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Abstract

Estimation Theoretic Analysis of Motion in Image Sequences

by

M. Dirk Robinson

Estimating the motion (or dynamics) manifested in a set of images or an image se-
quence is a fundamental problem in both image and video processing and computer vision.
From a computer vision perspective, much of what is interpretable in any rea-world scene
is reflected in the apparent motion. For instance, estimating the apparent motion in a video
sequence provides the necessary information for many applications including autonomous nav-
igation, industrial process control, 3-D shape reconstruction, object recognition, robotic motion
control, object tracking, and automatic image sequence analysis. In image and video process-
ing, the estimation of motion plays a vital role in video compression as well as multi-frame
image enhancement. Disparate as they may seem, these many applications share one common
thread: in all such applications, the demand is high for accurate estimates of motion requiring
minimal computational cost.

In this thesis, we offer an estimation theoretic perspective on the problem of esti-
mating motion from an image sequence. In particular, we focus on the various performance
tradeoffs in both accuracy and computational efficiency associated with motion estimation. It
isour goa that this work provide a common framework with which to evaluate and understand
motion estimation performance.

To this end, this thesis offers contributions in three main areas. The first contribution
is the proposal of a mechanism to greatly reduce the computational complexity in estimating
complex motion vector fields from image sequences. In particular, we develop novel algorithms
for estimating motion vector fields using tomographic projections. For example, we show that

by incorporating tomographic projections into a multiscale gradient-based algorithms, we may



achieve dramatic computational speedups while sacrificing little in the way of estimator accu-
racy. The second contribution is a thorough analysis of the widely popular class of gradient-
based motion estimation algorithms. We derive and analyze the bias for this class of estimators
and propose novel methods for optimizing gradient-based estimator performance. The third
contribution is the analysis of the fundamental bounds limiting the accuracy of motion estima-
tion. Specifically, we study the Cramér-Rao bounds associated with the problem of estimating
translational motion in both aliased and non-aliased images. Finally, we show the intimate re-
lationship between the performance bounds for motion estimation of aliased images and the

problem of multi-frame image reconstruction.
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Chapter 1

| ntroduction

Estimating the motion (or dynamics) manifested in a set of images or an image sequence is a
fundamental problem in both image and video processing and computer vision. For instance,
a goal of computer vision is that of enabling a computer system to interpret the world using
visual information sensed using a video imaging systems. Much of what is interpretable in
any scene is reflected in the apparent motion. For instance, estimating the apparent motion
in a video sequence provides the necessary information for many applications including au-
tonomous navigation, industrial process control, 3-D shape reconstruction, object recognition,
robotic motion control, object tracking, and automatic image sequence analysis [2-9]. In the
field of video coding, the predictive power of accurate motion estimation is used to compress
video sequences [10-12]. In image sequence processing, accurate motion estimates are used
to improve overall image resolution. Disparate as they may seem, these many applications
share one common thread: in all such applications, the demand is high for accurate estimates
of motion requiring minimal computational cost. Therefore, numerous agorithms have been
developed over the years to address the problems associated with motion estimation.

Because these high-level imaging applications are increasingly more pervasive in to-
day’s society, understanding the issues relating to performance is essentia to build dependable

and predictable systems. Generally, image processing applications are complex due to the large



quantities of information present in the form of two and even three dimensional data signals.
As such, the design and construction of motion estimation algorithms naturally offer substan-
tial flexibility in trading off the computational complexity of a motion estimation algorithm
with overall estimator accuracy. In one particular class of applications, the ideal tradeoff is
one which sacrifices minimal accuracy to realize substantial gains in computational complexity.
For example, in real-time motion compensated video encoders, the computational efficiency of
motion estimation is critical. In fact, most real-time video coders require specia hardware to
achieve the motion estimation efficiency necessary to support real-time encoding [13]. For other
applications, such as super-resolution, motion estimation accuracy is preferred without regard
to the computational expense. Whatever the application, it isimportant not only to utilize such
algorithmic flexibility but to understand the implicit associated tradeoffs.

Fundamental limits to estimator accuracy play avital role in the analysis and devel-
opment of algorithms. The ideal performance limits offer the measuring stick with which to
objectively evaluate a host of algorithms. Furthermore, such limits suggest not only the need
for further improvement, but also suggest when particular problems are effectively solved. In
addition, the analysis needed to derive performance limits often generates significant insight
into the performance bottlenecks associated with a given task. Finally, performance bounds on
particular estimation problems provide understanding critical to the design of high level appli-

cations which rely on such lower-level estimation.

1.1 Introduction to Motion Estimation

In this section, we describe the models used to define the class of motion estimation
problems we analyze in thisthesis. We suppose that the imaging system provides measurements
of the image intensity function f(x;,x2,t) which represents the light emanating from the ob-
served scene impinging on the 2-D focal plane of the imaging sensor. In this formulation, the

terms 1 and x5 represent the spatial coordinates in thisimage sensor plane and ¢ the time vari-



Figure 1.1: Example of avelocity vector field v(z 1, =) for the Yosemite Sequence

able. Theimage intensity functions we consider are modelled as temporally evolving according

to

f(x1,22,t) = f(x —vi(21,22,1), 20 — v2(21,72,1),0) (1.1

which is a'so known as the Intensity Conservation Assumption [2]. Such an assumption states
that the intensity function for a given region remains the same even if the location of the region
moves as a function of time. This dynamics model encompasses a wide variety of imaging
scenarios. It does, however, ignore other factors influencing the dynamics of the images, such
as variation in the illumination or specular reflections.

Theterms vy (z1, z2, t) and ve(z1, 2, t) denote the components of the velocity vector
field v(z1,22,t) = [v1(21,22,1), va(x1,z2,t)]7. Here, we use the bold lower case notation
to indicate vectors. For the purposes of this thesis, we assume that the vector fields are linear
in time. In other words, v(x1,x2,t) = v(x1,z2)t. This velocity vector field is sometimes
called the optical flow field referring to the apparent image motion as opposed to the actual
motion present in the 3-D real-world scene. Figure 1.1 shows a pair of images taken from the
Yosemite Sequence of [14] and the motion vector field characterizing the image dynamics. The
sequence simulates the measurements obtained while flying through the Yosemite valley. Here
we immediately see the effect of perspective as the nearby valley wall in the lower left-hand

portion of the sequence moves much faster than the ridges in the distance.



In general, the objective of motion estimation problemsisthat of estimating the vector
field v(z1,z2), given measurements of the image sequence f(z;,x2,t). In practice, we are
given only sampled versions of the image sequence corrupted by measurement noise. As such,
this task represents a challenging nonlinear estimation problem. For our purposes, we assume
that the spatial sample spacing is T, and the temporal sampling period is 7; reflective of the
imaging system characteristics. For the remainder of the thesis, we will usetheindicesn, n to
refer to the discrete spatial sampling indices f (m T, noT,., kT;), and refer to k as the temporal
sampling index. To simplify the notation, we shall drop the sample periods 7' and use only

n1,n9, k. Thus, the measurement model for the imaging system becomes
z(n1,ne, k) = f(n1 —wvi(ni,n2)k,ng — va(n1, no)k) + €(ny, na, k) (1.2)

The e terms represent the additive measurement noise inherent to the imaging system.
Such measurement noise represents a variety of sources such as image sensor thermal noise,
stochastic randomness associated with photon arrivals, and electronic or readout noise. For the
duration of this work, we model this random noise as being zero-mean, white (uncorrelated)
Gaussian noise with variance or noise power ¢°. In practice, such anoise model has been found
to accurately capture the effects of random noise in typical imaging systems [15].

In this thesis, we study several scenarios differing in the complexity of the motion
vector field v(z1, z2). There are algorithms intended to estimate a completely arbitrary motion
vector field such as[2]; however, in this thesis we focus on the class of vector fields which are

parametric. The affine vector fields of interest are characterized by

x1
v(zy,z2) = vo+M , a.3)
)
where
U
vo=| 1, (1.4)
’1)02



Figure 1.2: Example of global translational motion for the Washington DC satellite images.

isaconstant vector representing global translational motion, and

mi1r Mi2

M = (1.5)
ma1 22

captures dynamics of rigid body motions as manifested in the image plane.

At first glance, such a restriction seems overly constricting given that a general im-
age sequence may indeed contain highly complicated and arbitrary motion vector fields. As
we show, however, such a model is applicable to a wide variety of scenarios. The utility of
the affine motion model depends on the particular region of interest. For instance, the simple
motion of global translation finds application in many scenarios where the imaging system is
sufficiently far from arigid object. A canonical example of such an imaging system is that of
satellite imaging, where the apparent motion arises from relative motion between the satellite
and the portion of earth under observation. Figure 1.2 shows a pair of satellite images which
are related by asimple global trandation. For such an imaging scenario, only the constant term
v defining global trandation is of interest. Within the context of our research, we refer to the
problem of global parametric motion estimation between a pair of images as the problem of
image registration.

Often times, only a portion of the scene under observation is of interest. In many

scenarios, the full affine motion model works well to capture image dynamics produced by a

5



stationary camera observing rigid object motion where the rigid object fills a significant portion
of the camera'sfield of view. For example, Figure 1.3 shows a simple example of affine motion

with respect to a moving book. As the book moves towards the camera, the motion vector field
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Figure1.3: Example of affine motion.

exhibits the effect of zooming in. The estimated motion vector field shown in Figure 1.3 was
estimated from the cropped portion of the image containing the book.

In the previous example, we saw that within a local window, the motion was accu-
rately captured by the affine motion model. As we shrink this window, the apparent motion

becomes better modelled by simple trandational motion. In fact, this observation forms the



Image Sequence Motion Vector Field
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| ocal Motion

Reg| on E§| mate

Figure1.4: Example of local translation estimation.

basis for many motion estimation algorithms [14]. Figure 1.4 shows atypical example of lo-
cal trandlational motion estimation. Finally, proper tiling of these local trandational motion

estimates can produce an overall estimate of very complicated motion vector fields v(z , x2).

1.2 Applications of Motion Estimation

Motion estimation finds application in a very wide variety of research fields, each

with its own specific operational characteristics, language, and methodology. In this section,



we outline several research areas where motion estimation surface. In particular, we divide the
applications of motion estimation into the two categories of image and scene analysis, and video
processing, and compression.

Image and scene anaysis, refers to those applications that focus on making infer-
ences about the real-world scene under observation, using information related to the motion
vector field. Traditionally, research related to such applications has arisen from the field of
computer vision, afield whose foundations lie within the realm of computer science and specif-
icaly robotic vision. For example, in [9], the motion vector field is used to estimate the three-
dimensional motion of the imaging system, sometimes referred to as ego-motion. Often the
three-dimensional properties of rigid objects can be inferred from the motion vector field us-
ing what is known as structure from motion [4]. Other applications range from motion-based
segmentation of objects in the scene [6] to human tracking and movement recognition [5]. In
some sense, these applications are challenging in part because of the extremely varied oper-
ating scenarios. Much of the work is focused on completely arbitrary scenes imaged through
video systems. As such, much of the development process has tended to utilize a qualitative
or comparison-based performance evaluation. Traditionally, estimation theoretic analysis has
been overlooked when examining these estimation problems. Most likely thisis because of the
general complexity of these applications and their origins in the computer science community.

Other applications where motion estimation plays avita role fall into the category of
video processing and compression. Many of these applications have traditionally been rooted
in the field of signal processing. For instance, in video processing, motion estimation forms an
essential component to most modern video compression algorithms [16], [10], [11]. Like com-
puter vision applications, video compression applications make very few assumptions about the
underlying video signals. In medical imaging, the sub-category of unimodal image registration
is analogous to global motion estimation, often employing simple parametric models such as
the affine motion model [17] as well as more general models [18]. Such registration is useful

for diagnosing medical conditions and evaluation of medical procedures. The medical imaging



scenario is distinct in that the types of images are constrained to be those of anatomical parts.
Furthermore, medical imaging systems often have much poorer resolution and noise character-
istics than optical systems.

Finally, we focus on the application of multi-frame image enhancement which orig-
inally motivated much of the research contained in this thesis. In multi-frame image enhance-
ment, a set of images containing relative motions is fused to produce a single image of greater
quality. Specifically, we focus on the problem of superresolution whereby the enhanced image
is of greater resolution than the measured images. For instance, Figure 1.5 shows an example
of superresolution using the robust algorithm described in [19]. In this example the rear of
the vehicle is tracked through the sequence producing a set of images containing global affine
motion. Using the estimates of these motion vector fields, a higher resolution image is recon-
structed with less noise. It has been shown that motion estimation plays a critical role in the
overall image enhancement performance of superresolution. Because of this, it is critica that

the performance of motion estimation be well understood and characterized.

1.3 Contributions of the Dissertation

In this thesis we analyze the performance of motion estimation from the perspectives
of computational efficiency and overall accuracy. We analyze the general problem from an es-
timation theoretic perspective, offering insight into the fundamental challenges and limitations
associated with motion estimation. It isour goa that this work provide a common framework
with which to evaluate and understand motion estimation performance. Hopefully, such astruc-
ture will form abridge between the many fields using different forms and applications of motion
estimation. To this end, this thesis offers contributions in two main areas. The first involves the
analysis of the fundamental bounds limiting the accuracy of any estimation algorithm. The sec-
ond contribution is athorough analysis of the widely popular class of gradient-based algorithms

and the proposal of a mechanism to greatly reduce their computational complexity.



e = e e =

TA!»fA'A'A\
R e
— v ]
A e
NN N ST
AN N WY
NN NN
AN N
AN NN
NN

V2 7 7 A A A 2 s 7 7 v
AV AV AV A A A A O
GV AV AV A

////M
N

“

//’/’//'/////!!\\l
/////_’///////ff1'Y\
J /////////‘f??VYK

L~
P
v .
Vo
/
/
/
z /]
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In Chapter 2, we propose using tomographic projections within the context of motion
estimation as avehicle to achieve dramatic computational speedups while sacrificing little
in the way of estimator accuracy. Specifically, we explore the use of projections for

gradient-based motion estimation.

In Chapter 3, we bound the performance of a class of motion estimators using the Cramér-
Rao bound, exploring the fundamenta performance limits associated with translational
motion estimation. In this chapter, we assume that the images are sampled above the
Nyquist rate. We compare the performance of several popular algorithms with this bound,

including the projection-based estimators proposed in Chapter 2.

In Chapter 4, we characterize the bias for the class of gradient-based motion estima-
tors. Using this bias formulation we construct rule-of-thumb performance limits for the
gradient-based estimators. In addition, we suggest a novel method for improving estima-

tor performance for low-noise scenarios where this estimator bias dictates performance.

In Chapter 5, we extend our fundamental performance limits associated with translational
motion estmiation to the sub-Nyquist (aliased) case, showing the implicit relationship
between registration of aliased images and the problem of image reconstruction. We also

show how such analysis relates to the problem of superresolution.

In Chapter 6, we conclude the thesis and detail several possible directions for future work.
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Chapter 2

Using Projections for Gradient-Based

M otion Estimation

Aswe have shown, motion estimation represents acritical task for a variety of computer vision
and video processing applications. Disparate as they may appear, these many applications share
one common thread: in all such applications, the computational cost of performing accurate
estimation of motion is very high, and this is often the bottleneck for both performance and
real-time implementation. For instance, fast and accurate motion estimation is critical for any
real-time motion compensating video encoder. In fact, most real-time video coders require
special hardware to achieve the necessary motion estimation efficiency to support real-time
encoding [13].

In this chapter, motivated by the need for fast and accurate motion estimation for com-
pression, storage, and transmission of video, as well as for other applications, we present novel
algorithms for estimating affine motion from video image sequences. Our methods utilize prop-
erties of the Radon transform to estimate image motion in a multiscale framework to achieve
very accurate results. We develop statistical and computational models that motivate the use of
such methods, and demonstrate that it is indeed possible to improve the computational burden

of motion estimation by more than an order of magnitude, while maintaining the degree of ac-

12



curacy afforded by the more direct, and less efficient, 2-D methods. We further demonstrate that
multi-scal e implementation of motion estimation algorithms using projections yields even more
accurate and speedy estimates. The ability to improve computational complexity by almost an
order of magnitude makes a compelling case for the routine use of projection-based methodsin

motion estimation [20-22].

