performance. Ideally, the practitioner of multi-frame image

reconstruction and super-resolution may be able to ascertain more precise information when fo-

cusing on a particular application. In some situations, statistical properties about a certain class

of images can be learned from large data sets providing very useful information. For instance,

the authors of [75] show examples of incorporating learning-based priors into super-resolution

for the particular restoration of facial and text images. It must be noted, however, that much care

must be taken to ensure that training data sets are truly representative of the class of images for a

particular application. Otherwise, the practitioner runs the very real risk of producing estimates

heavily biased towards the training set. In many settings, a non-informative prior (suggesting

higher variance) is safer than producing a biased estimate.
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We now show the effect of such prior information on the respective bounds of image

reconstruction and aliased image registration.

5.4.1 Prior Information and Image Registration Performance

In this section, we address the performance bound for image registration in the pres-

ence of aliasing under the assumption that prior information is available. Previous algorithms

for sub-Nyquist registration implicitly incorporate prior information about the unknown signal.

For instance, in [43], the authors make the observation that the effects of aliasing on measured

image spectra is most prominent at high frequencies. As such, a generic algorithm for sub-

Nyquist registration when M = 2 (or M = 4 for the 2-D scenario) is proposed which applies

a nonlinear mask to the measured data prior to estimation to account for such aliasing effects.

While such an algorithmic approach may indeed offer improved performance, the characteriza-

tion of the prior information is ad hoc and needs to be quantified not only to understand general

estimator performance, but also to derive efficient unbiased estimators.

Prior information about the unknown image can improve the performance bound for

image registration, even in the event that no direct prior information is available about the un-

known translations. Here, we focus on the performance bounds for the singular cases introduced

in Section 5.3.1 and show how a prior on the image f̃ , such as the Gaussian prior of (5.35), can

significantly mitigate the singular behavior of the performance bound on motion estimation. For

instance, in Figure 5.3 we showed the singular behavior of the CR bound for M = 2, K = 2

when the translations were near the singular set of translations. Correspondingly, the two graphs

of Figure 5.10 show the same performance bound surface as Figure 5.3 with the addition of a

Gaussian prior on the unknown image of the form (5.35) with λ = .001, and λ = .01. We see

that the singular behavior near the integer motion shown in Figure 5.3 has been substantially

diminished by the addition of prior information about f̃ . Furthermore, we observe that the prior

information does not affect the performance bounds away from the singularities. This suggests

that if the motions were approximately equally spaced, little to no prior estimation is necessary
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Figure 5.10: Surface plot of T (�v) with prior information for M = 2,K = 2.

to accurately register the images.

Next, we look at the effect of adding prior information while increasing the number of

frames. Figure 5.11 shows the performance bounds averaged over the same 1000 random offsets

from Figure 5.5, this time assuming differing amounts of prior information as parameterized by

λ. Rather than show the point clouds of Figure 5.5, only the value of T (�v) averaged over the
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1000 random translations for M = 4 is shown. As evidenced by Figure 5.5, when the transla-

tions are random, the performance bound tends to fluctuate wildly when only a few frames are

available. For comparison, the faint lines show the performance bounds for the equally spaced

translations for the same values of λ. When the translations are random, even small amounts
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Figure 5.11: Registration CR bound for M = 4 with prior information vs number of frame K + 1
averaged over the set of 1000 random translations.

of prior information substantially improves the stability of the performance bound when only a

few frames are available. By stability, we refer to the fact that the average performance bound

T (�v) over the set of 1000 random translations is much lower. Of course, when the translations

are equally spaced, however, the problem is well conditioned and such small amounts of prior

information does little to improve the performance bound.

In the last section, we studied the optimistic performance bound J̃−1

v
v which bounds

performance where the image f̃ is known prior to estimation. When we have a prior on f̃ , as

the strength of prior information (in our case parameterized by λ) increases, the bound will

approach this optimistic bound. For example, Figure 5.12 shows the performance bound for

equally spaced translations versus the number of frames K + 1 as the λ goes from 0 (no prior

information) to ∞ (perfect knowledge of the image f̃ ). The image function used in this experi-

ments is that of Figure 5.6. Here, we see that as λ increases, the bound approaches that ofJ̃−1

v
v
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Figure 5.12: Registration CR bound for M = 4 with prior information vs number of frame K + 1 as λ
goes from 0 to ∞.

(thick dotted line). When the prior information reaches this point, multiframe registration offers

no improvement over pairwise estimation as evidenced by the flattened performance curve.