2.1 Using Projectionsto Estimate Motion

The aim of this section is to show that a variety of motion estimation methods can
be implemented in the Radon transform domain to yield very fast and accurate estimates of the
motion parameters. The Radon transform (tomographic projection) of an image is defined as
line integrals across the image [23]. It is well-known that pure translational motion in an image
results in trandlation of the projections [23] along the direction of projection. This property has
been used successfully in the past to estimate motion using projections [20-22, 24-32]. More
recently, much of the (mostly ad-hoc) work in this area has been unified, producing a more
general model of motion vector fields in the Radon transform domain [33] [34]. In particular,
we show that affine motion in the image leads to affine motion in the projections as well®. We
will use this property to derive efficient and accurate affine motion vector field estimators using

projections.

2.1.1 Motion Under Projections

Before we begin the discussion of the use of projections in motion estimation, let us

define the Radon transform. The Radon transform [23] of an image f (1, z2) is defined as

F(p,8) = Ry [f (21, 22)] = / / F(a1,29)5(p — 21 cos 6 — wasin@)derdes (2)

where § is the Dirac delta function. A projection of the image can be thought of as the Radon

transform evaluated at a particular projection angle ¢. As an example, Figure 2.1 shows a pair

"However, as we will elaborate later, the curl of the motion field is not directly measurable in the projections.
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Original Image

Image Projection
at 90 degrees

Image Projection

at 0 degrees

Figure2.1: Set of tomographic projections of the forest image

of image projections at 0° and 90°. In this example, the projected image at (° represents the
function created by summing all of the image intensity values in each column of the image.
Similarly, the projection at 90° represents the summation of each image row. In general, each
point in the projection represents an integration along a line through the original image. From
the definition we see that image projections are symmetric as r(p,¢) = r(—p,¢ + 7). We
note here that while the above definition represents the model for the Radon transform of a
continuous image, in practice, we will use adiscrete version of the Radon transform.

To understand how to estimate motion parameters indirectly using projections, we
must first explore the relationship between motion in the original image sequence and the in-
duced motion, or transformation in the projections. We begin our analysis for the smple case
of translational motion, which is completely characterized by the shift vector vy. The simple
relationship known as the shift property of the Radon transform [23] relates motion in images

to the motion in projections by

R(b [f(xl — V0, T2 — UOQ)] = ’r(p - Voanﬁa ¢) = T(p - U0(¢), ¢)7 (22)
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where n,, = [cos(¢), sin(¢)]” isaunit direction vector. Intuitively, each projection at angle ¢
“sees’ the component of the vector vy in the direction of the vector ny,. Thus, apure translation
or shift given by v in the image domain results in a corresponding shift in the projection given
by uo(¢) = v ng.

The question of how general dynamics in image sequences behave under tomographic
projection was addressed in [33], where it was shown that under certain smoothness conditions
on the image function f(x;,x2) and the vector field v(z1, z2), for sufficiently small At, there

exists a unique function u(p, ¢) such that

Ry [f(x —vi(x1, 22) Aty — vo(x1, 22)AL)] = r(p — u(p, )AL, §) (2.3)
where
up, )78 — Ry, 02) Y f )] @4

and Vf = [fu(z1,22), fy(z1,22)]" denotesthe spatial gradient of f(z1,z2). Asin[33], we
refer to (2.4) as the Projected Motion Identity (PMI). This relationship suggests that for small
transformations (where small depends on the product of the magnitude of the displacement
vector field and the time elapsed At), the projections of a dynamic image sequence evolve in
aqualitatively similar fashion as the original image sequence. That is, the projection function
r(p, ¢) evolves as a transformation or warping of the domain coordinates p by the function
u(p, ¢). Itisimportant to note here that while the PMI isvalid for small transformations of the
image, it is more universally applicable when applied in a multiscale setting where at coarse
scales, large warpings of the image are manifested as small transformations. We will elaborate
on this point in alater section.

In the specific case of affine motion, it is shown in [33] that an affine motion vector

field v(x1, z2) under projection behaves as

u(p, ¢) ~ ving + (nyMny) p = ug(¢) + a(e) p. (2.5)

This suggests that the projected motion u(p, ¢) isaso an affine function of the radial parameter

p, and is parameterized by uy(¢) and a(¢). We note that the translational component of pro-
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jected motion ug(¢) depends only on the translational components of the origina affine vector
field, and the linear term «(¢) depends only on the linear term in the original domain. Thisis
part of amore general set of interesting properties of projected motion explored in detail in[33].

For the sake of completeness, it isworth mentioning that the exact form of the affine
apparent motion in the projections is known and can be computed using properties of the Radon

transform [23]. Namely, the exact form of the projected motion function is

det(P)]
Venaer(p,8) = vEmg+ <1 - ‘7) , 26
L —mgy  mi2 o i 1 .
where P = satisfying (I — M)~ = WP' Comparing (2.5) and

mo1 1 —mn
(2.6), we observe that the only difference appears in the second term. Indeed, as is shown in

Appendix 2.A, the term «(¢) in (2.5) can be obtained by linearizing the term (1 - H'g‘;tgﬁl)
in (2.6) about M = 0.

In any event, the exact form of the projected motion is highly nonlinear in the param-
eters of M, and is not easy to use for motion estimation from projections. By contrast, in our
approach, we estimate the affine parameters in alinear estimation framework. Employing this
linear framework, as we will show, has the dual advantage of producing not only very fast but
also quite accurate results.

It is instructive for the affine case to compare the exact formulation to the PMI for-

mulation for afew specific cases.

1. Pure Scaling - For the case of pure scaling (e.g. zooming magnification) the affine pa-
s 0
rameters will have the form M = . Using the exact form of the projected

motion function we obtain

Uegact (P, @) = (1 - M) p = <1 = (‘1_—8‘2> p

P72 1= s])[ngll
= (1—=[1-s)p.
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On the other hand, using the linear form of (2.5) we obtain
ulp,¢) = (nfMny)p=sning)p=sp.
We observe that for scaling values of s less than 1, the two equations are equivalent.
. Pure Rotation - For the case of pure rotation by angle + the affine parameters will have

1—cosv —sind ) )
theform M = . Thus, the exact form of the projected motion

sin 1—cosd

det(P)) < 1 )
exact\ P =\1l—- =7 = 1-
vl 9) = (1= fpr ) 7 o)

= 0.

function is

This indicates that pure rotation, even in the exact formulation, conveys no information

in asingle projection. Meanwhile, the PMI approximation yields
u(p, ¢) = (ngMn(z)) p=(1—cos?d) p. (2.7

Here we see that the approximation is close to the exact expression for small angles of
rotation ©J. We will again later elaborate on the difficulty of estimating rotation using

projections and how this difficulty may be overcome.

2.1.2 PreviousWork

The use of projections to estimate motion efficiently is not new. Very early works

such as [24] use image projections at (° and 90° to register translated images using a relative

phase approach. More recently [22], and [26] have incorporated projections into correlation-

based block motion estimators to speed up motion compensated video coding. In these works,

the projections used to estimate translational motion were confined to  and 90°. Similarly,

in [27] the authors use correlation between pairs of image projections at @ and 90° to register

trandated images. Furthermore, they find that the use of projection effectively nullifies certain
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types of pattern noise, yielding improved performance over the direct methods. These works do
not, however, address the question of estimating more general image dynamics such as affine
motion.

A few researchers have utilized the Radon transform to estimate various forms of
affine image motion. The authors of [28-30] use only a pair of image projections to accelerate
motion detection and estimation of a subclass of affine motions, for use in video sequence
processing and classification. They constrain the affine motion to that of global magnification
and global tranglation to extract camera movement in video sequences. The work of [32] and
[31] describes how the Radon transform could be used to estimate global rotation and translation
in image sequences. In particular, [31] uses a set of 360 half image projections (approximately
the set of projections at al angles) to accurately estimate globa rotation and translation for
manufacturing process control.

The above methods have not addressed the performance issues concerning the appli-
cation of projections in estimating both global and local motion, particularly within amultiscale
framework. The present work unifies most, if not al, of the above proposed approaches in a
single framework, establishing a theoretical foundation for their use. In addition, the present
work isthe first to justify and use a gradient-based estimation scheme using projections based

directly on the analysis of performance vs. computational complexity.

2.2 Gradient-Based M otion Estimation with Projections

In this section, we introduce the very accurate and widely-used class of motion es-
timation algorithms called the gradient-based algorithms. In particular, we propose a variant
of the gradient-based motion estimation algorithm which utilizes tomographic projections to

improve the computational efficiency of motion estimation.

18



2.2.1 Direct (2-D) Gradient-Based Affine Motion Estimation

The gradient based approach is a commonly used and effective method for directly
estimating an optical flow field. Gradient based techniques or differential techniques compute
image velocity directly from the image pixel intensities by expanding the right side of (1.1) in

aTaylor seriesto obtain
f(xl,xg,t) = f(wl,xg,O) — 1)1(([‘1,%’2)15]%1 — 1)2(([‘1,%’2)15]%2 + ...

where f,, = 8%1 f(z1,29,0) represents the partial derivative of the image function with respect
to z1. Without loss of generality, we assume that we are examining a pair of images at times
t = 0,73, and truncate the Taylor expansion to the first order thereby reducing this expression

to the well known gradient constraint equation [14]

where Vf = [fo,, fu,]’ denotesthe spatial gradient of f and f; denotes the difference between
two adjacent frames f(z1,x2,T;) — f(z1,22,0). Inserting the affine motion model (1.3) into

(2.8), one obtains alinear equation in the unknown affine motion parameters:

—fi = vo, fu, + V0, fuo +ma1 X1 fur +
mi2 T2 fo, +M21 T1 foy + Moo T2 fo,. (2.9)

This constraint can also arise from a more general assumption of intensity conservation where
it is assumed that df /dt = 0, or the total derivative of the image brightness values does not
change over some interval of time. Under this intensity conservation assumption, the model
of (2.8) exactly characterizes the optical flow in the image sequence. Hence, j becomes the
approximation of the partial derivative of the image sequence with respect to time.

In general, the spatio-temporal gradients must be approximated from the given image

data using derivative filters

fm ~ gl(nl7n2) * *Z(’I’ll,?’LQ,O) (210)

fxz ~ g2 (’I’ll, 712) * *Z(nh na, O) (211)
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where xx represents a 2-D convolution operation with the gradient filters g and go. Typically,
these gradient filters are chosen to be short finite impulse response (FIR) filters which are finite
approximations to the ideal infinite impulse response (IIR) derivative filters. We will revisit
these choice of these filtersin Chapter 3.

This motion model of (2.9) is assumed to apply to a spatiotemporal region of the
image sequence represented by €. Thus, over the region Q2 (which may in fact be the entire

image) we obtain alinear system of equations of the form
—-z=A® +e. (2.12)

Here, z denotes the vector whose elements are each pixel differences z(ny, na, 1) — 2(n1, n2, 0)
in the region 2 scanned in some particular fashion (e.g. raster-scanned). e represents noise
or other departures from the assumed model. The vector @ is the vector of unknown motion

parameters defining the motion vector field in the region 2, asin
® = [vo, vo, Mm11 M12 Mot m22]T- (2.13)

Finally, the matrix A contains the terms of (2.9) where the spatial gradients have been approxi-

mated using (2.10) and (2.11). In other words, the rows of A are given by:

fxl fxg xlfml x2f~ac1 xlfmg fo:vg- (2.14)
Each row vector corresponds to a pixel location in the region €2 scanned in a fashion similar to
Z.

Typically, it is assumed that the noise term e is zero-mean Gaussian noise. Under this
assumption, the best (minimum variance) linear, unbiased estimate of the parameters of interest
is given by the least-squares approach [35]:

& = —(ATA) ATz (2.15)
Cov(®) = (ATA)™L (2.16)
At times, it is appropriate to associate different weights with the pixels in the region

Q. For example, it is common to apply aweighting function which focuses the estimator on the
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center of ablock. Such weighting takes the form of a diagonal matrix W where the elements
along the diagonal are the weights associated with a particular pixel. When the weighting is

applied the estimator becomes

& = —(ATWA) 'ATWz, (2.17)

Cov(®) = (ATWA)™L (2.18)

In practice, even for areasonably small region (5 x 5 pixels), the gradient-based es-
timator usually provides quite accurate estimates of the affine parameters of the vector field v.
The performance of this method and its variations has been studied at some depth in [36-38].
The work of [37] originally outlined the methods for estimating optical flow in a global para
metric framework, describing both the models used in this chapter for the global translational
and globa affine model and other more complicated models. In [36], the authors propose a
region-based optical flow estimation scheme where the blocks are assumed to contain affine
motion. Furthermore, the work of [38] explores the use of robust estimators within the con-
text of gradient-based optical flow estimation. While the methods contained in these articles
achieve high degrees of accuracy, the computational complexity of the methods is often quite
high. The purpose of this chapter is to introduce motion estimation using tomographic projec-
tions. Aswewill show, the use of tomographic projections can be incorporated into a variety of
motion estimation schemes to achieve substantial speedup with little or no lossin performance.

Specifically, we explore the use of projections in gradient-based motion estimation.

2.2.2 Estimating Projected Motion Parameters

Earlier, we showed that the motion in the projections, or the projected motion, is ac-
curately characterized by the projected motion function w(p, ¢) which, in turn, is parameterized
by uo(¢) and a(¢). We now present a method for estimating the projected motion parameters
uo(¢) and a(¢) from projections at afixed angle ¢ over time based on aone-dimensional analog

of the gradient-based method.
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Aswedid in the derivation of the direct gradient-based estimator, we expand the right

side of (2.3) inaTaylor series

r(p, ¢,t) = 1(p — u(p, d)t, ) = r(p, @) + 1p(p, d)ulp, ) + .. ..

Ignoring the higher order terms, we obtain

_Tt(pv ¢) = Tp(pa ¢) U(p, ¢) (219)

where r, denotes the partial derivatives of 7(p, ¢, t)? with respect to the location variable p
and r, = r(p,¢,t) — r(p,$,0). Interestingly, a corollary of the result (2.3), proved in [33],
isthat if the intensity conservation assumption df /dt = 0 isinvoked in the image domain, the
corresponding constraint holds in the projection domain: dr/dt = 0. Asbefore, this assumption
implies that the model of (2.19) exactly describes the relationship between image derivatives
and image motion. Again, in the context of this assumption r refers to the partial derivative of
the projected image sequence with respect to time.

Similar to the 2-D case, inserting the affine model (2.5) into (2.19) we obtain

—ry =wug(p) rp +a(d) rp p

Asin the direct method, we assume the motion model applies over the projection of the region
2 which we denote €2,,. Note that we refer to the projection of z(n;,ng, k) a an angle ¢ as
Zp(np, ¢, k). The subscript p refers to data or functions in the projected domain.

Aswith the 2-D case, gathering the measurements over the region 3, we generate an

overdetermined system of linear equations

—2zp(9) = Ap(d)Pp(d) + ep() (2.20)

wherez,(¢) istheavector containing the projection pixel difference z,(n,, ¢, T;) —zp (nyp, ¢, 0)
for n, € Q, at aparticular angle ¢. The vector ¥, is the vector of unknown projected motion

parameters

®,(0) = [uo(¢) a(e)]"

2We note here that r(p, ¢, t) isthe Radon transform of f(x1, x2,t) for each fixed ¢
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Finally, the rows of the matrix A,, are given by
[T Pp]

measured at every location in €2,. Here, the approximation of the partial derivatives 7,(p)

is done in a specia fashion that takes into account the geometry of the image region. The
discussion of thiscalculation is presented in Appendix 2.B. It isworth noting here an interesting
relationship between the noise e in the image domain formulation of (2.12) and the noise g,(¢)

in the corresponding projection domain (2.20). The noise term e,(¢) is a projection of the
random field e, and as such will still be assumed to be zero-mean. However, assuming the
random field comprising the error term e to be white, with variance o2, the noise vector e, (¢)

will have adiagonal covariance matrix Cy = o?diag[S~'(¢)], wherethefunction S(¢) reflects
the geometry of the random field region (See Appendix 2.B for further details).

Thus, solving equation (2.20) in aweighted least squares sense we obtain:
®,(0) = —(A]C,'Ap) 'A]C, 17, (9) (2.21)
Cov(®,(¢)) = (AfC,'A,)™" (2.22)

As before, if we choose to apply an additional weighting function to the data within
€2, captured by the diagonal matrix W, the weighted estimates of the projected motion pa-
rameters become

®,(¢) = —(AJW,C,'A,) "ATW,C'2,(0) (2.23)

Cov(®,(9)) = (A;:;FWPC(ZIAP)_I (2.24)
The covariance terms of (2.22) and (2.24) are 2 x 2 matrices of the form

Cuo,uo (QZ)) Cuo,a (¢)
Ca,uo (¢) Coz,a(¢)

(2.25)
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2.2.3 Estimating Motion Parameters From Projected Motion Parameters

Having just described the method for estimating the motion parameters in the Radon
transform domain in the previous section, we are now in a position to present the final step in
estimating the parameters of the original 2-D motion model. Namely, the model (2.5), which
relates affine motion in the image domain to the motion in projections can now be invoked. By

comparing terms on the left and right-hand sides of (2.5), we can directly observe that
up(¢) = njvo,
alep) = ngMn¢
This pair of identities allows the estimation of parameters of both the trandational part vy and

the purely linear part M of the vector field v (2, x2).

Assuming the projected motion parameters have been estimated as 1 (¢) and &(¢) at

aset of angles ¢;,7 = 1,--- , Ny, we can collect al such estimates and write
tig(¢1) _ | cos¢y  singy
: = : : Vo + €o,
ao(9n,) | | coson, singn,
a(¢n) _ | cos? P1 sin? o1 2 cos ¢ sin ¢ mi
: = : : : Mmoo + €a,
a(on,) ] I cos? PN, sin® ¢N, 2cos N, sindn, mig + may
or equivaently,
yo = Ryovog+e (2.26)
Yo = Rom+e¢,

Because the noise terms ¢y and ¢, are in general correlated, we combine these estimates into

one system of the form

Yo Ro O v €0
= + or y=R®,+e¢€
ya O RO( m 60(
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where the subscript r indicates the reduced set of 2-D affine motion parameters. Here, we use
the subscript r to reflect that we are estimating areduced set of 2-D motion parameters due to
the inability to estimate the curl component.

The error vector ¢ is assumed to be zero-mean with a banded covariance matrix C.
The covariance matrix C. isconstructed from the collection of covariance matrices Cov(®,(¢))

of (2.25). Then the matrix C. is constructed as

Cuguo(#1) 0 0 Cuga(d1) 0 0
0 0 0 0
c. — 0 0 Cuguo(9n,) 0 0 Cupuo(@n,)
Coaue(#1) 0 0 Coalp1) 0
0 0 0 0
0 0 Coul®n,) 0 0 Caaldn,)

Finally, we estimate ®,. via weighted |least squares:
&, = RIC'R)'RTC ly (2.27)

When estimating only the trandational component of motion, the forward model reduces to
(2.26). The covariance matrix for ¢, namely C,,, is adiagonal matrix whose terms are given

by C.,(¢:); thefinal estimate of the 2-D translation parameters is given by
Vo = (R{C,'Ro)'R{C 'y (2.28)
Ultimately, we will compare the performance of these projection-based estimators with that of

the origina 2-D estimation methods.

2.2.4 Vector Field Curl under Projections

It is important to recall that a drawback of using a projection-based estimator is the
inability to directly estimate al of the parameters of M uniquely. Namely, we cannot estimate

the component m;s — ms; under projection. While the my5 + mo; term represents a measure
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of the shearing of the image sequence, the missing term mys — mo; corresponds to the curl
of the motion vector field. Aswe indicated earlier, this suggests that pure rotation will not be
distinguishable in a single projection even in the case of the exact projected affine model of
(2.6). At first glance, it would appear that estimating rotational motion isthen not at all possible
from projections; however, this is not the case. Indeed, if the complete set of projections of
the images were computed, then the angle of rotation could be easily determined by computing
pairwise correlation coefficients between a projection (at, say, ¢ = ¢) and the many other
available projections. The angle of rotation isthen determined by the differencein the projection
angles of the pair of projections with highest spatial correlation coefficient. In our method, in
order to keep the computational complexity to a minimum, we deal with only a small number
of projections (3 or 4) sampled sparsely in the range [0, 7]; therefore, the correlation approach
isimpractical.

Fortunately, our method can still be modified and employed to estimate purely rota-
tional motion. Though we do not pursue this specific problem in this chapter, we shall indicate
how this can be done by recalling an important property of projected motion. It was proved
in [33], and mentioned earlier in this chapter, that projected motion satisfies the linearity prop-
erty so that translational motion maps to a single component w, in the projections and the linear
part M maps to another separate component a(¢) in the projections. This linearity idea can
be further exploited to show that the complementary rotational and irrotational components of
motion also are separated in the projections. The implication hereisthat if we simply ignore the
fact there is arotational component in the vector field of interest, or equivalently, if we assume
that mi2 — mo; = 0, then the resulting estimated motion vector field is purely irrotational.
With this fact in mind, given an arbitrary affine motion vector field, we can proceed by first esti-
mating the irrotational component according to the projection-based approach described above.
The images then can be warped according to this estimated vector field, and the resulting pair
of images will then be known to be related by a vector field that is a combination of transla

tional and purely rotational components. While the rotation can not be estimated using a global

26



application of the projection-based method, it is possible to estimate rotation by applying the
method locally in smaller windows of the image. It is true that in awindow of fixed size, aswe
move away from the center of rotation the curl component becomes increasingly small. There-
fore, the component of pure rotation in awindow away from the center of rotation is measured
effectively as a translation. Combining these local estimates with the knowledge that the un-
derlying motion field is purely rotational with an unknown center of rotation (the translational
component), the curl component of the overall global vector field very likely can be accurately
estimated as well. Of course, the computational complexity of the overall projection-based
method process is worsened if this additional rotational motion estimation is carried out. We
leave further analysis of this problem for future research.

In the present framework, in order to generate estimates for all of the affine parame-
ters, we assume that mi2 — ma; = p where p is some known curl value, typically set to zero.
In closing this section, it is also worth observing that we need at least two projection angles
to determine the shift vector vy and at least three projection directions to estimate all of the
curl-free affine parameters of M. Given an arbitrary affine vector field, we typically employ
four projection angles at ¢ = 0,45, 90, and 135 degrees. The choice of these angles can aso
be optimized as a function of the given image (spatial frequency) content to produce the best

possible estimates — this is another interesting topic worthy of future research.

2.2.5 Global, Local, and Multiscale Estimation

Until now, we have not specified the region of interest where we apply the above
estimators. In this section we explain how the previously described models can be applied to
the image sequence in a global or local fashion to estimate more complex vector fields. Then,
we show how the estimators can be embedded into a hierarchical or multiscale framework to
yield improved performance as well as computational efficiency.

In earlier sections, estimators (2.27) and (2.15) were applied to an unspecified region

in theimage €2 where the affine motion model was assumed to characterize theimage dynamics.
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The simplest such region to apply the estimator is the entire image. For this case, we obtain
parameters that describe the global motion. When the motion model appliesin the global sense,
this form of estimation usually produces a very good estimate as often there are thousands of
equations used to estimate only six parameters.

Another popular approach for estimating more complex vector fieldsis that of divid-
ing the images into small overlapping or non-overlapping regions. This region-based approach
assumes that the simple parametric model characterizes the motion present only in a small
region. The more complex vector field v(z;, z2) is then approximated as a piecewise collec-
tion of simpler parametric vector fields. These piecewise vector fields are sometimes forced to
satisfy some constraint such as smoothness [39]. The simplest form of local estimation is to
find trandational motion for small image regions. The trandational model of image dynamics
f(x1 —wvo,t, x9 — vo,t) islikely to be valid for small spatio-temporal regions in the image se-
guence. The vector field estimation process begins by estimating the translational motion for
each region in the image. Then, these estimates are combined to generate an estimate of the
vector field v(ny,n2). The estimated translational motion for each block represents a sample
of the overall vector field. Thus, the dense vector field estimatev(n1, no) is usually generated
by some form of interpolation of these vector field samples. One such form of interpolation is
the replication of the vector samples, where the final vector flow field has regions of constant
velacity such as in Figure 2.2. This approach is common in video coding where the motions
of each block are estimated using a variety of approaches. Some of these approaches include
matched filtering, correlation and phase-based methods.

As shown in [40], this local vector field estimation method can be understood as a
special case of variable sized region-based motion estimation. Multiscale motion estimation
attempts to estimate a vector field by estimating the velocity components for variable sized re-
gions at different scales of image resolution. Basically, the multiscale framework estimates a
vector field by combining the coarse motion properties in large image regions at low image res-

olution with the finer motion vector estimates estimated in smaller regions at higher resolution.
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Figure2.2: Region Based Vector Field Estimation

To understand the utility of the multiscale framework, we first describe the iterative
estimation process. Recall from Sections 2.2.1 and 2.2.2 the truncation of the Taylor series ex-
pansion to the first order used to produce (2.8) and (2.19). This approximation assumes a small
motion vector v(z1,x2) (assuming unit time between frames) and is not accurate for regions
where the velocity vector v(z;, z2) islarge. The multiscale approach attempts to remedy this
inaccuracy by iterating over scale. More specifically, the multiscale approach decomposes the
image sequence into a dyadic pyramid of successive sequences of lowpass filtered and down-
sampled images, as shown in Figure 2.3. Such multiscale decomposition is applied to each
frame in the video sequence. This creates an image sequence pyramid with sequences at the
top having the lowest resolution and size while the original sequence lies at the bottom. The
motion vectors describing the dynamics in the downsampled images will necessarily be reduced
by afactor of 2 at every level of the pyramid. This reduction in magnitude improves the accu-
racies of the models (2.8) and (2.19) by “shrinking” the magnitude of v(x, 22). Furthermore,
it has been shown that the lowpass filtering used to construct the image pyramid also serves to

regularize the optical flow estimation problem [40].
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Figure 2.3: Dyadic pyramid used in multiscal e estimation.

When the assumption of intensity conservation is violated in an image sequence, the
estimates produced by by (2.15) and (2.27) contain errors. These errors partially result from
modelling errors arising from the linearization of a nonlinear problem. One generic method to
mitigate these errors is to use multiple estimation iterations in a Gauss-Newton type scheme
[37]. In general, the performance of the iterative nonlinear least squares estimators depend on
both the convexity of the objective function (sum of the squared image differences) as well as
the accuracy of the relative estimate at each iteration.

An iterative nonlinear least squares estimation can be combined with the multiscale
framework. The iterative multiscale estimation begins by estimating motion in the image se-
guence at the coarsest scale (the top of the pyramid), working in a coarse-to-fine strategy using
the 2-D estimator (2.15) or the projection-based estimation (2.27) at each level of the pyramid.
Theimage sequence at aparticular level of the pyramid is denoted by #(n, n2, k) where the su-
perscript of z indicates the level of the pyramid where L isthetotal height of the pyramid. Each
level of the pyramid is constructed by first filtering the sequence by alow-pass filter h(m, n9)

followed by a downsampling operation by afactor of 2. In other words

2(ni,ng k) = [h(nl,m) * ok Zl*l(nl,m,k)] L2 (2.29)
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where |, represents a downsampling by afactor of 2. Because of the image downsampling, the
velocity vector field v/ (n1, ny) for agiven level of the pyramid is reduced in magnitude by a
factor of 2! from the original v(ny, ny). Initialy, the vector field V% (n, ny) is estimated from
theimage sequence =% (n1, no, k) at the coarsest level. Secondly, the image sequence at the next
finer resolution level of the pyramid 2z~ (ny,no, k) is warped according to twice the velocity
estimates 2v% (ny, ny), creating a warped image sequence z-~!(ny, no, k) with the estimated

coarse image motion removed from the image sequence. Finally, the residual motion v (ny,ns)

is estimated from this warped image sequence yielding an updated velocity vector field estimate
given by

v (1, n2) = 29 (n1, n2) + V" (1, m2). (2.30)

This process repeats down the pyramid iterating in a coarse to fine fashion. The multiscale
aspect of the iteration serves the additional role of reducing computation since the images at
the coarsest levels are downsampled (smaller). Thus, the computation time required to warp the
image sequences as well as the time required to estimate the residual motions is reduced.

The multiscale iteration can be applied to both the direct and the projection based
method for estimating vector fields. Using of multiscale iteration for direct estimation has been
shown to produce very accurate results [37]. The multiscale iteration can also be combined
with projection based estimation to produce equally good results while realizing significant
computational savings. For example, Figure 2.4 shows the Fake Trees image at the coarsest
resolution (I = 3) and at the original image resolution. The corresponding image projections
also are shown and are used to estimate global mation. Initialy, the global motion parameters
are estimated from a set of projections of the coarsest image sequence. The process proceeds
as detailed, only at every step a projection-based motion estimation algorithm is employed.
In Section 2.3, we present experiments showing the performances of the multiscale methods

relative to the non-iterative methods.
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Figure 2.4: Fake Treesimage at two pyramid resolutions and the corresponding projections.
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Gradient-Based Estimators | 2-D 1-D

Projection 0 | NyN?
Gradient 10N? | BNgN
Motion Estimation 36N? | AN,N
Inverse Estimation 0 36N

Table 2.1: Complexity of Gradient-Based Direct and Indirect Methods

2.2.6 Computational Complexity

In this section we compare the computational complexities of the direct and the
projection-based estimators for estimating global motion. We will examine the computational
cost of estimating the parameters of affine motion between a pair of N x N images (without
a loss of generaity we assume that the images are square). We are not including any of the
cost associated with multiscale estimation as it will pertain to both estimators equally. We dis-
tinguish the original estimator from the projection based estimator as being the 2-D and 1-D
methods respectively. We assume that NN is the number of projections used (typically 3 or 4).
For our evaluation of image gradients, we use convolution kernels such that 10 multiplications
and additions are required to estimate the 2-D gradient at each pixel and 5 multiplications and
additions are required to estimate the derivative at each point in the projection. We obtain the
cost for motion estimation as a general cost of solving a linear system from [41] where six
parameters are estimated in the 2-D case and two are estimated in the 1-D case. Finaly, we as-
sumethat Ny < N so that the final cost of estimating the 2-D affine parameters from projected
motion parameters is negligible. This leads us to a general overall computational complexity
of O(46N?) for the direct 2-D estimation and O(N;N? + 9N,,) for the projection-based 1-D
estimator. We find in practice that using N, = 4 projection angles to estimate affine motion
requires at worst only about 25 percent of the computational time required by the 2-D method,
thus realizing significant computational savings. It isimportant to note that the cost of comput-
ing projections, which is the leading term in the complexity of the 1-D method, involves only

additions, while the leading N? term in the direct 2-D method involves multiplications. Fur-
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thermore, we point out that many motion estimation methods typically employ some form of
presmoothing of the images prior to motion estimation. We have not included this presmoothing
step in our analysis or experiments and we have ignored its computational cost. But we mention
here that the computational cost of presmoothing is again significantly lower if this operation is

performed on the projections instead of on the images.

2.3 Experiments

We present a set of experiments exploring the performance of the direct and indirect
(projection-based) methods for estimating affine motion. We begin with experiments estimating
global affine vector fields for a set of images in both a non-iterative and multiscale iterative
framework. Then, we compare the direct and indirect estimation of general vector fields using
local estimation methods. For our experiments, we use acombination of well-known benchmark

image sequences as well as our own synthesized image sequences.

2.3.1 Error Measuresand Test Image Sequences

Following [14], we measure mean angular error between the correct motion vector
field v(nq,ne) and the estimated motion vector field v(nq,n2). In keeping with the method
of [14], we utilize two difference performance measures. The first is called the mean angular
error (MAE). To compute the MAE, we write the 2-D vector field as a 3-D vector function over

a2-D scalar field as
V(ni,n2) = [vi(n1,n2),va(n1,m2),1]"

where vy, vy are the velocities in the 2 spatial dimensions. The mean angular error between

V(ni,nz) and V (n1,n) is measured by:

1 (Y,
MAFE = — Z arccos Vi, n2) A(nl’m) (2.31)
N [V (n1,n2)ll2 [[V(n1,n2[]2

ni,mn2
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Figure 2.5: Experimental Test Images: Forest (Ieft) and Lab (right)

where the sum is taken over al N? pixels of interest. To gather more information about the

motion estimation performance, we also compute the mean magnitude error (MME) as:

% > Iv(n,na) = ¥(n,ma)]l2 (2.32)

ni,n2

MME =

Again, this represents the average magnitude of the error vector over all pixels in the image.