5.4.2 Prior Information and Image Reconstruction

As expected, prior information about the unknown image f̃ naturally offers informa-

tion about f̃ . Specifically, we see that a Gaussian prior on f̃ corresponds to a Gaussian prior

information on f̃ according to

f̃ ∼ N (µ
f̃
, λC

f̃
). (5.36)

Recalling that J = Jd + Jp we see that the only term which changes with the addition of prior

information is J̃ff which is now given by

J̃ff =
1
σ2

K∑
k=0

Q̃(vk) + λC−1

f̃
(5.37)

In practice, such prior information mostly helps improve performance in the high

frequency regions. For example, Figure 5.13 shows the CR bound on the variance per pixel

(in the spatial domain) for the signal of Figure 5.6 with different amounts of prior information

captured by λ. The bound was computed for M = 3 and K = 4 equally spaced motions (hence
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the lack of sawtooth behavior). It is apparent that the addition of prior information improves the

performance bound in the flat regions somewhat, but has a much more significant effect at the

edge locations. This improvement can be explained by both the additional knowledge about the

0 50 100 150
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Pixelwise Variance Bound with different Prior Information

Pixel Index

V
a
ri
a
n
ce

 B
o
u
n
d
 (

g
ra

y 
le

ve
ls

2
)

No Prior
lambda = .5
lambda=1

Figure 5.13: CR variance bound per pixel with different amounts of prior information.

high frequency content as well as improved registration performance.

5.5 Multiframe Image Registration Experiments

In this section, we compare the estimator performance of a standard multiscale gradient-

based estimation algorithm as well as the aliased image registration algorithm [43] with the

corresponding CR bounds on multi-frame aliased image registration. As we have shown pre-

viously, the standard gradient-based algorithm is designed to address non-aliased images. For

our experiments, we used a 3 level multiscale algorithm with the Fleet gradient filter shown to

offer reasonable performance in Chapter 4. Such an algorithm is expected to perform poorly in

the presence of aliasing. The Stone et.al. algorithm [43], however, was specifically proposed to

address the problem of registering a pair of aliased images. As we have shown, without prior

information, such pairwise aliased image registration is ill-posed. In deriving the algorithm, the
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Figure 5.14: Tree image with no downsampling (left), M = 2 (middle) and M = 3 (right).
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Figure 5.15: 2-D Equally-spaced translations for M = 2 and M = 3.

authors make several heuristic observations which they use to motivate the algorithm. In par-

ticular, the algorithm applies a nonlinear weighting of zeros and ones (a mask) to prune away

portions of the image spectrum where the negative effects of aliasing are assumed to worsen es-

timation performance. For our experiments, we used parameter settings recommended in [43].

As we shall see, while such assumptions improve performance over the gradient-based algo-

rithm, the algorithm’s performance suggest significant room for improvement.

We perform our experiments using the Tree image shown in Figure 5.14. Figure 5.14

also shows an example of the Tree image downsampled by a factor of M = 2 and M = 3.

We conduct experiments using equally-spaced translation (in 2-D). In order that the

estimation problem be well conditioned, we use K + 1 = 8 frames for M = 2 and K + 1 = 16
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frames for M = 3. Figure 5.15 shows a scatterplot of the translation locations. Such offset

locations guarantee that the FIM is well conditioned for both downsampling factors.

We evaluated the estimator performances for SNR values ranging from 20 to 60 db.

Both registration algorithms were applied in a pair-wise fashion assuming the same reference

frame. Figure 5.16 compares the performance of the two algorithms with the CR bound for

the given set of images. Each point on the curve represents the value of rmse(vk) computed

numerically for 500 MC runs. Here we see that the Stone algorithm outperforms the gradient-
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Figure 5.16: Experimental rmse(�v) versus CR bound for M = 2 (blue) and M = 3 (red).

based algorithm at higher SNR’s. We see that for SNR of 20 db, the gradient-based algorithm

actually improves performance. This indicates that the statistical estimator bias balances out the

deterministic bias associated with the gradient-based algorithm. Again, both algorithms show a

flattening out of RMSE performance as SNR increases indicative of significant estimator bias.

For a downsampling factor M = 3, the bias for both algorithms is greater than 1
10 of a pixel.

While such bias is highly dependent on the original image content, such estimator performance

suggests that there is much work to be done in the area of aliased image registration. Overall,

we conclude from these experiments that the current approaches to registering aliased images,
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utilizing either a super-Nyquist algorithm or a heuristically designed sub-Nyquist algorithm, are

inappropriate.

5.6 Conclusion

In this chapter, we have derived and explored the use of the Cramér-Rao inequality in

bounding the performance for the joint problem of multiframe image reconstruction and aliased

image registration. We have shown for the case of translational motion how the problem of reg-

istering aliased images naturally depends also on the subproblem of image reconstruction. We

have analyzed the relationships between these two problems and characterized the performance

limits of each. In addition, we outlined the importance of prior information in stabilizing the

performance bound. Overall, the work has outlined several areas of research needing further

attention. For instance, the problem of registering aliased images has been almost ignored as

evidenced by the dearth of algorithms in the literature. Those that have looked at the problem,

have approached the problem in a very ad-hoc fashion ignoring the fundamental relationship be-

tween image reconstruction and registration. Furthermore, to date the few algorithms address-

ing the problem of joint image registration and reconstruction have not addressed the problem

from a proper estimation theoretic perspective. In our experimental section, the performance

gap between the CR bound and the popular sub-Nyquist registration algorithm [43] revealing

the need for further algorithmic development in the area of sub-Nyquist image registration. We

will discuss this more in our final chapter. Finally, we note that much of the analysis of this

chapter may be cross-applied to the problem of super-resolution.

5.A Fisher Information Matrix for the 2-D Scenario

In this appendix we show the necessary derivations for the 2-D version of the CR

bounds for multi-frame image reconstruction and motion estimation. Recall that the modified
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forward model in the Fourier domain is

z̃k = D̃Ũ(vk)f̃ + ẽk.

The vector f̃ is a NH dimensional vector with the first NH
2 dimensions representing the real

components and the the second NH
2 dimensions representing the imaginary components. For the

1-D scenario, we used θi to identify the spatial frequency. For the 2-D scenario, we represent the

spatial frequencies in the two dimensions as θ1 and θ2. For the 2-D scenario, all of the matrices

have a similar structure as those of the 1-D scenario. Only the translation matrix Ũ(vk) is

different in that the trigonometric terms are now are a function of the translation vector as

cos(v1θ1i + v2θ2j) and sin(v1θ1i + v2θ2j ).

The log-likelihood function for the observed data is given by

l({z̃k}|̃f ,�v) =
−1
2σ2

K∑
k=0

(
z̃k − D̃Ũ(vk)f̃

)T (
z̃k − D̃Ũ(vk)f̃

)
Recal that the Fisher Information Matrix J is for such a problem is given by

Ji,j = −E
[
∂2l({z̃k}|̃f ,�v)

∂ψi∂ψj

]

where ψi represents the particular parameter of interest. Computing these partial derivatives we

see that

−E
[
∂2l({z̃k}|̃f ,�v)

∂f̃2

]
=

1
σ2

[
K∑
k=0

ŨT
k D̃T D̃Ũk

]
= J̃ff

and

−E
[
∂2l({z̃k}|̃f ,�v)

∂v2
k

]
=

1
σ2

⎡⎢⎣ f̃TΘT
1 ŨT

k D̃T D̃ŨkΘ1f̃ f̃TΘT
1 ŨT

k D̃T D̃ŨkΘ2f̃

f̃TΘT
2 ŨT

k D̃T D̃ŨkΘ1f̃ f̃TΘT
2 ŨT

k D̃T D̃ŨkΘ2f̃

⎤⎥⎦
=

[
J̃
v
v

]
kk

where Θ1,2 are the partial derivative operators in the Fourier domain which are block diagonal
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matrices of the form

Θ1 =

⎛⎜⎝ 0 −diag(θ1)
diag(θ1) 0

⎞⎟⎠
Θ2 =

⎛⎜⎝ 0 −diag(θ2)
diag(θ2) 0

⎞⎟⎠
Finally, we see that,

−E
[
∂2l({ỹk}|̃f ,�v)

∂vk∂f̃

]
=

1
σ2

[
ŨT
k D̃T D̃ŨkΘ1z ŨT

k D̃T D̃ŨkΘ2f̃

]
= b̃k

So that our final FIM is given by

J(f̃ ,�v) =

⎛⎜⎝ J̃ff J̃f
v

J̃Tf
v J̃
v
v

⎞⎟⎠
where

J̃ff =
K∑
k=0

ŨT
k D̃T D̃Ũk

J̃f
v = [· · · b̃k · · · ]

J̃
v
v =

⎡⎢⎢⎢⎢⎣
[
J̃
v
v

]
11

0 0

0
. . . 0

0 0
[
J̃
v
v

]
KK

⎤⎥⎥⎥⎥⎦
5.B Singular FIM for Translations ”On the Grid”

In this appendix, we show that the Fisher Information matrix is necessarily singular

when the set of translations {vk} are all in units of whole pixels in the high resolution image.