In our experiments, we evauate the performance of our projection-based estimator
both for well-known image sequences and for our own synthetic image sequences. To generate
a synthetic image sequence, we warp an individual image according to the affine transformation
model of (1.3) to create an image pair. The second image in the pair is a linearly interpolated
version of the reference image, where the interpolation is based on aknown motion vector field.
Wethen estimate this vector field from the image pair. Theimageswe used to generate synthetic

image sequences are shown in Figure 2.5.

1. Forest - Picture of aforest containing similar image statistics to those of anatural scene

with rich textures. Theimageis 300 x 440 pixels.

2. Lab - Picture from a webcam at the researchers' office. The webcam was rotated about
45° s0 as to create an image in which the mgjority of image texture is not aligned at @

and 90°. Theimageis 240 x 320 pixels.

In addition to our own synthetic image sequences, we measure performance on awell

known set of benchmark image sequences from [14]. While these image sequences contain
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many frames, we limit the image sequences to only 5 frames. In practice, this represents a
reasonable number of frames; in real image sequences the vector field v often remains static for

only ashort period of time. The image sequences that we use are the following:

1. Diverging tree - The image sequence imitates a camera zooming into scene creating a

divergent motion vector field.

2. Trandating tree - The image sequence contains mostly global trandlational motion aris-
ing from cameramotion in the x; -direction. The trangational motion vectors are approx-

imately 2.5 pixels per frame.

3. Yosemite - The image sequence contains a more complex motion field from perspective
effects of an imaging system flying through Yosemite valley. A sample of the image

seguence and corresponding motion vector field is shown in Figure 1.1.

Both the Trandating and Diverging tree sequences are based on the image shown in Figure 2.12.
We apply both the global and local estimators to these benchmark sequences.

For each set of global estimation experiments we add zero-mean Gaussian noise to
produce the specified image signal to noise ratio 3(SNR). The motion vector fields were es-
timated from these noisy image sequences and the corresponding error measures for the esti-
mates were calculated. For each experiment, we repeated the estimation process 100 times at
each SNR and averaged both the MAE and MME performance measures. Figure 2.6 shows an
example of the Treeimage at different SNRs.

We eva uate the performance of the local estimation methods without adding noise to

the sequences to allow a comparison of our results with those of [14].

2.3.2 Global Affine Estimation

We begin our experimental performance analysis by estimating global affine vec-

tor fields described by the affine motion model of (1.3). As mentioned in Section 2.2.4, the

3Signal to noise ratio (SNR) is defined as 10 log; Z—z where o2 and o are the variances of a clean frame and
the noise respectively.
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Figure 2.6: Treeimage at different SNR values (70db, 30db, 15db, 10db)

rotational component of the affine vector field cannot be directly estimated using the global
projection-based estimator. Therefore, we first examine the performance of the method in esti-
mating affine vector fields constrained to have no rotational component, and compare the results
to the performance of the direct 2-D method*. We then extend the experiments to include es-
timation of the general affine model to understand the indirect estimator’s performance in the
presence of image rotation. For the projection-based estimation, we use four projection angles
of 0°,45°,90° and 135° in each experiment.

Weinitially examine the performance of the projection based global estimator on the

benchmark Tranglating and Diverging Tree sequences, which contain no rotational component.

The plots of Figures 2.7 and 2.8 show the performance of the 1-D and 2-D methods
using no multiscale iteration (L = 1, dashed lines) and for amultiscale pyramid of height L = 3
(solid lines). Thetriangles indicate the error of the 2-D method and the circles indicate the error
of the 1-D projection based estimator. We follow this graphical format for all of the experiments
on global affine vector field estimation.

From Figures 2.7 and 2.8, we see that the projection-based estimator outperforms the
direct 2-D method when the method is not iterated in multiscale, but the difference in perfor-

mance shrinks as the SNR improves. In both image sequences, when motion is estimated using

4In the interest of fairness, the 2-D method employed in estimating these irrotational vector fields employed
constrained least squares with the constraint that mi2 — m21 = 0. The plots of Figures 2.7, 2.8, and 2.9 reflect the
use of this constraint in the 2-D case.
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Figure 2.7: Mean Angular and Magnitude Error for the Translating Tree sequence

Mean Angular Eror vs SNR Mean Magnitude Error vs SNR
40
‘N

3B S

30F A
2 R z
i .
2 |~ N =
Sl o N d
= ~ =
] N [
b > N e
5 AN N 2
&2 » A )

r g
< =
c =
g g
s H
o1 . . . )
5 0 10 15

5
SNR (dB)

Figure2.8: Mean Angular and Magnitude Error for the Diverging Tree sequence
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Figure 2.9: Mean Angular and Magnitude Error for the Forest image with constrained motion

multiscale iteration, the performance of the direct and projection based estimators are essen-
tially equivalent. Only for very poor SNR in the case of the Diverging Tree sequence (Figure
2.8) do we see asmall performance difference between the 1-D and 2-D methods.

To evauate the performance of the projection-based estimator more systematically
using simulated motion, we continue our experimentation using our synthetic image sequences.

Figure 2.9 shows the performance of both the 2-D and 1-D methods in estimating the global

.05 .01
affine vector field with parameters M = and vo = [.5, .5]T applied to the

.01 .06
Forest image.

Asapoaint of reference, for a particular realization of noise at SNR of 5 dB, the 1-D

_ _ _ o _ - 0484 .0079
estimator using multiscale (I = 3) iteration produces estimates of M =
.0079 .0382
and vy = [.3223, .4986]" which corresponds to mean angular error of 1.8 degrees and a

mean magnitude error of 0.39 pixels. Using the same data, the 2-D estimator produceﬁﬁ =

.0471  .0080 i
and vy = [.3885, .1760] which corresponds to amean angular error of 3.19

.0080 .0339
degrees and a mean magnitude error of 0.68 pixels.

Again, we see the non-iterative projection-based estimator outperforming the direct
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Figure 2.10: Mean Angular and Magnitude Errors for the Lab image with rotation

2-D estimator. Using the multiscale iteration, the 1-D projection based estimator continues to
outperform the 2-D method. Asthe SNR improves, both methods seem to converge to similar
performance. We present these results as a representative sample of the many experiments we
carried out using other irrotational affine vector fields as well as different reference images.

To analyze the performance for the case of general affine motion, we estimate image

dynamics for avector field containing nonzero curl. Figure 2.10 shows the errors in estimating

a vector field applied to the Lab image with affine parameters M = —ob ol and
—-.03 .02

vo =[5, .57,

As the plot indicates, without using multiscale iteration, the projection-based 1-D
estimator seems to outperform the 2-D estimator. Presumably, the 1-D method is more robust
when estimating gross motions than the 2-D method. However, when employing a multiscale
pyramid of height L = 3, the 2-D method clearly produces better estimates of the vector field.
While the multiscale iteration does improve the projection-based estimates, the iterations only
improve the estimate of the irrotational component of motion. For example, at a SNR of 5 dB

and multiscale height L = 3, the projection-based method produces affine parameter estimates
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Figure 2.11: Residual velocity vector field for projection-based estimation of general affine vector field.

_ —.0093 —.0238 - _ , _
of M = and vo = [—.6807, .0944]" . Theresidual motion vector field

—.0238 .0178
v — v isshown in Figure 2.11. This figure shows that the residual motion not captured by the

projection-based estimator is primarily the rotational component of affine motion. By contrast,

_ _ _ _ —~ —.0106 —.0097
the 2-D estimator for the same image pair produces the estimatesM =
—.0294 .0188
and v = [—.5291, .4231]7, effectively estimating the curl of the vector field.

These experiments indicate that when the motion is constrained such that there is no
image rotation, the 1-D method performs just as well if not better than the 2-D method for
global affine maotion estimation. Even when rotation was present, the 1-D method appears to
offer more robust estimation in the presence of large scale motion as evidenced the performance
differences for the non-multiscale estimation. The notion that the 1-D method can perform bet-
ter than the 2-D method in some circumstances deserves systematic and careful future study.
The previous figures also show that the multiscale iteration can provide substantial improve-

ments in performance for both the non-iterative 1-D and 2-D estimators.
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2.3.3 Loca Trandation Estimation

Finally, we present experiments with the use of projections for estimating local mo-
tion in ablock-based scheme as outlined in Section 2.2.5. As mentioned earlier, application of
the direct gradient-based trandlational estimation of Section 2.2.1 to small blocks in an image
sequence was first introduced by Lucas and Kanade [42]. Here, we compare the performance
of a projection-based block-wise translational estimation scheme with the direct 2-D gradient-
based method of [42]. The direct gradient method consistently performs well as shown in most
optical flow estimation survey papers such as[14] and [13]. We will show that this performance
also extends to the projection-based method, while significantly improving the computational
efficiency.

Asindicated in Section 2.2.5, both the direct and indirect techniques require choosing
a set of operating parameters, ultimately affecting estimator performance. For instance, both
methods initially subdivide the image into blocks for which a motion vector is estimated. The
choice of block sizes plays acritical role in determining both the accuracy and the speed of the
techniques. Furthermore, depending on a desired density of the motion vector field, the size of
the blocks affects the amount of block overlap. Both methods must choose a number of images
to use in calculating one motion vector field. Finally, each of the projection-based approaches
requires apair of projection angles.

To improve the performance of the block based estimators, we apply a weighting
vector to the least squares estimator which weights the pixels at the center of the block more
than the pixels at the periphery. We denote this weighting function w(z, x2) for the direct
estimator and w(p) for the indirect estimator. Applying this weighting function to larger blocks
will maximize localization accuracy while minimizing the risk of an ill-conditioned system of
equations. Basically, the weighting function forces the estimator to estimate motion primarily
from the pixels at the center of the block, but also allows pixels at the periphery of the block
to influence the estimate dlightly. To simplify the characterization of the weighting function,

m2+m2 2
we use Gaussian functions w(xy, x2) ~ e = and w(p) ~ e 7. The weighting function is
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Method | 1-D Tran | 2-D Tran | 1-D Div | 2-D Div | 1-D Yos | 2-D Yos
MAE (degrees) | 11.385 14.108 5.888 6.112 18.820 | 21.195
Std | 0.7064 0.6470 0.3325 | 0.3361 | 0.7245 | 0.7861
MME (pixels) 0.574 0.778 0.153 0.169 1.120 1.023
Std | 0.0269 0.0231 0.0094 | 0.0110 | 0.0503 | 0.0359
Cpu Time () 1.920 23.880 1.930 24.030 7.530 96.160

Table 2.2: Results for Trandating Tree, Diverging Tree, and Yosemite

parameterized by o, or the variance of the Gaussian function.

To directly compare the 1-D block based estimator with the 2-D block based method
in afashion similar to [14], we estimate the general motion vector fields for the Translating and
Diverging Tree and the Yosemite sequences using overlapping blocks of size 30 x 30 pixels
which appears to produce the best overall results for both methods. The width of the Gaussian
functions was p = 6 which suggests that the majority of the estimator weight is placed within
the center 5 pixels or so. We then use both estimators on each sequence using 5 frames and
tabulated the results in Table 2.2. The same table also includes the computation time required
to estimate the vector fields.

From Table 2.2, we observe that the accuracy of the 1-D and 2-D methods appear
to be statistically equivalent. The computational complexity, however, is dramatically reduced
in the projection-based approaches. The 1-D method’s total computation time was on average
about 90 percent better than the 2-D counterpart. As a visual example, Figure 2.12 shows
the estimated motion vector fields for the Diverging Tree image sequence overlaid atop one
image of the sequence. Note that the motion vector fields are visually quite similar. As one
might expect, the performance in estimating a globally affine vector using a local method is
inferior to that of estimating the parameters in a global fashion. The poor performance can be
explained by the sensitivity of local models to large motions. For example, the magnitude of
the motion vectors in the Trandating tree sequence is about 2-3 pixels per frame, explaining the
performance degradation using local estimation. Similarly, portions of the Yosemite sequence

contain very large motions which are very difficult to estimate in a local fashion. Much of
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Figure 2.12: Estimated motion vector field superimposed on the image using 2-D (left) and 1-D (right)
estimators for the Diverging tree sequence.
the motion in the Diverging tree sequence is sub-pixel, explaining the significantly improved

performance on this sequence.

2.4 Conclusion

In this chapter we introduced a unified framework for the estimation of affine motion
parameters using tomographic projections. Previous attempts at the same were mostly ad-hoc
and, most importantly, did not address the question of relative performance between the direct
2-D methods and the proposed 1-D approaches. Here we have shown that projection-based
methods offer acomputationally attractive alternative to the direct methods, while in most cases
maintaining or even improving the level of accuracy. The idea that projection-based methods
often can display improved performance istheoretically intriguing and deserves careful study in
the future. In Chapter 4, we compare the performance of projection-based and the standard di-
rect gradient-based algorithms for estimating trandlation. Such analysis offers someinsight into
the observed improved estimator performance associated with the projection-based a gorithms.
We have also shown that the projection-based method can be combined with amultiscale itera-

tive framework to provide further accuracy in motion estimation while minimizing computation



time.

These results suggest much room for future research in the area of estimating motion
using projections. For instance, the gradient-based method is only one of many methods for
estimating motion using projections. Phase-based methods are another possibility that should
be explored [43]. Improved performance may also be realized by using more sophisticated
statistically robust methods in place of the least squares approach presented in this chapter.
Finally, some of our preliminary experimentation has indicated that the choice of projection
angles plays afundamentally important role in the performance of any projection-based motion
estimation method. Adaptively identifying the optimal set of projection angles, as afunction of

the given images, for best estimator performance remains an open question.

2.A Linearized Projected Affine Motion

In this appendix, we derive the Maclaurin series approximation of the exact form of
the projected motion function u(p, ¢) for affine motion. From (2.6) we see that the exact form

of the affine motion under projection is

|det(P)| >
Uegact(D, @) = von + (1 ~Toro . )P (233)
p.0) =voms (1= e,

We show how the coefficient of the second term in the above expression can be linearized by
expanding it in afirst order Maclaurin series. To begin, let us define

|det(P)]

" TPTnl e

aewact(P)

Next, we rewrite (2.34) as afunction of the four affine parameters as follows

aexact(P) =  CQegact (m117 mi2,Mmay, m22)
|1 — my1 — mag + mi1maz — miama;|
[(1 — ma2) cos(¢) + mai sin(@))? + (maz cos(¢) + (1 — map) sin(¢))?]1/2

Thefirst order Maclaurin series of «(P) will have the form

Oa(l Oa(l Oa(l Oa(l
ezact(P) = a(I) +mn a(:n(n) -+ mi2 8(:rz(12) + maoy 8(:rz(21) -+ mag 8;(22) (2.35)

= 1-
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To simplify the derivation, we write
aexact(P) =1- ﬁ(P)Cil/Q(P)

where

B(P) = |1 — mi1 — mag + mi1mae — miamay

and

C(P) = ((1 — may) cos(p) + may sin(¢))? + (myz cos(¢) + (1 — myy)sin(4))?  (2.36)

Thus, from the chain rule we see that the partial derivatives of a..q.: Will have the form

_[os

%(Cflﬂ) - (5%<3/2)%} — [(5%C3/2)% _ a_ﬁ(gfl/Q) .

ox or Ox

Qg =

Next, we note that cezq.:(0) = 0, (0) = 1 and 5(0) = 1.

We now compute the partial derivatives of 3 evaluated at O.

fu(0) = -1
f12(0) = 0
821(0) = 0
82(0) = -1

Likewise, we now evaluate the partial derivatives of (.

(u(0) = —2sin’(¢)
G12(0) = 2cos(¢)sin(e)
(21(0) = 2cos(¢)sin(e)
(22(0) = —2cos’(¢)
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Finally, we see that the partial derivatives of o. . are

a11(0) = 1 —sin*(¢) = cos?(¢)
a12(0) = cos(¢)sin(¢)
a1(0) = cos(¢)sin(¢)
a(0) = 1-—cos’(¢) =sin’*(9)

Combining these calculations, we obtain the following linearization of ozy.qct:

Qezact(M) = my cos2(¢) + mig cos(@) sin(¢) + may cos(¢) sin(¢) + mae sin?(¢)

= ngMn¢ (2.37)

Thisisthe same form of projected affine motion obtained using the PMI assumption, discussed

in (2.5).