This corresponds to the canonical example in super-resolution experiments of having the low

resolution frames falling perfectly on the ”grid” points. In this derivation, it is easier to concep-

tualize the proof in the spatial domain. Again, we show the proof for the 1-D case to simplify

the presentation.

144



When the translations vk are multiples of integer sample translations, the matrix J̃−1
ff

is a diagonal matrix with the terms along the diagonal being 1
Ki

where Ki represents the total

number of low resolution frames with motions vk = vi (corresponding to a particular grid

location for the high-resolution image). This property has been noted in [72]. There are only

M unique translations in the set of all translations and these translations are all integer offsets

of the reference frame (in the high-resolution image coordinates). In other words, the motions

are all on the super-resolution ”grid” points. We use Ai to denote the index set such that vk =

vi,∀k ∈ Ai. Without loss of generality, we assume that the unknown translations are ordered

such that all k ∈ Ai are contiguous. This ordering induces the structure onJ̃
v
v such that

J̃
v
v =

⎛⎜⎜⎜⎜⎝
c0IK0 0 0

0
. . . 0

0 0 cM−1IKM−1

⎞⎟⎟⎟⎟⎠ (5.38)

where the subscript IKi indicates the dimension of the identity matrix. The coefficients are given

by ci = I(φi, f). This ordering also induces structure on the matrix J̃f
v where the columns of

J̃f
v which are associated with motions in the set Ai are all equal. Because of the structures of

J̃ff and J̃f
v, we see that J̃Tf
vJ̃
−1
ff J̃f
v has a block diagonal form

J̃Tf
vJ̃
−1
ff J̃f
v =

⎛⎜⎜⎜⎜⎝
M0 0 0

0
. . . 0

0 0 MM−1

⎞⎟⎟⎟⎟⎠ (5.39)

where

Mi =
(

1
Ki

fTQT
i Qif

)
11T

=
(
ci
Ki

)
11T (5.40)

where the last equality holds because Q is a projection operator and hence QTQ = Q.
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Thus, we see that the Schur complement Fisher Information is given by

Sf =

⎛⎜⎜⎜⎜⎝
Sf0 0 0

0
. . . 0

0 0 SfM−1

⎞⎟⎟⎟⎟⎠ (5.41)

where

Sfi =

⎧⎪⎨⎪⎩ ci

[
IKi − 1

Ki
11T

]
, i �= 0

ci

[
IKi − 1

Ki+111
T
]
, else

(5.42)

which accounts for the fact that the first translation is assumed to be v0 = 0 and is not an

unknown. This shows that the for the very common scenario where the motions are in units of

pixels, the information matrix is singular since Sfi is singular for i �= 0. Each matrix Sfi is of

rank Ki − 1 suggesting that the matrix Sf is only rank deficient by M − 1.

5.C Decomposition of the Projection Operator Q̃

In this appendix, we study the projection operatorQ̃k. First, we note that

Q̃k = ŨT
k D̃†D̃Ũk =

1
M

⎛⎜⎝ Q̃k
11 Q̃k

12

Q̃k
21 Q̃k

22

⎞⎟⎠ (5.43)

Here, we show that there is a simplified M ×M representation of the sub-matricesQ̃ij . To see

this, we note that

Q̃k
11 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I cos(φk)IF cos(φk)I cos(2φk)IF . . .

cos(φk)IF I cos(2φk)IF cos(φk)I . . .

cos(φk)I cos(2φk)IF I cos(3φk)IF . . .

cos(2φk)IF cos(φk)I cos(3φk)IF I . . .

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where IF represents the permutation matrix

IF =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1

·
·

·
1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.44)

which when applied reverses the ordering of a vector. Thus, we can represent the matrices much

more simply as

Qk
11 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 cos(φk) cos(φk) cos(2φk) . . .

cos(φk) 1 cos(2φk) cos(φk) . . .

cos(φk) cos(2φk) 1 cos(3φk) . . .

cos(2φk) cos(φk) cos(3φk) 1 . . .

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The pattern for this is shown in Figure 5.17.

1=M

2=M

3=M

�

1

kϕcos

kϕ2cos

kϕ3cos

�

Figure 5.17: Pattern of the sub matrix Q̃k
11.
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Similarly, the other sub-matrices are given by

Q̃k
22 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − cos(φk) cos(φk) − cos(2φk) . . .

− cos(φk) 1 − cos(2φk) cos(φk) . . .

cos(φk) − cos(2φk) 1 − cos(3φk) . . .

− cos(2φk) cos(φk) − cos(3φk) 1 . . .

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Q̃k
12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − sin(φk) − sin(φk) − sin(2φk) . . .

− sin(φk) 0 − sin(2φk) − sin(φk) . . .

sin(φk) − sin(2φk) 0 − sin(3φk) . . .

− sin(2φk) sin(φk) − sin(3φk) 0 . . .

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Q̃k
21 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − sin(φk) sin(φk) − sin(2φk) . . .

− sin(φk) 0 − sin(2φk) sin(φk) . . .

− sin(φk) − sin(2φk) 0 − sin(3φk) . . .

− sin(2φk) − sin(φk) − sin(3φk) 0 . . .

...
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where φk = πvk

M

From this, we see that we can expand the matrix Q̃k as

Q̃k =
1
M

(
I +

M−1∑
m=1

[Λc
m cos(mφk) + Λs

m sin(mφk)]

)
(5.45)

where the terms Λm refer to the matrices of all ±1’s denoting the locations of the trigonometric

coefficients cos(mφk) and sin(mφk). Such an expansion will help us understand the behavior

of the CR bounds.
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5.D Derivation of the Schur Matrices for M = 1

Here we look at the case where there is no downsampling (just image fusion and

registration). In this case we have that

J̃ff = (K + 1)I (5.46)

J̃f
v = [· · · Θf̃ · · · ] (5.47)

J̃
v
v =
(
f̃TΘTΘf̃

)
I =

(
d̃T d̃

)
I (5.48)

First, we note that the Schur complement of J̃ff is given by

S̃
v = J̃
v
v − J̃Tf
vJ̃
−1
ff J̃f
v

= (d̃T d̃)I − 1
K + 1

J̃Tf
vJ̃f
v (5.49)

= d̃T d̃
[
I − 1

K + 1
11T

]
(5.50)

Using the matrix inversion lemma [67], we see that[
I− 1

K + 1
11T

]−1

= I + 1
(
K + 1 − 1T1

)−1
1T

= I + (K + 1 −K)−1 11T

= I + 11T (5.51)

where 1 represents a column vector of all ones of length K. So, the inverse of S̃
v is given by

(using the matrix inversion lemma)

S̃−1

v =

1

d̃T d̃
(I + 11T ) (5.52)

This has the same form as derived previously for looking only at the performance bounds for

estimating translational motion [76]. Furthermore, it is interesting to note that for the case when

no aliasing is present, adding additional frames to the problem does not influence the image

registration problem. In other words, registration can be done in a pairwise fashion without any

loss of information. This is not the case when aliasing occurs.
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To capture the MSE performance in estimating the image terms f̃ , we need only to

look at the term

S̃−1
f = J̃−1

ff + J̃−1
ff J̃f
vS̃−1

f J̃Tf
vJ̃
−1
ff

=
1

K + 1
I +

1
(K + 1)2

1

d̃T d̃

(
J̃f
vJ̃Tf
v + J̃f
v11T J̃Tf
v

)
=

1
K + 1

I +
K +K2

(K + 1)2
d̃d̃T

d̃T d̃

=
1

K + 1
I +

K

(K + 1)
d̃d̃T

d̃T d̃

Finally, we note that for this simple scenario the root average MSE bound as measured by (5.8)

is given by

T (f̃) =

(
tr(I)

NH(K + 1)
+

K

NH(K + 1)
d̃T d̃

d̃T d̃

) 1
2

=
(

NH +K

NH(K + 1)

)1
2
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Chapter 6

Contributions and Future Work

This chapter summarizes the contributions made in the analysis of performance in motion es-

timation. We also detail several open questions related to this thesis as well as map out future

research directions.

6.1 Contributions

In this thesis we studied general aspects of performance in estimating motion con-

tained in image sequences. We constructed a well-defined description of the problem from an

estimation theoretic point of view, allowing us to make foundational contributions to both the

methodology and the science of motion estimation. We hope that our analytical framework will

help guide and inform further advances in the wide array of fields that study and utilize motion

estimation algorithms.