2.B Calculating Derivativesin I mage Projections

Here we will introduce the intuitive reasoning for applying a weighting to the pro-
jection images prior to calculating derivatives used in estimating projected motion. We shall
explain how this weighting acts as amodification of the spatial derivative operator. Because the
image under projection is defined over a rectangular region of samples, different points in the
projection are generated by integrating over lines of varying length. In terms of image pixels,
this means that different points in the projection integrate different numbers of pixels in the
original image. Thus, a rectangular constant valued image on [—3t, 3] x [—Z2, £2] would
not appear flat in the projection image but rather as a piecewise linear function (see Figure 2.13)

given by
X9 X1

R[f(xz1,22) =¢] = /;Q(Q/X1

St (p,9)
= / cds
S~ (p,®)

= ST(p.¢) — S (p,¢) = S(¢)

co(p — x1 cos(¢) — zosin(@))dzdx,
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Figure 2.13: Projection of a constant image

where
. X1 X5
+ — =
ST(p,¢) = min [p cot ¢ + 25 g’ ptan ¢ + T oos ¢] (2.38)
_ B X1 Xo
S (p,¢) = max [pcotgi) S5 g’ ptan ¢ 5 cos ¢:| (2.39)

Here, the functions S*, S~ come from the edges of the rectangular image region. See Figure
2.14. Thus, r(p, ¢) is apiecewise linear function whose derivative will not be zero. Of course,
projections at 0 and 90 degrees do not suffer from this anomaly. We propose to normalize the
projections such that the projection of a constant image will produce a constant 1-D function.

To accomplish this we use a normalized Radon transform of the form

_ J [ f(@1,22)0 (p — w1 cos p — wasin @) dy dag
S5(¢)

After computing the normalized Radon transform, we compute the derivatives of the

#(p, ¢) = R [f (21, 22)] (2.40)

projection at a specific angle 6 by

p(p, @) = #(p, @) * g(p) (2.41)
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pcotg+ X
sin

Figure2.14: Integration Region

where g(p) represents the derivative convolution kernel. Thiswill ensure that the proper spatial

derivatives are calculated in the projection based motion estimators.
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Chapter 3

Performance Analysis of Image

Registration

In the last chapter, we detailed an efficient mechanism for drastically decreasing computational
complexity while preserving and even improving performance. When evaluating the perfor-
mance of such estimators, a natural question arises regarding the the significance of our im-
provement. To formalize the process of algorithm development, we must understand the fun-
damental limitations inherent to the problem of motion estimation. In this chapter, we study
such performance limitations for the most basic form of motion estimation, namely, translation
between apair of frames. Aswe noted in Chapter 1, the trandational model plays a significant
rolein avariety of imaging scenarios. This makesit anatural starting point when dealing with
the complicated nonlinear estimation problem that is motion estimation. In addition, studying
the two frame or image pair scenario not only offers insight into the more general problem
of motion estimation, but also addresses a very practical field of motion estimation known as
image registration.

The overall goa of this chapter is to quantify bounds on performance in estimating
image tranglation between a pair of images. Such analysis lays the foundation for the bounds

on multi-frame motion estimation performance bounds studied in Chapter 5. Because the prob-
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lem of image registration is of such fundamental importance, many estimation algorithms have
been developed over the years. In fact, there have been fairly comprehensive survey papers
describing and comparing the performance of such algorithms, including [14], [44], and [45].
Unfortunately, the benchmarks comparing the performance of such algorithms tend to preclude
the application of rigorous statistical analysis. These performance measures have ranged from
geometric error criteria such as the mean angular error [14] shown in the last chapter, to vi-
sual inspection of the vector field for situations where ground truth is not available. While these
measures have been very useful in advancing the methodology of motion estimation, they fail to
evaluate estimator performance from a statistically interpretable perspective. Furthermore, the
performance evaluation has relied on comparison between different algorithms, leaving open
the important question of how close the algorithms come to achievable limits.

The problem of trandlational motion estimation is analogous to the classical problem
of time delay estimation (TDE) as found in the signal processing literature [46]. For the TDE
problem, performance is measured based on the mean square error (M SE) of a given estimator.
In this chapter, we study the performance of image registration algorithms using this measure.
By using MSE we can explore the fundamental performance bounds using the Cramér-Rao
inequality. Surprisingly, while the Cramér-Rao inequality has been used widely in the field of
time delay estimation in communication, Radar, and Sonar, except for a few isolated attempts
[47], [48], it has not been utilized to understand the problem of image registration in general.
In this chapter, we analyze the form of the Cramér-Rao inequality as it relates to the specific
problem of registering translated images that have been sampled above the Nyquist rate. Asa
precursor to Chapter 5, we aso introduce the extension to the case where the image is sampled
below the Nyquist rate.

Developing such performance bounds provides a mechanism for critically comparing
the performance of algorithms. We will show how a great deal of the heuristic knowledge used
in motion estimation can be explained by examining this performance bound. Furthermore,

understanding these fundamental limitations provides better understanding of the limitations
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inherent to the class of image processing problems that require image registration as a prepro-
cessing step. In addition, analyzing the details of the bound offers insight into the very nature of
the problem itself, thereby suggesting methods for improved agorithm design. In particularly,
wewill present the inherent performance tradeoff between bias and variance for several popular
motion estimators.

This chapter isorganized into three sections. In Section 3.1, we introduce the Cramér-
Rao inequality. In Section 3.2, we derive the performance bounds in registering translated
images, based on the Cramér-Rao inequality. We show how these bounds depend on image
content by analyzing the Fisher Information matrix. We show the inherent problem of bias for
the problem of image registration. In Section 3.3, we present experimental evidence of such

bias for several popular estimation algorithms.

3.1 Introduction tothe Cramér-Rao Bound

In this section, we introduce the Cramér-Rao lower bound (CRB) which we will use
to quantify the fundamental M SE performance bounds on image registration. We will use this
bound again in Chapter 5 to address arelated estimation problem. Essentially, the CRB charac-
terizes, from an information theoretic standpoint, the difficulty with which a set of parameters
can be estimated by examining the given data model. In general, the CRB provides the lower
bound on the mean square error (MSE) of any estimate ® of an unknown parameter vector ¢
from a given set of measured data denoted Z. Specifically, the Cramér-Rao bound on the error

correlation matrix E[(® — ®)(® — ®)7] for any estimator is given by

I @) + (E[®] - ®)(E[®] - ®)" 3.1)

where the matrix J(®) is referred to as the Fisher Information Matrix (FIM), and E@] — ®
represents the bias of the estimator [49]. We refer to the error correlation matrix as M SE(®)
since the diagonal termsof E[(® —®)(® — &) represent the MSE of theindividual parameter

components. The inequality indicates that the difference between the MSE (left side) and the

52



CRB (right side) will be a positive semidefinite matrix. From this formulation, we see that the
mean sguare error bound is comprised of two terms corresponding to avariance term and aterm
which is the sguare or outer product of the of the bias associated with the estimator. Ideally, we
could construct an estimator devoid of bias. Assuming such an estimator exists, the bound (3.1)

simplifies to the more familiar
MSE(®) > J (@) (3.2

Thus, for any unbiased estimator, J(®) characterizes the minimum variance (and hence M SE)
attainable.

The Fisher Information Matrix J for an unknown deterministic parameter is given by

a2l(<I>|Z)} '

where [(®|Z) is the log-likelihood of the measured data Z for a given value of the unknown

parameter ®. The log-likelihood function is defined as
[(®|Z) = In (pdf,(Z|P)) (3.4

where pdf, (Z|®) is the probability density function (pdf) of the measured data Z given the set
of parameters ®. Such afunction gives the probability that the observed data was produced by
a model with the particular set of parameters. If the unknown parameter vector is stochastic

with a certain log-prior distribution [(®), the FIM is given by
0’l(®,7Z)
@ = - |Ga, |
L [Pue|Z) | u®)
09;,09; = 09,00;
{Jatis+{Ip}i; (3.5)

We use the subscripts d to denote information arising from the measured data and p to denote
the information from the prior [49]. For many inverse problems including motion estimation,

the data information matrix J; can be very poorly conditioned or even rank deficient. In such
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situations, prior knowledge about the unknown parameter is key to solving the problem. Thus,
prior information does not alow one to break the performance limits, but instead makes the
fundamental limit more favorable. Such prior information will become essential in Chapter 5.
One important property of the CR bound is that if we are interested in estimating
some function (possibly a vector valued function) x(®) of the unknown parameter vector, the

CR bound for estimating the unknown vector in the new parameter space is given by
MSE(x(®) > Vx(@)J ' (®)Vx(®)" (3.6)

where V x(®) denotes the gradient of the function x(®). We will exploit this property later in
Chapter 5.

Often it is more convenient to evaluate estimation performance for vector valued pa
rameters using a scalar measure of performance. We propose measuring estimator performance
by

rmse(®) = w (3.7

where d is the dimension of the unknown parameter vector ®. Such a performance measure is
useful when every element of the parameter vector of interest has the same units. TherTmse(®)
has the interpretation of being the overall MSE averaged over the set of unknown parameters.
The sguare root ensures that the performance measure is in the same units as the unknown
parameters. Correspondingly, we may modify the CR inequality to bound this performance
measure as well. We use the following notation to capture this bound. For the class of unbiased

estimators, the bound becomes
T(®) = —_— (3.8

For the class of biased estimators, we must use the complete CR bound whose corresponding

scalar performance measure is given by

=

- - T
T(®) = éTr <8§7§]J1(¢)8§7&)] ) - é(E[i)] - &) T(E[® -®)| . (39
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The CR bound for the overall performance measure is expressed as
rmse(®) > T(P) (3.10)

Such a performance bound has been justified and used in the past [50].

Finally, to address the utility of the CR bound in studying genera estimation prob-
lems, we note that the overall usefulness of a performance limit depends on its ability not only
to limit, but predict actual estimator performance. For example, we might trivially bound MSE
performance as M SE(®) > 0. While such a bound is provably correct, it offers no useful in-
formation about the estimation problem. The CR bound, however, can be shown theoretically to
be asymptotically attainable by the class of Maximum Likelihood (ML) estimators. While there
is no guarantee that such estimators are realizable, it does offer hope for predicting performance

for awide class of estimators.

3.2 PerformanceLimitsin Image Registration

In this section we derive the Fisher Information Matrix for the problem of image
registration. Analysis of the Fisher Information Matrix for image registration reveal sinteresting

structure associated with the nonlinear image registration problem.

3.2.1 Fisher Information for I mage Registration

The Fisher Information matrix provides a measure of the influence an unknown pa-
rameter vector has in producing observable data. In our case, the unknown vector is the trans-
lation vector vo = [vg, vo,]T. The FIM is derived by looking at the expected concavity of the
likelihood function. Intuitively, a likelihood maximizing estimator should have an easier time
finding the maximum of a sharply peaked likelihood function than arather flat one.

We assume in this chapter that we are given only a pair of images with which to
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estimator vy. Werelate this data model to our original motion model by
20(n1,n2) = z(n1,n2,0)
z1(n1,n2) = z(ng,na, 1).

We mode! the noise as being additive gaussian noise with zero mean and variance .

The conditional log-likelihood function for our datais given by

1(ovo) = 53 3 [aoln,n2) = f o, o)) +
[21(n1, ) — f(n1 — vo,, 2 — vo,)]* + const. (3.12)

The Fisher Information matrix measures the sharpness or curvature of likelihood peak
as defined by equation (3.3). In deriving the FIM, we first compute the partial derivatives with

respect to the log-likelihood function:

Pl(zlvo) 0 |1 N Of

o7 = o w2 () g
1 2f (of \’

To simplify the notation, we refer to the transformed image f (n — v, , no — vo,) @ f. Since

only the term z; israndom, the negative expectation of (3.12) for each term becomes

B 8210gP(z;v0)- 1 of ’
dvg, o2\ dug,

& 8210gP(z;v0)- 1 of ’
dvg, 02 \ Oug,

= *logP(zve)] 1 [ of of
Ovg,0vg, | o2 \ Ovg, dvg, |

Finally, the chain rule implies

of _of _

8'1)01 - a.’El - fxl(nl U017n2 UOQ)
of of
avi; :a—fo :fxg(nl_volunQ_UOQ)'
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Hence, we get the Fisher Information matrix

1 Jv1 ,U1 JUI U2

J'Ul ;U2 JU2 ,V2
where

JU1,U1 = Z f;?l (nl - UOlvnQ - UOQ)

ni,n2

Jvl,vg = Z fxl(nl — V0o,, N2 — Uoz)fxz(nl — V0o,, N2 — UOQ)

ni,m2

JU2:U2 - Z f;?g (nl — V0, N2 — UOQ)

n1,ma
The subscripts indicate the partial derivative in the x, 25 direction.

A comment isin order regarding these partial derivatives. The Fisher Information ma-
trix, and hence the performance bound, depend on the partial derivatives of the shifted version of
the continuous image f (1, 2 ) evaluated at the sample locations ny , no. Whilethisissimpleto
present theoretically, in practice, the partial derivatives of the image function are not available.
In fact, only samples of the image function are available, which presents a practical challenge
when trying to compute the Fisher Information matrix. There are afew approximations that can
be made in order to calculate the FIM depending on the information available prior to estima-
tion. For instance, if arelatively noise-free image is available, preferably of higher resolution
than the images being registered, then the partial derivatives may be approximated using deriva-
tive filters. For situations where the scene being observed is known prior to estimation, such as
inindustrial applications, acontinuous image function can be constructed to represent the scene
and differentiated analytically. Finally, if only the discrete images are available, then such an
image function can be approximated directly from the samples. One such method assumes that

the image can be expressed as a Fourier series of the form

N N
o) = D3R (IR ) e (314

ny n2

where F' ( 2%‘1 , 2%‘2 ) are the coefficients of the discrete Fourier transform (DFT) of the image.
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We use this last assumption throughout this chapter in our experiments. By construction, this

guarantees that the image is sampled above the Nyquist rate.

3.2.2 Analysisof the FIM for Image Registration

To gain further insight, we now consider the FIM in the Fourier domain. To do so,
we first must make certain general assumptions about our underlying image function f (i, z2).
In particular, we assume that the image function is bandlimited and is sampled at a rate greater
than Nyquist. Then, the discrete time Fourier transform (DTFT) of the samples of the derivative
function f,, (n1 — o, , 2 — vo,) can be written as e/ (v0191+v0>92) 59, (9, 0,) and similarly for
the x5 partial derivative. With such an image model, we then can write the terms of the FIM

using Parseval’s relation:

1 T g
Jm,vl = m/ / ’F(91,92)‘29%d91d02

1 ™ s
Joyws = W/ / |F(61,02)|%0102d6,db;

1 ™ ™
Jvz,vg = 4—7T2/ / ’F(91,92)‘29%d91d02

Examining the FIM using this formulation, we see that it does not depend on the unknown
trangdlation vector v and depends only on the image content. This observation depends on our
assumption that the image is periodic outside the field of view. This independence of the FIM
on v no longer holds when the image is sampled below the Nyquist rate. When the images
to be registered are aliased, as we shall show in Chapter 5, the FIM depends on the unknown
motion vy.

It is interesting to note that one can explain the well-known aperture problem [14]
by examining the FIM. This problem arises when the spectral content of the image is highly
localized. An example of this occurs when al of the spectral energy is contained along a dlice
passing through the origin of the spectrum at an angle vy. Equivalently, in the spatial domain,
the texture of the image is one-dimensional in nature. Figure 3.1 shows an example of such

images in both the spatial and frequency domain.
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Z

Figure 3.1: Example of the aperture effect in spatial (Ieft) and frequency (right) domain

In polar coordinates, such a spectrum looks like

F,p) = F(o ,p), ¥ =10 (3.15)

0, else

The terms of the corresponding FIM in polar coordinates are,

1 ™
Ty = @/ |F (1o, p)|*p* cos® thodp
—T
I 2 3 :
Joy vy = 2 |F(10, p)|°p” cos 1o sin 1odp
—TT
1 " 2 3 .:..2
Jog = 2 |F'(Yho, p)|~p” sin® ibodp
—T

Since the determinant of the FIM is

detJ(Vo) = Jvl,m‘]vz,vz_‘]Q

v1,v2

= (cos? 4 sin” ¢y — cos? g sin? 1p) K = 0,

(where K isaconstant), J(vy) is therefor not invertible, and any unbiased estimator will have
infinite variance. Essentially, there is not enough information with which to register the pair of
images.