• In Chapter 2, we described a general theory regarding the use of tomographic projec-

tions to estimate motion. In particular, we presented the precise and approximate models

of affine motion under tomographic projection. From this we showed a general scheme

for estimating these affine motion parameters from a set of estimates of motion in the

projected domain. Such concepts were presented in a general form so as to be agnos-
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tic regarding any particular algorithm for estimating the projected motion parameters.

Specifically, we showed how to incorporate tomographic projections into a multiscale

gradient-based algorithm for estimating affine motion. Such an algorithm was shown to

achieve dramatic computational speedups while sacrificing little in the way of estimator

accuracy for a wide range of operational scenarios.

• In Chapter 3, motivated by the interesting performance characteristics of the gradient-

based algorithms, we posed the question of fundamental performance limits to motion

estimation. Utilizing the Cramér-Rao bound, we explored these fundamental perfor-

mance limits associated with translational motion estimation. We presented the exper-

imental performance of several popular algorithms and compared their performance with

the derived bound, showing the tendency for common algorithms to contain significant

estimator bias.

• In Chapter 4, we focused on the class of gradient-based motion estimation algorithms.

Motivated by the observations of estimator bias in Chapter 3, we derived a closed-form

expression for the estimator bias for gradient-based algorithms. We verified that this bias

expression indeed reflects estimator performance for high SNR scenarios and offered

detailed analysis of the various components associated with this bias function. Using

this bias formulation we constructed rule-of-thumb performance limits for the class of

gradient-based algorithms. Also, from the bias formulation we proposed a novel method

for improving algorithm performance for high SNR scenarios where the bias dominates

performance.

• In Chapter 5, we extended our fundamental performance limits associated with image reg-

istration to the sub-Nyquist case showing the implicit relationship between sub-Nyquist

registration and the problem of super-resolution. Our analysis offered new insight into the

estimation theoretic challenges associated with the registration of aliased images, often

revealing the implicit assumptions made by general practitioners. Finally, we proved the
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fundamental importance of prior information about the image function when attempting

motion estimation in the sub-Nyquist scenario.

In closing, we note that much of the work presented in this thesis has resulted in

several publications in peer reviewed journals and conferences [21, 34, 76, 77].

6.2 Future Work

In this section, we outline a few of the open questions related to the research presented

in this thesis. In particular, we offer possible extensions to each of the chapters. Finally, we

outline future areas of research which deserve attention.

6.2.1 Projection-Based Motion Estimation

The work presented in Chapter 2 explored a few of the many benefits of incorporat-

ing tomographic projections into motion estimation as an efficient mechanism for improving

computational efficiency. In fact, we demonstrated that, in some instances, the projection-based

estimation scheme offered improved performance. Here, we list several open questions and

extensions to this work.

• We conjectured that the performance improvement/loss is highly dependent on the choice

of projection angles. Further investigation into the choice of projection angles is war-

ranted to maximize the possible performance for the projection-based estimators.

• In the field of gradient-based estimation, several robust estimators have been proposed

over the years such as [38]. Such estimation techniques are much more computationally

taxing than the traditional gradient-based algorithms but have been shown to offer im-

proved performance under a wide variety of conditions. Because of their computational

complexity, such algorithms would naturally benefit from the use of projections. It re-

mains to be seen, however, if such robust projection-based estimators could achieve a

similar improvement in performance while minimizing computational complexity.
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• We believe that much of the analysis presented in this section will be useful to indirect

imagine where only tomographic projections are measurable (magnetic resonance image,

positron emission tomography etc). It would be interesting to explore the application of

our projection-based estimators on such data.

6.2.2 Performance Analysis of Image Registration

There are several extensions to Chapter 3 that could prove extremely beneficial to the

motion estimation community.

• The analysis presented in Chapter 3 focused on the simple case of translational estimation.

One natural extension of this work is the examination of higher order motion models such

the complete affine, bilinear, projective, etc. One would hope that detailed understanding

of the performance bounds for such problems might illuminate the problem of model

selection as it pertains to local estimation methods.

• Much of the performance analysis presented in Chapter 3 bears resemblance to the 1-

D signal processing problem of delay estimation. It has been shown that for low SNR

situations, the CR bounds begin to be overly optimistic for delay estimation. To address

the performance bounds in these regions, other more sophisticated bounds such as the

Ziv-Zakai bound [78], [79] and Barankin bounds [80, 81]. In certain applications where

the SNR of the imaging system falls into this low SNR region, such bounds would be

helpful in producing more realistic performance bounds.

• As we observed in Chapter 3, several translational estimation algorithms contain estima-

tor bias. While the complete CR bound is capable of incorporating the bias term into the

MSE bound, the bound becomes only applicable to the class of estimators with the same

bias function. Recently, there have been several attempts to generalize the CR bounds for

larger classes of biased algorithms whose bias gradients are constrained by some bound

in what is called the Uniform CR bound [82]. Application of such bounds to the prob-
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lem of image registration might offer insight into the fundamental bounds associated with

general classes of biased estimators.

6.2.3 Gradient-Based Estimator Bias

In Chapter 4, we offered in-depth analysis of the bias structure associated with gradient-

based translational estimation. Here, we offer a few general open questions related to this work.

• As before, one could imagine studying the bias properties of the gradient-based estimators

for higher order parametric motion models. Finding such bias structures and employing a

bias minimizing filter design approach could prove very useful for a large class of global

image registration problems.

• The work on bias minimizing filters has several natural extension. One might derive the

bias for lower SNR situations where the MSE is not dominated by bias. Thus, one could

possibly design MSE optimal filters for gradient-based motion estimation. To do so, a

functional characterization for the MSE at lower SNR must be developed. One simple

approximation uses the CR bound itself as a cost function for optimizing the gradient

filters.

• Much of the filter design process requires a reasonably accurate characterization of the

image spectral content. Such characterization becomes difficult to obtain for local esti-

mation with small windows. One possible research direction involves decomposing the

gradient filter into a bank of filters each having well characterized bias structures. It might

be possible to find an optimal locally adaptive linear combination of such filters which

minimizes overall estimator bias.

6.2.4 Performance Analysis of Aliased Image Registration

Perhaps of all the chapters, Chapter 5 uncovers multiple areas for promising research.
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General Open Research Questions

• Overall, the work in Chapter 5 uncovers the dearth of research into the area of motion

estimation and image registration of aliased images. The application of superresolution

requires such estimates making the analysis very relevant.

• The work presented in Chapter 5 may provide a foundation for systematic imaging system

design where superresolution is known to be applied after capturing data. We imagine a

scenario where engineering design decisions may be informed by the fundamental bound

on image restoration.

• We note that a true Maximum Likelihood estimator for the joint problem of motion es-

timation and image restoration has not been addressed. Below, we detail future work

related to such an estimator.

Maximum Likelihood Registration of Aliased Images

A natural question to ask when studying the CR bounds for a given estimation prob-

lem is wether an efficient estimator exists which can attain the given performance bounds. In

general, this is an extremely difficult task, but it is well known that a Maximum Likelihood

(ML) estimate is asymptotically efficient. In other words, as the number of measurements in-

creases, the performance of the ML estimator approaches the CR bound. In this section, we

show that finding the ML estimate for the joint image registration and reconstruction problem

requires solving a nonlinear Least Squares (NLS) problem.

As noted in previous works such as [64, 72], the ML estimates for image reconstruc-

tion and registration minimize a cost function of the form

CML(f ,�v) =
∑
k

‖zk − DUkf‖2
2 (6.1)

Thus, we see that finding the ML solution requires minimizing a NLS cost function

as both the set of motion vectors �v and the high resolution image f are unknown. Several
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approaches have been offered to minimizing such cost functions. Early work suggested that

the estimation process could follow a two stage approach by first estimating the registration

parameters between pairs of low resolution frames followed by minimization of a linear Least

Squares (LLS) cost function to reconstruct the high resolution image. It was noted in [64],

that such an algorithm often fails when the low resolution images contain significant aliasing

artifacts due to sub-Nyquist sampling. In these situations, the image registration algorithms will

almost assuredly provide biased estimates of the registration parameters. The authors in [64]

correctly note that the proper approach must directly minimize the nonlinear cost function (6.1).

They propose to do so using a cyclic coordinate descent algorithm where the algorithm cycles

between the task of estimating the image f and the registration parameters {vk}, in each step

assuming the other set is known. The authors also incorporate a prior on the unknown image f

to improve the condition of the LLS problem. With such an algorithm, however, no assurance

is given concerning the global convergence.