Next, we further observe that the information contained in a pair of images depends
only on the gradients or the texture of the image. The relationship between estimator per-

formance and image content has been noted in previous works and used to select features to
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Figure 3.3: Treeimage filtered filtered by low-passfilters with cutoff frequencies of 25, 50, 75, 100 %.

register [51]. This previous work, however, provided only the heuristic suggestion that features
with high frequency content are better for tracking by looking at one specific estimator. Here,
we suggest the performance bound 7'(vy) as a scalar predictor of performance as it relates to
image content. In general, as T'(vp) decreases, improved estimator performance is expected.
Figure 3.4 shows T'(vy) vs image bandwidth for the images shown in Figure 3.2.

The image spectral bandwidth was controlled by filtering the images with alow-pass
filter whose radia cutoff frequency 6. was constructed to be a percentage of the full image
bandwidth. All of the images were normalized, in that they were cropped to the same size and
scaled to have the same intensity range. As seen in Figure 3.4, T'(v) decreases as the image
bandwidth increases. This corroborates the general intuition that highly textured images are
easier to register. For the purpose of intuition, Figure 3.3 shows an image with different cutoff
frequencies. Furthermore, we see from Figure 3.4 that while the performance may continue to
improve with greater frequency content, the improvement tapers off as the bandwidth increases

beyond about a quarter of the full bandwidth. This observation might be explained by thee—lc =
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Figure 3.4: Trace of J~! vsimage bandwidth

1
T'(v) could be approximated by aterm such asei where 6. is the radial cutoff frequency (or

spectral amplitude decay commonly found in natural images [52]. This suggests that

bandwidth of the image). Figure 3.4 exhibits alogeic type behavior. These results also suggest
that the inherent bandwidth limitations induced by the imaging system affect the fundamental
performance limits for image registration. Since the spectral bandwidth of the image predicts
the ability to register theimage, the inherently bandlimited nature of imaging systems eventually
dominates the achievable performance limits.

Another interesting way to explore the registration performance limits as a func-
tion of image content is by examining the bounds along particular directions. Instead of es-
timating both the vy, and vy, components of translation, we consider the linear combination
Vg = o, COS ¢ + v, sin ¢ = nf vy of the unknown parameters. The CRB inequality (3.2) can
be extended to bound the performance in estimating a linear combination of the unknown pa-

rametersusing (3.6). In particular, we have Var(ndT)vo) > ndT)J ~1(vo)ng. Fromthisinequality,
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Directional Translation Estimation Variance vs Angle
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Figure 3.5: Angular estimation information as a function of image content

it becomes apparent that, for a particular image, certain angles have better inherent performance
- these optimal angles depending on the eigenvectors of the matrix J~*(v(). Figure 3.5 shows
the variance bound on the estimation of the directional components of translation as a func-
tion of angular direction for the four example images in Figure 3.2. The face image and, to
alesser extent, the office image, have specific directions in which estimates are most reliable.
Specificaly, the vertical bars in the face image provide large amounts of spectral energy in
the z; direction. This spectral signature correspondingly suggests small estimator variance in
this angular direction. Similarly, the office image is rotated about 45 degrees, so the dominant

derivative energy islocated around 45 degrees.

3.3 Biasin Image Registration Algorithms

In this section, we show that many of the current agorithms used to solve theinverse
problem of image registration are inherently biased. Thisimplies that the bound given by (3.2)

is overly optimistic and the complete bound (3.1) must be used to accurately predict estimator
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performance. Finally, it showsthat many of the currently popular estimators would benefit from
further study.

To understand the inherent bias associated with any translational motion estimator, we
look at the class of maximum likelihood (ML) estimators. Many image registration algorithms
can be shown to produce approximate solutions to the maximum likelihood equation. To find
the ML solution, we again look at the log likelihood function for the shift parameters

1(z]vo) = % > [zo(n1,ng) — f(na,ng)? +

ni,n2

[21(n1,n2) — f(n1 — vo,, 2 — vo,)]* + const.

Since only the second term depends on the unknown parameters, the maximization problem can
be expressed as a minimization of the abjective function
CLS(V()) = Z [211(77,1, 77,2) - f(n1 — Vo, M2 — UOQ)]Q . (316)
ni,n2

Thisisthe general nonlinear least squares objective function used in defining the ML solution.
By expanding the quadratic in (3.16) we get

Z [Z%(nlv n2) -2z (nlv n?)f(nl — V0,5 N2 — UOQ) + fz(nl — V0,5 N2 — UOQ)] . (317)

ni,n2
Ignoring the first term since it does not depend on the parameter vy, and negating the entire

function we can rewrite the objective function as

anﬂu 22’1 (??,1, TLQ)f(nl — Uol,TLQ — 1}02) — an,ng f2(n1 — Uol,TLQ — 1}02). (318)
By normalizing the entire cost function with respect to the energy in the image, (the second
term of (3.18)), we obtain the direct correlator objective function

D nym 21 (N1, m2) (N1 — w0, ma — voy)

D nymg T2 (N1 — vo,,m2 — vo,)

Cpc(vo) (3.19)

In general, minimizing/maximizing these two objective functions with respect to the unknown

parameter v provides the ML solution.
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As previously noted, however, the function f(n; — vg,,n2 — vo,) IS typically un-
known. An approximate ML solution is found using an estimate of the unknown function, most
commonly given by z(n1—wvg,, n2—vo,). INnessence, the measured reference image z(n1, n2)
becomes an estimate of the unknown image f(n;, n2). It is easy to see that at very high SNR,
this estimate should be very close to f(m — wvo,,n2 — vg,). As we shal see in Chapter 5,
however, when the images become aliased, a single measured image is an insufficient estimate
of the function f(n1,n2). Evenin such high SNR (low noise) situations, however, the objective
functions (3.16) and (3.19) can be evaluated only for integer values of v, and vy, , constraining
the estimates to that of integer multiples of pixel motion. While some progress has been made to
address thisissue [46], [53], [45], the proposed algorithms often are based on overly simplified
approximations that are known to produce biased estimates [54].

For many applications in image processing, accurate subpixel image registration is
needed. To register images to subpixel accuracy, the image function f(z, x2) effectively must
be reconstructed from the noisy samples of z(n1,n2). In general, this reconstruction is an ill-
posed problem. All estimators contain inherent prior assumptions about the space of continuous
images under observation. These priors act to regularize the problem, allowing solutions to be
found. But, when the real underlying functions do not match the model assumptions, the esti-
mators inevitably produce biased estimates. Thereisonly asmall class of images for which the
problem is not ill-posed. The exception occurs when the underlying continuous image is con-
structed through the assumed forward model such as (3.14). Unfortunately, this requirement
is not likely to satisfied in general image processing scenarios, implying that estimation algo-
rithms may often be inherently biased. Aswe shall show, however, even under ideal conditions,
many of the current estimation algorithms contain bias.

To verify the presence of this bias in existing algorithms, we conduct a Monte-Carlo
simulation computing actual estimator performance for a collection of image registration ago-

rithms. The estimators used in the experiment are the following.

1. Approximate Minimum Average Square Difference (ASD) (2-D version of [46]) -
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Samples of the average square difference function,

1
ASD(UOI s 7)02) = W (20(77,1 — Vo, N2 — 7)02) — 21 (nl, ng))2 (320)

ni,n2
(an approximation to (3.16)) are computed for pixel shift values of v, and vy, in some
range. Then, the subpixel shift is computed by finding the minimum of a quadratic fit

about the minimum of the cost function given for integer pixel shifts.

. Approximate Maximum Direct Correlator (DC) [45] - A sample correlation estimate
is used to approximate (3.19). Essentially, the denominator of (3.19) isassumed to be ap-
proximately constant, independent of the underlying image shift w. Thus, the simplified

sample correlation estimate

1

Cor(vg,,vo,) = YN Z 2p(n1 — vo,, N2 — Vo, )21 (N1, N2) (3.21)

ni,n2
is computed for integer pixel shifts. Then, the subpixel shift is estimated as the maximum

of aquadratic fit about the maximum of the sample correlation function.
. Gradient-Based Method (GB)- This method was introduced in Chapter 2.

. Multiscale (Pyramid) Gradient-Based Method (Pyr)- For this method, we utilized a
multiscale pyramid with 3 levels. At each iteration the 2-D gradient-based method was

applied to estimate tranglation.

. Projection Gradient-Based Method (Proj-GB)- This is the projection-based method
introduced in Chapter 2. For our experiments, we used only a pair of image projections

at 0 and 90 degrees (x;, 2 axes).

. Projection Multiscale Gradient-Based Method- Again, this is the multiscale method
introduced in Chapter 2, using 3 levelsin a multiscale pyramid. A pair of image projec-

tions was used at 0 and 90 degrees.
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7. Relative Phase (Phase) [43]- Using the shift property of the Fourier transform it is noted
that

FoF _ Fy

> R

_ ej27r(91v01 +02v0,) (322)

where F, and F; denote the Fourier transform of the image function f(z;,z2) and a
shifted version f(z; — v, , x2 — vy, ) respectively. The vector vy is estimated by finding

the solution to the set of linear equations of the phase function

Z
470 = j27(61v0, + b2v0,) (3.23)
1

where Z; » represents the DFT of the input images z > and £ indicates the measured

phase angle. We used the implementation of [43] wherein the solution is found using

weighted least squares.

To generate a pair of images for the experiment, we use the discrete Fourier trans-
forms (DFT) approach following the method of [55]. This effectively generates an image pair,
assuming the continuous model is given by (3.14). Such a model is necessary given that we
want to focus on the problem of estimating sub-pixel shifts. Furthermore, such a motion model
is entirely reasonable for alarge image, where the modelling error associated with the assump-
tion that the image is periodic is negligible. We used the Tree image from [14], which is of
dimension 150 x 150, in the experiment. As the image region shrinks, the assumption that the
image region is periodic outside the region of observation is less likely to represent the image
dataaccurately. Inthissense, our experimental setup examines a scenario where highly accurate
estimation is expected.

To synthesize the effects of noise in the imaging system, we add white Gaussian noise
to the image pair prior to estimation and the entire process was repeated 500 times at each SNR
value. We explore SNR values from 0 dB (very noisy) to 70 dB (effectively noiseless). To cap-
ture a single representation of error, we compute 7mse(vy). Figure 3.6 shows this measure of
actual estimator performance as afunction of of SNR for the estimators mentioned above. The

dashed line indicates the predicted performance using 7'(w) for the class of unbiased estima-
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Figure 3.6: Magnitude error performancevs SNR v = [.5 .5]7

tors. While this bound suggests continued improvement as the noise decreases, above certain
SNR values, the performance of each estimator levels out. This flattening of the performance
curves isindicative of the bias present in each of the estimators.

Immediately, we observe a certain bias-variance tradeoff between various algorithms.
For instance, the multiscale 2-D gradient-based al gorithm appears to offer superior performance
for the low SNR situations. At higher SNR, the phase-based method offers better performance.
However, at lower SNR, the phase-based approach is one of the worst estimators in the group,
suggesting a high sensitivity to noise. The multiscale gradient-based approach is less sensitive
to noise, but ultimately suffers from worse estimator bias.

While we can see the effect of this bias experimentally, the actua bias function for
agiven estimator typically is very difficult to express. The overal bias is often a combination
of both the deterministic modelling error and the statistical bias of the estimator. If the estima-

tor is an ML estimator, the estimates theoretically should be asymptotically unbiased, leaving
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only the bias stemming from modelling error. This appears to be the dominant bias for high
SNR as seen in Figure 3.6 where the bias is independent of the noise in the images. This mod-
elling error has been addressed only infrequently in the image registration literature. In [56],
the approximate direct correlation method (DC) produces biased estimates resulting from the
guadratic approximation about the peak of the correlation function. Basically, the DC method
using the quadratic approximation about the mean of the sample correlation function makesim-
plicit assumptions about the underlying continuous function. In [56], and similarly in [54], the
resulting bias is derived for situations where the likelihood function is not quadratic about its
maximum as typically assumed. The gradient-based estimators have been studied in the context
of biasaswell [57], [58], [59], [55]. Nevertheless, an accurate functional expression describing
the estimator bias is not available. In the next chapter, we describe these earlier attempts at
understanding gradient-based estimator bias, and we derive and verify a new functional form of

bias inherent to the class of gradient-based estimators.

3.4 Conclusion

In this chapter we derive the fundamental performance limits for translation estima-
tion using the Cramér-Rao bound. In doing so, we have defended the idea that M SE should
be used as a standard performance measure to prevent unfair comparisons between algorithms
and to motivate statistically accurate analysis. We have shown that studying this performance
bound, as it relates to image registration, provides much insight into the inherent tradeoffs be-
tween estimator variance and bias. We presented analysis as well as experimental evidence
suggesting that alarge class of motion estimators are in fact biased.

The analysis and experimentation presented in this chapter lay the foundation for
rigorous statistical analysis of the mation estimation problem. The work opens several areas of
further research. For instance, we focused on the estimation of translational motion. One could

extend the analysis to more complex parametric motion models such as affine and bilinear
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motion. We hope that this type of analysis would offer guidance to the practitioner choosing
between complex motion models for large image regions, or simple translational models for

smaller or more local motion estimation.
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Chapter 4

Gradient-Based Trandation
Estimation: A Case Study

In the last chapter, we compared the performance of severa estimators with the fundamental
performance limits. We observed that for alarge class of estimators, bias dominated the MSE
at higher SNR. While estimator bias is often difficult to express, in this chapter, we derive
such bias expressions for the popular gradient-based estimator. While the bias for this class of
estimators has been addressed in previous works [57], [58], [59], [55], [60] these works make
overly smplified generalizations about the bias. In this chapter, we present and analyze more
precise expressions for the estimator bias for high SNR situations. We will show that this bias
limits overall estimation for typical imaging systems. Finally, we will use this bias function to
propose a rule-of-thumb limit (based on our analytical results) for image registration accuracy
using gradient-based estimators.

In addition, we show that having an expression of estimator bias allows the practi-
tioner to optimize estimator performance. In particular, we show how we may improve gradient-

based estimator performance through a careful design of the gradient filters.
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4.1 Gradient-Based Estimator Bias

In this section we derive expressions for the bias associated with gradient-based es-
timators. To maintain clarity during the derivation, we focus on the 1-D analogue of gradient-
based estimation. Since much of the derivation for the 1-D caseissimilar to the projection-based
algorithm described in Chapter 2, we summarize 1-D estimator for apair of signals as follows.

For the 1-D case, we suppose that the measured data is of the form

2(n) = f(n)+e(n) (4.1)
z1(n) = f(n+4wv) + e1(n). 4.2

In the derivation of the gradient-based estimator, we must reformulate the data as z(n) =
20(n) — z1(n) = f(n + vg) — f(n) + e(n) where € is a Gaussian white noise process with
variance o?.

Gradient-based methods solve this equation for v, by linearizing the function f(n +

vp) about apoint vy = 0 in aTaylor series. This expansion looks like

f(n+wvo) = f(n) = wof(n)+ R(n,vo) (4.3)

where R isthe remainder termin the Taylor expansion. Thisremainder hastheform R(n, ) =
5%, % £ (n). Thus, the new data model becomes z(n) = wf'(n) + R(n,vp) + €(n).
When the remainder term R is ignored, the linearized model of the data becomes z(n) =
1'(n)vyg + €(n). Using the derivative values, we obtain the linear estimator for the velocity

using least squares,

2(f'(n)*

where the sum is taken to be over some region which may be the entire image. This type of

b~ S ”

estimator commonly is referred to as the optical flow, gradient-based, or differential estimation
method [42], [2]. This estimator derivation assumes that in addition to the samples of f(n), we
also have samples of the derivative of the function f'(n). Later, we show how this assumption

isrelaxed.
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It isinteresting to note that the variance of the gradient-based estimator is var(q) =

Z(Jgi?n))? if, in fact, the remainder term is zero. The variance is aimost exactly the same as

the CR bound introduced in Chapter3 for unbiased estimators, which is This

0.2
> (f'(ntwo))?
relationship impliesthat the gradient-based estimator would be amaximum likelihood estimator

for the case when the remainder term is, in fact, zero.

4.1.1 Biasfrom Series Truncation

One source of systematic error or biasin the gradient-based estimation method comes
from the remainder term R(n, vp) in (4.3), originally ignored to construct alinear estimator.
When we include the remainder term in the estimator, we obtain as the expected value

of the estimator (4.4)

S J(n)R(n,w)
S *3)

So, unless the second term is zero, the higher order terms introduce a systematic bias into the

E[@O] = V9 +

estimator.

Thisis more informative in the frequency domain. First, we define the Fourier trans-
form of the original function f(x) as F'(w). Here, we assume that the image signal is ban-
dlimited and has a cutoff spatial frequency of w.. Thus, for the signal to be sampled above the
Nyquist rate, the sampling rate must satisfy %—: > 2w., where w, is the cutoff frequency for
the bandlimited signal. In other words, F(w) = 0,Vw > w.. Under the assumption that the
function is sampled above the Nyquist rate, the DTFT of the derivative sequence f(n) can be
represented as jOF(0), where = wT,. By Parseval’s relation, we can rewrite the estimator
(4.4) as

[T jOF(9)2(0)do
“ = T RGP (18)

As a side note, we can also arrive at the same estimator form by modelling the data

itself directly in the frequency domain, as follows; the shifted sequence f(n + ) hasaDTFT
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of F(0)e"% and the DTFT of the data model becomes

Z(0) = F(6) [eiv09—1}+5(9). 4.7)

If we again expand the exponential in a Taylor series &0 = 1+jv00—%+... and truncate

after the linear term, we obtain the linear relationship Z(0) = [F(6);j60] w + £(#) from which
we obtain the linear estimator as (4.6).
Returning to the case where the complete data model is used, we see that the expected

value of the estimate is

JT|F(0)P56(e 7 —1)db
S | F(9)[26%d6
S IF(0)*0sin(ve8)dd [T |F(0)[*0(cos(vf) — 1)db
I _|F(0)]26%d9 J IT_|F(6)[262d8
J™IF(9)]20 sin(vob)do

B I [F(0)262d0 (4.8)

Et]

where in the last equality we note that since Im[j6(e 7% — 1)] = (cos(vph) — 1) isan odd
function, it integrates to zero. Using the expected value of the estimate, we obtain the bias
function asfollows

IT_|F(0)[? (8 sin(voh) — voh?) df

b(vg) = Elbg] —wvo = 1™ _|F(6)[262d6

(4.9)

To verify this bias function experimentally, we measure the bias in estimating trans-
lation for arandomly constructed function such that the actual derivative values were available
to the estimator. The actual function f(n) used in the experiment is plotted in the left graph of
Figure 4.1. The magnitude spectrum for the function used was | F/(6)| = 4 modelled after the
spectrum of natural images. The phase angle of the Fourier spectrum was drawn from auniform
distribution in the range [0, 27]. To measure the bias which is purely deterministic, no noise was
added to the data prior to estimation. Figure 4.1 shows a plot of the experimental estimator bias
asit depends on trandlation vy. The plot shows three different curves which indicate the bias for

the full bandwidth function f(n) aswell astwo filtered versions of f(n) wherein the functions
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Figure4.1: Plot of f(n) (left) and estimator bias (right), continuousis predicted bias

were bandlimited to 50% and 75% of full signal bandwidth. The continuous curves represent
the predicted performance using (4.9).

The bias function appears to follow the bias expression aimost exactly. Furthermore,
Figure 4.1 indicates that as the bandwidth of f(n) increases, the bias becomes more severe.
Here we immediately see a tradeoff with the the Fisher Information which suggests that in-
creased bandwidth will improve estimator variance. We will examine this notion more closely
later in Section 4.2.

We note that functional expression of the bias when the images are sampled below
the Nyquist rate (and hence aliased) is much more complicated. To give an example of the
complexity, we present the calculations for the case where the sampling rate is half the Nyquist
rate. In other words, the DTFT of the sampled aliased signal denoted F;(#), is related to the
origina DTFT signal F'(#) according to

F,(0) = % [F (g) +F (9 _227T>] L 0€[-m,7] (4.10)

From this, we can study the numerator and denominator of (4.8) for the case when aliasing is
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present. First, we study the numerator which looks like
[ [0 (3) 2522 ()
2 2 2 2
()b (SE) 0]

_ / "I F(0) 20 sin(vo0)d6 +

—T

/_7; Re [F(%)F(e _22”)} (g sin (”(9 > 27”) 4+ _2% sin (%)) d9

Thus, we see that the aliased component adds an additional term to the numerator of (4.8).

Likewise, we see that the denominator of (4.8) is given by

e [0 0—27 0—2m\ 5
5 (5)+ g ()

_ W‘F(e)‘gegdwr ”Re F(Q)F(H—%) 9(9—27r)d9
/. [ relrrg] 4

which is again a perturbation of the denominator for the non-aliased case. For the remainder of
this chapter, however, we assume that the images are sampled above the Nyquist. We leave the

analysis of the bias for the aiased scenario to future research.

4.1.2 BiasFrom Gradient Approximation

In the previous section, we assumed that the derivative values at the sample points
were known prior to the estimation process. As mentioned previously, in most applications,
the derivative information is not available. Another source of error in gradient-based estimation
arises from the need to approximate the gradient or the derivatives of the signal f(n). These
gradients (derivatives) f'(n) must be approximated from the measured data using a gradient

filter g(n) applied to one of the available images:

f'(n) = z(n) * g(n) = [f(n) + €o(n)] * g(n) (4.11)

(where * represents convolution). It is common practice to apply pre-smoothing filters to each

image prior to estimation. Using gradient filters, the form of (4.3) is now modified to be

z(n) = wvof'(n)+ R(n,v) + €(n). (4.12)

75



As expected, the remainder term R(n, vo) plays acritical rolein the overall estimator bias.

The error resulting from such derivative approximation has been noted before in the
literature. For instance, in [55], the bias function was derived only for the case when f is a
single sinusoid function. In addition, the works of [57] and [58] explored the effect of approx-
imation errors in estimating the gradient for local estimation. Much of the analysis in these
works, however, starts from the assumption that the optical flow model applies to the image
sequence exactly, or that the remainder term is negligible. Specifically, in [58], the results
qualitatively described estimator bias in terms of image spectral content and were based on
overly simplified bias approximation by examining only the second order approximation error
specifically for the forward difference gradient approximation. The authors in [57] note that
the gradient approximation error increases as the image function exhibits higher energy in the
second derivatives f”(n). Using this observation, they propose an estimator post-processing
scheme which examines the second order derivatives of the image and rejects specific estimates
according to a thresholding scheme. Other works, such as [59], have noted that errors in the
gradient approximation tend to produce biased estimates. In [59], however, it is assumed that
these errors are completely random in nature and drawn from some simple distribution. They
develop overly ssimplified statistical bias models based on these distributions for the gradient
approximation errors. Recently, the work of [60] investigates a method for minimizing the bias
associated with such random errors for an application in vehicle tracking. Instead of treating
these errors as random, as we shall show, approximation errors resulting from deterministic
systematic modelling error dominate the estimator bias for gradient-based estimators at SNRs
found in typical imaging systems.

When we use the gradient approximations, the estimator (4.6) becomes

§2(0)] 2" (6)do
0) [F(0) + £2(0)] [2d0

(4.13)

o
=
_|_

where G(6) represents the DTFT of g(n) and &(6) represents the DTFT of the noise samples
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ea(n). Ingenera, the derivative filter g(n) isusually asymmetric, linear-phase, FIR filter whose

transform is jG(6) where
= ¢isin(if). (4.14)

Such afilter isreferred to asa 27 + 1 tap filter. Unfortunately, taking the expectation of (4.13)
is very difficult. To simplify the equation, we ignore the noise in the derivative approximation.
As such, we can write the expected value of the estimator as
J73G(0) [F(0)] Z*(9)do
J2L1G(O) [F(9)] 2o
JOFO)2G(0) sin(vef)do
J7 1GO) [F(0)] [2do

This assumption is quite reasonable at high SNR situations where basically we are examining

Eto]

the deterministic bias from modelling error as opposed to statistical error. In Section 4.3, we
will show the SNR region where this model accurately describes estimator performance and
demonstrate that this SNR region is typical for many imaging systems including commercial
video cameras. Using this approximation, we see that the bias function is given by
ffﬁ |F(6)? [G(G) sin(vpf) — UGQ(H)] do
JZL1GO)F(9)[2do

We can see here that the this equation differs from the origina equation (4.9) only in that the

b(vp) (4.15)

exact derivative operator j6 is replaced by the approximate derivative kernel jG(6).

To verify this approximation of the bias function, we measure the actual estimator
bias using the gradient kernel g(n) = [.1069.2846 0 — .2846 — .1069] on the same function
shown in Figure 4.1. This derivative kernel comes from [1]. The left graph of Figure 4.2 shows
the results of the bias. The experimental bias again follows the bias predicted by (4.15) almost
exactly. The measured bias functions shown in [55] also appear to follow this trend, providing
further validation of our bias expression. Again, we note that the increased signal bandwidth

produces increased estimator bias.
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Figure 4.2: Plot of actual estimator bias and predicted bias (solid lines) from equation (4.15)-left graph
and equation (4.19)-right graph

4.2 Analysisof Gradient-Based Estimator Bias

In this section we further explore the deterministic bias approximation (4.15). We
will show how the structure of the bias function explains much of the heuristic knowledge
about gradient-based estimators and suggests methodologies for improving performance. In
particular, we will explore how the image spectrum, translation, and gradient kernel all affect
the bias of the gradient-based estimator. In keeping with our origina presentation, all of the
analysisis presented for the 1-D scenario. Such analysisisaso instructive asit isindicative of
the bias of a projection-based algorithm presented in Chapter 2. Finally, we note that a simple
comparison of the bias for the direct (2-D) estimation agorithm with that of a projection-based
algorithm is presented in Appendix 4.B.

We begin by analyzing the bias function (4.9) wherein the exact derivatives are avail-
able to the estimator. To understand the bias, we expand the sin function in a Taylor series about

v = 010 get
ITF () [vA1(8) — v3A2(8) + v3A3(6)...] df

T |F(0)[262d9

b(vo) =

where the terms of the sequence are A (6) = 0, A2(0) = %—T As(0) = ‘95—? and so on. Since the
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factoria in the denominator dominates these A functions, the coefficients of the Taylor approx-
imation die off quickly. Only for very large trandations, often larger than is found in typical
registration problems, will these higher order terms affect the bias function. This suggests that
for small vy, the bias can be approximated as a cubic function of tranglation v, according to

o} [T F0)P01d0
3! [T |F(6)26%d6

b(vo) (4.16)

This coefficient ratio can be interpreted as the energy in the second derivative over the energy in
the first derivative of f(x). In general, the Taylor series can be explained in the spatial domain

as

CBX P G EOmE
EDNTIE RTINS IR

Basicaly, these higher order terms depend on the smoothness of the function f(z). For suf-

b(vo) = (4.17)

ficiently smooth functions the energy in these higher derivatives is negligible, suggesting that
the bias is well approximated by the cubic function given in (4.16). The accuracy of this bias
approximation is evident in right graph of Figure 4.1.

We repeat this analysis for the more complete bias function (4.15), expanding the

function in a Taylor series about v = 0 to produce

I |F () [voﬁl(a, 0) — v3As(G, 0) + viA3(G.0).. | do
o) = TGO F O @19

where the terms are of the sequence are A1 (G,6) = 0G(6) — G*(6), A (G, 0) = LG(6),
A3(G,0) = %G(G) and so on. From this approximation, we see that the polynomial coeffi-
cients depend on the relationship between the gradient kernel G(0) and the image magnitude
spectrum | F'(6)|. Again, we simplify the bias expression by truncating the power series to that
of a cubic function of vy.

B [T |F(0)]*A1(G, 0)db IT_IF(0)]2A2(G, 0)do
W“A’W<flm@ﬂwwe>‘ﬁ<f;m%nm%e) @9
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Figure 4.3: Original (left) and Filtered (right) versions of A and |G|? functions. The filter function
h(n) = [0.035 0.248 0.432 0.248 0.035] is suggested in [1]
In the right graph of Figure 4.2, we show the same experimental bias curves asin the left graph

of Figure 4.2, this time using the cubic approximation of (4.19). We see that the approximation

is quite close for the sub-pixel region of .

4.2.1 Biasand Image Spectrum

The spectrum of the image/function plays an important role in the bias expression
(4.15). One way to shape the image spectrum is through the use of image filters. For instance,
it is well-known that pre-smoothing the images prior to estimation improves the performance
of the gradient-based estimators [14], [1]. This pre-smoothing operation takes the form of a
low-pass filter H(#). To understand this, in the left graph of Figure 4.3 we plot the A functions
found in (4.18), again using the gradient kernel G(0) from [1].

Basically, the A functions and the |G|* (where |G|?> = |G(6)[?) term control the
numerator and denominator of the coefficients of the bias polynomia of (4.18). Looking at
the left graph of Figure 4.3, we see that the |Gf? term is larger than al of the A functions

up to the frequency of about Z for Ay, Z for A, and about 2= for As. If the spectrum of
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the function were bandlimited such that the image contained no spectral energy outside these
frequencies, we know that the coefficients of the bias function would be less than 1. Beyond
these critical frequencies the numerator A functions weight the spectrum more heavily than
the denominator |G|? function, which has the effect of increasing the bias coefficients. As
we will show, this explains the well-known assertion that pre-smaoothing the images improves
estimator performance. In addition to removing noise, the image pre-smoothing has the effect
of minimizing the high frequency spectral components, thereby minimizing the polynomial
coefficients. Furthermore, since higher order terms place more emphasis on the high frequency
information than the lower order terms, the pre-smoothing also has the effect of reducing the
influence of the higher order terms.

For instance, the authors in [1] suggest using a 5-tap pre-smoothing low-pass filter
h(n). Effectively, this pre-smoothing changes the weighting functions into |GHE, A |H|?,
A|H|? and so on. In Figure 4.3 we also show the filtered versions of the A functions. Unlike
the original A functions, the smoothed versions have much smaller magnitude than the |G
function and very small regions wherein the numerators would weight the spectrum F' more
than the denominator. This phenomenon tends to minimize the bias polynomial coefficients.
For high SNR situations where the bias dominates M SE, pre-smoothing tends to minimize the
biasin general. Thisisshown in Figure 4.4, where the bias is plotted as afunction of translation
wherein the function in Figure 4.1 is filtered by different pre-smoothing filters. Each of the
filters was a Gaussian kernel with 10 taps where the low-pass cutoff frequency was controlled
by the standard deviation (SD) of the Gaussian. These low-pass filters were not designed in
any optimal fashion, and yet we still see asignificant reduction in bias. For this experiment, we
extended the range of transation beyond subpixel trandation to show the dramatic improvement
for larger values of v.

Pre-smoothing an image aso has the benefit of averaging, essentially decreasing the
variance of the noise. Again, this pre-smoothing would, however, decrease the Fisher Infor-

mation by reducing the effective bandwidth of the signal. Interestingly, one could pose an
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Figure 4.4: Bias vstrandation for different pre-filters.

optimization problem of finding the pre-filter H(#) that minimizes the bias in a sense simi-
lar to [61]. Of course, this optimization would only make sense for very high SNR situations
since pre-smoothing the image tends to minimize the FIM, thereby making the estimator more

sensitive to noise. We leave this interesting problem for future work.

4.2.2 Biasand Gradient Kerne

Another important ingredient in the bias function isthe choice of gradient filters G(6).
The gradient kernel defines the shape of the A functions which in turn controls the bias coef-
ficients. The left graph of Figure 4.5 exhibits the performance in estimating trandlation using
the three filters, and also the bias when the exact derivative were used. The experimental setup
was similar to previous experiments wherein the function used was shown in Figure 4.1 and no
noise was added to simulate infinite SNR.