When examining the structure of (6.1), we see that the cost function is a special case

of NLS where there exists a natural separability of the unknown parameters. In our case, we

see that the data depend linearly on the unknown image f and nonlinearly on the registration

parameters �v. If we knew the registration parameters prior to image reconstruction problem, we

see that the ML estimate of the image f is given by

f̂ =

[∑
k

UT
kDTDUk

]−1 [∑
k

UT
kDTzk

]
(6.2)

which is the well known Shift-and-Add algorithm for integer pixel motions [63]. Plugging this

estimate back into the cost function CML we obtain

CML(f ,�v)|f=f̂ =
∑
k

‖zk − DUk f̂‖2
2

=
∑
k

∥∥∥∥∥∥zk − DUk

[∑
k

UT
kDTDUk

]−1 [∑
k

UT
kDTzk

]∥∥∥∥∥∥
2

2

(6.3)

Future work on superresolution must address the minimization of the nonlinear estimation prob-

lem that is (6.3). Such an optimization problem is not easy to solve, but will undoubtable im-
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prove the shortcomings in performing super-resolution associated with the standard two step

procedure of estimating motion followed by image reconstruction.

6.2.5 Performance Analysis of Orientation Estimation

In this thesis, we have analyzed the performance bound on the estimation of transla-

tion for a pair of images. If we make the assumption that the unknown translation is constant for

a local (in space and time) region Ω in the image sequence, the problem of motion estimation

becomes intimately connected to the problem of orientation estimation. To see this, we note that

when the image sequence is of the form f(x1, x2, t) = f(x1 − v01t, x2 − v02t, 0), we see that

the function f is actually a 2-D function embedded in a 3-D space, consisting of parallel lines

of constant gray levels. The problem of translation estimation for a local region in space-time

becomes that of estimating the orientation of these parallel lines [83].

Without loss of generality, we present the lower dimensional problem of estimating

orientation in a 2-D plane. For such a scenario, we assume that locally the image function is

given by

z(x1, x2) = η(xTn) + ε(x1, x2), x ∈ Ω (6.4)

where x = [x1, x2]T and n = [cosϕ, sinϕ]T denotes the unit length orientation vector. This

model finds use in many image processing applications where it is of interest to find the domi-

nant directional orientation n of the texture present in images. This problem is very similar to

the problem of array processing in the signal processing literature [84]. One fundamental differ-

ence between the two problems is that in array processing, the function η is typically assumed

to be a narrowband signal which significantly simplifies the problem.

In the image processing domain, the signal is no longer narrowband and the goal

is to estimate the orientation vector field n(x1, x2) for an entire image. Applications using

such vector fields have ranged from biometrics such as fingerprint similarity measures [85] to

the design of directional filters for image data [86]. The local orientation can be thought of

as the vector n which is perpendicular to the gradient field ∇z(x1, x2) on average over some
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local region Ω. The problem of finding such a local image orientation can be formulated as a

maximization problem of the following function

C(n) =
∑

x1,x2∈Ω

κ(nT∇z) (6.5)

subject to the constraint that ||n|| = 1. A standard choice for the cost function κ is the quadratic

functional which leads to

C(n) =
∑

x1,x2∈Ω

(nT∇z)2 =
∑

x1,x2∈Ω

nT (∇z(∇z)T )n (6.6)

Given the constraint that ||n|| = 1, the problem as stated is a general eigenvalue problem

where the solution to the optimization problem is the eigenvector corresponding to the largest

eigenvalue of the matrix
∑

x1,x2∈Ω ∇z(∇z)T . This solution has been noted in the past [83, 87,

88].

The solution is the eigenvector or basis vector which best represents the collection of

gradient vectors. This problem is an example of the canonical problem of finding an optimal

representation of a vector field. Currently, this process is applied locally to a collection of image

regions to approximate the spatially varying orientation vector field n(x1, x2). Unfortunately,

this approach fails to consider the underlying topological and geometric structure of the vector

field. For instance, the orientation vector field must satisfy the global property of being curl-

free. It would be interesting to study the performance limits in estimating the orientation vector

field with additional information relating to the global topology of the orientation vector field.

For instance, in computer graphics, it is well known that a sufficiently smooth vector field

can be decomposed using the Helmholtz-Hodge decomposition [89]. Such a decomposition

distinguishes the curl-free, divergence-free, and the harmonic components of a vector field.

The divergence and curl free components are uniquely identified by the location of the sources

and sinks and vortices respectively. It would be interesting to study the performance bounds

in detecting and localizing these components. Armed with such knowledge, one might explore

novel methods for finding local, statistically optimal orientation estimates which are coupled
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across space in novel ways to integrate such global information. Finally, one might study the

statistical properties of such local estimators to find more robust versions of (6.5) using a cost

function other than quadratic. Specifically, one can attempt to create a robust solution using a

technique similar in spirit to the bilateral filter [90].
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