Examining the bias curves, it might appear that the Nestares/Heeger filter minimizes
the bias, even producing better estimates than when the exact derivatives were known prior to

estimation. In the right graph of Figure 4.5 we examine the curves more closely in the range
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Figure 4.5: Bias vstrandation for different gradient filters.

vo € [—2,2], and display absolute value of the bias. In the subpixel range (v € [—1,1]), we
see that the Nestares/Heeger filer, in fact, produces estimators with largest bias magnitude.

We see from these plots that there is atradeoff in performance in estimating large and
small trandations. It appears that the tradeoff concerns the linear term in the bias polynomial
approximation. The central difference and Fleet derivative filters are the 2nd and the 4th order
optimal approximations to the infinite ordered ideal derivative filter. Thus, these filters produce
derivative estimates closer to the exact derivative than the filter of Nestares’'Heeger. This more
accurate derivative approximation tends to minimize the linear term of the bias polynomial leav-
ing basically the cubic term asin the case of (4.16). Thefilter of Nestares/Heeger, however, is
not an approximation to the ideal derivative filter. As such, it has a much larger linear coeffi-
cient. Thislarger linear coefficient explainsits poor performance around the subpixel range, and
yet it produces alinear improvement for larger trandations. Again, this phenomenon suggests
a certain optimization framework similar to [61] where the gradient kernel may be optimized

over some range of trandations. We will address thisidea later in the chapter.
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4.2.3 Biasand Trandation

Finally, we examine how the bias varies with the unknown trandation . As ex-
pected, the first order approximation used to generate the linear gradient-based estimator is
accurate only for small trandations. Thus, with perfect knowledge of the image derivatives, the
magnitude of the bias tends to increase with the tranglation and the estimates are always biased
towards zero, or underestimated. When the derivatives are only approximated using a gradient
kernel, however, there are essentially two regions of operation wherein the estimates could be
overestimated and underestimated. These regions are easy to identify when examining the cubic
approximation of the bias (4.19). Setting (4.19) equal to zeros, the resulting roots of the cubic

polynomia are

[T FORAG, )0 ?

Instead of biasing the estimates towards 0 as in the case where the derivatives were known
exactly, the estimator produces estimates that are biased towards +1. Examination of the bias
inthe right graph of Figure 4.5 showsthat these values arearound i = 1.5 for Nestares/Heeger,
7o = 1 for the central difference, and ¢y = .5 for the Fleet gradient filters. In fact, we find that
these value of ¢y do not vary much across different images, for any reasonable derivative filter.
Whichever gradient kernel isused, if the kernel approximates the derivative, the mag-
nitude of the bias will tend to worsen for values of || > |T|. In fact, the cubic approximation
of bias suggests that even the relative biasb(vL(f) increases as a quadratic function of . This
partly explains the success of multiscale gradient-based methods in estimating large transla-
tions. The multiscale pyramids are constructed through a process of low-pass filtering and
downsampling. We have already shown how the low-pass filtering improves estimator perfor-
mance. The downsampling reduces the magnitude of the trandation by the downsampling fac-
tor, the common factor being 2. Using this downsampling factor, the translation to be estimated
at the Ith level of the pyramid becomes ¢, = 5t This synthetic reduction in translation mag-

nitude allows for estimation with smaller relative bias. The reduction in bias is most effective
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when the unknown translation is greater than afew pixels. In this case, the downsampling maps
the translation into arange of reasonably small bias. In practice, the height of the pyramid L is
designed such that the expected downsampled velocity at the coarsest level isin ¢ € [—2,2]
pixels/'frame where the magnitude of the relative biasis not very large.

Theiterative nature of the multiscale pyramid raises an important question concerning
the general convergence of iterative gradient-based estimators. lterative methods for gradient-
based estimation have been used to improve performance [37], [1], [42]. These methods work
by iteratively estimating motion, undoing this estimated motion, and estimating the residual mo-
tion not captured by the previous estimate. At very high SNR, the residual motion is dominated
by the estimator bias. In practice, different methods are used to undo the previously estimated
motion, often relying on some warping/resampling scheme. We would like to know if these
iterative methods will converge, and if so, whether they will converge to an unbiased estimate
of vp.

To simplify the analysis, we assume that the warping methods work perfectly to syn-
thesize a shifted version of the images?®. In fact, we see that the error in the gradient ap-
proximation could lead to oscillatory instability in the iterative gradient-based estimator. To
see this, assume that an initial estimate of translation using the gradient based estimator was
given by ©) = vy + b(vg) (Where superscript 0 indicates the iteration number). After perfect
warping, the residual trandlation would simply be » = —b(w). The estimate of this resid-
ual motion will be # = —b(vg) + b(—b(vp)) such that the updated motion estimate becomes
0§ = ) + 7o = vo + b(—b(vg)). Thus, if |b(vg)| < |vo| for Al vo, then |b(—b(vo))| < |b(vo)|
and so on, suggesting convergence to an unbiased estimate. Practically speaking, we are only
interested in this relationship for very small v, since the residual motions are often within the

range [, 0o]. In this region, we use the cubic approximation of (4.19) represented as

b(vo) = Lvg — 2203 (4.21)
V2 72

where the ~ variables represent the numerator and denominators of the polynomial bias ap-

Lunlikely given the ill-posed nature of image resampling
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Figure4.6: Original (Ieft) and filtered (right) plot of 6G(0) — 2G ().

proximation. Because of the symmetry of the bias function, we must examine whether or not
|b(vo)| < |vo| for al vy € [0, 7p]. In this region, we see that the condition [b(w)| < |vo| will be
satisfied if

Ml g, 4.22)
V2

Furthermore, it can be shown that under the very general assumption that the filter G(0) isin
fact a derivative-type operator, we have vy > 0. Thus, if 45 > ~1, then we can safely assume
that |b(vg)| < |vo| for small translations assuring that the iterative method will converge to an
unbiased estimate since the bias is reduced at every iteration. However, if » < 7, then the
estimator will oscillate between &y = vg £ vj.
Since the condition of convergence depends on

n== [ IFOF [6(0) ~26%0)] d, (4.23)
weplot G (0) —2G? () inleft graph of Figure 4.6. For the iterative estimator to converge, most
of the spectral energy must be located in the low frequency range where the weighting function
0G(0) — 2G?(0) applies negative weight. If too much high frequency content is present, the

difference v, — - will be positive and the algorithm will not converge to an unbiased estimate.
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Pre-smoothing the image minimizes the likelihood that vy — 2 > 0 since most of the weight-
ing function 6G'() — 2G?(#) is negative. Although multiscale iterative methods significantly
decrease estimator bias in practice as evidenced in Figure 3.6, they still may contain estimator

bias.

4.3 MSE Performance of the Gradient-Based method

Armed with an approximate expression for the bias function, we can now examine
the full performance bound given by (3.1) for the gradient-based estimators. In examining
this bound, we find that the bias dominates the M SE performance for typical imaging systems
with high SNR. Finally, we show experimental evidence justifying a genera rule-of-thumb for
performance of 2-D gradient-based image registration.

In order to use the performance bound given by (3.1), we must first examine the
derivative of the bias function. Using the bias expression (4.15) we see that

[T |F(60)?G(0)6 cos(veh)db
ST |G(0)F(9)2do

b (vo) +1 = (4.24)

Using these expressions, we see that the complete M SE performance bound is given by

/(v 2
[b (JO()U:_) 1] + b2 (UO)

JZ F(0)PG(0)0 COS(voe)d0>2
(/7 6@ F@©)Pas)
(flr |F(6)]? [G(0) sin(vof) — voG>(9)] d9)2

(/7 |c@)F©)d0)

where the Fisher Information is independent of « and is given by

MSE(U()) >

/N

= J!

_|_

(4.25)

1 U
J=—
g2

|F(6)262d8. (4.26)

—T

In practice, we calculate the Fisher Information using derivative approximations.
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Here we conduct a Monte-Carlo (MC) simulation to verify the accuracy of our com-
plete MSE bound. Ideally, at high SNR the complete bound given by (4.25) predicts actual

estimator performance. We construct a bandlimited signal using

f@):Z%g%%-@),n:l...mo (4.27)
where ¢; is afixed phase generated by drawing from a uniform distribution. We chose to use a
closed-form expression for f so that that the exact values of the function derivative are available.
These derivatives were used to calculate the exact FIM used in the complete CR bound of (4.25).
Actual estimator performance is measured by performing 500 MC runs at each value of SNR
and averaging the error. The gradient kernel used was the Nestares filter from [1].

o RMSE vs SNR
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Figure4.7: Experimental RM SE and the corresponding complete CR bound vs SNR.

The results of the simulation are shown in Figure 4.7 which compares the RMSE
for the gradient based estimator with both the unbiased CR bound (3.2), and the full bound
(4.25). The actual estimator performance seems very close to the performance bound predicted
by (4.25) at high SNR. This verifies that the bias function given by (4.15) is in fact accurate.

For low SNR, however, both bounds are overly optimistic. This could be due in part to the

88



approximation made in obtaining the simplified bias function. In general, nonlinear estima-
tion problems suffer from what is known as the threshold effect [35]. This threshold effect is
characterized by a significant departure from the CR bound as the SNR degrades.

RMSE vs SNR
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Figure 4.8: Experimental RM SE and corresponding complete CR bound vs SNR as it relates to signal
bandwidth.

To understand the relationship between bandwidth and performance bound, we plot
the expected performance bound for vy = 0.1 for different values of D in (4.27), (which essen-
tially encodes the bandwidth in the definition of f) in Figure 4.8. This figure shows the tradeoff
between bias and variance as it relates to image bandwidth where D is the percentage of full
bandwidth. As mentioned before, energy in higher frequencies tends to increase the Fisher In-
formation, thereby improving estimator variance, but tends to worsen the effect of bias. Overal,
it is apparent that bias dominates the M SE for images with much high energy in the high spatia
frequencies.

Lastly, we extend this complete MSE performance bound for the case of 2-D image

registration. The equations for 2-D bias can be found in Appendix 4.A. To provide a rule of
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thumb value for expected estimator performance, we use the following performance measure.

Ay, Ay, Zvol ZUOQ Tmse(vo) (4.28)

where A, defines the sampling grid over the space of translations. This provides a measure
of the average magnitude error over a range of unknown tranglations. The corresponding CR

bound used to compare actual estimator performance is given by
" LV\I/1 Yf/Q T'(vo)dvo, dvy, - (4.29)

For our experiment, we examine estimator performance for sub-pixel estimation where
vp € [—1,1] x [-1,1]. The tree image was again shifted synthetically as before using the
method of [55]. For each value of SNR, 500 MC runs were performed and averaged to obtain
the MSE matrices. To evaluate the improvement using image pre-smoothing, we apply a 9-tap
Gaussian filter with standard deviation of 1 and 2 pixels. To compute the M SE bound, we esti-
mate the spectrum F'(6;,02) using the DFT coefficients of the clean Tree image. To take into
account the noise reduction resulting from image pre-smoothing, we modified noise variance
used to compute the FIM by 52 = 22722(71) where h(n) are the coefficients of the Gaussian fil-
ter. Again, the gradient filter used was from [1]. Figure 4.9 shows the performance predicted by
(4.29) and actual experimental performance of (4.28) from the Monte-Carlo experiments using
the Tree image as the base signal.

The performance bound appears to be a good predictor of actua estimator perfor-
mance at high SNR situations. The estimator performance for SNR’s at about 20-40 dB shows
unexpected improvement over the high SNR situation. Most likely, this results from the statis-
tical bias present in the estimator for low SNR situations. It was shown in [59] and [60] that the
statistical bias for noisy images tends to produce underestimates of transation or negative bias.
Since the deterministic bias using the [1] filter is positive for subpixel motion, we deduce that
these two biases tend to cancel each other out, thereby improving performance at low SNR. As

significant low-pass filtering is applied to the image, estimator performance improves dramati-

cally. Basicaly, the deterministic bias again dominates estimator bias and we have predictably
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Figure 4.9: Predicted and measured average performance measured by (4.28)

improved estimator performance. This experiment presents the possibility of subpixel image
registration accuracy down to almost one hundredth of a pixel for the gradient-based estimator
under the ideal situation when theimage is known to be sampled above the Nyquist rate. Again,
this experiment correlates well with the results shown in Figure 3.6 of Chapter 3. Thus, we can
expect arule of thumb performance bound limiting the performance of image registration under
ideal situations to an accuracy of over one hundredth of a pixel for non iterative gradient-based

estimation.

4.4 Filter Design for Gradient-Based M otion Estimation

In the previous section we characterized the bias associated with gradient-based es-
timators for high SNR situations. Much of this estimator bias is dependent on the choice of
gradient filters used during the estimation process. Very little work has been done addressing
the design of filters specifically for application to the problem of motion estimation. To our

knowledge, such an approach was first studied in [61] which extends the generic (not neces-
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sarily application specific) gradient filter design principles of [62]. In this section, we briefly
review previous work in the area of filter design for motion estimation.

To begin, we modify the previous gradient-based forward model to take into account
the use of a pre-smoothing filter ~(n) prior to estimation. We modify (4.12) to include these

pre-smoothing filters as

Z(n) = h(n)*z1(n) — h(n) * zo(n)

= o f'(n) + R(n,v) + &n). (4.30)

The work of [62] suggested that the filters should be designed to match the actual derivative
of a reconstructed continuous function. Such a design philosophy attempts to minimize the
approximation error associated with the use of FIR filters to estimate image gradients. The error
is minimized assuming the image has the spectral amplitude of anatural imageor |F'(0)| ~ -
With these assumptions in place, [62] propose a cost function to design the filters h(n) and
g(n). The cost function is expressed in the Fourier domain as

i) = [ G li0H(0) — GO do (4:31)

where H(6) and G(0) are the Fourier transforms for the desired filters given by

Th

H() = {h}o+2 Z{h}i cos(if)

GO) = 2) {g}isin(ib).
=1

In[62], the solution was found by formulating the optimization problem as an eigenval ue prob-
lem. While [62] did not directly address the application of such filters to estimate motion, the
filters have been noted to improve estimator performance [58].

As noted in [61], such a design procedure can aso be used to find optimal filter
coefficients both for the gradient filter and for a pair of pre-smoothing filters to be applied

to gradient-based motion estimation. To do so, the form of (4.30) is generalized to take into
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account the application of distinct pre-smoothing filters to each image asin

2(n) = hY(n)*z1(n) — h3(n) * z(n)

= wof'(n) + R(n,vo) + &(n) (4.32)

where h'(k), h?(k) are both linear phase FIR filter kernels. The filter coefficients are repre-
sented using vector notation as g, h', h?.

Using the more general formulation of (4.30), the authors of [61] derive a cost func-
tion taking into account aspecific image aswell asarange of possible trandations € [V, V.

This cost function has the form

Co(h', h? = J‘%OHle — H?(0) — voG(0 2ded
2(h*, h?, g) e (0) (0) — vG(0) V0

_ / / IF@)P T (0) b, (4.33)

Weknow heuristically that thefilter should be designed to minimize the energy in the modelling
error R(n, vo) weighted by the image spectrum over arange of unknown trangations. The au-
thors note that minimizing the error aone will not provide good filters, since the optimization
tends to create " non-informative” filters which contain most of their spectral energy at frequen-
cies where the image spectral energy F'(6) islowest. They correct this by adding an additional
penalty term balancing the desire to optimize the filter for the given image with the desire to
optimize the filter for an image with aflat spectrum (£'(#) = 1). This modified cost function

looks like

14 s
Co(h! h? g) = /_V /_7r [a+ (1 — )[F(O)[*] | (0)]* dOduvy

where « is atuning parameter to be applied during the filter design process. The authors aso
find a solution to this problem by again solving an eigenvalue problem. The paper provides
experimental results displaying the advantage of using such image-adapted filters.

While these previous works have made fundamental contributions to gradient-based
motion estimation, they ignore the the particular structure of the gradient-based motion estima-

tor that ultimately characterizes the statistical performance of such estimators. In this chapter,
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we use the statistical performance of the estimator to guide the design process. Specifically,
we present a scheme for designing filters which minimize the bias of the gradient-based image

registration algorithm.

4.4.1 Designing Bias-Minimizing Filters

As we have shown, the general gradient-based motion estimators have significant
estimator bias. In the previous section, we verified our bias expressions for high SNR scenarios.
For many computer vision and image registration applications, the effective SNR of theimaging
system falls into this high SNR regime.

In (4.15) we see that the bias depends on three factors: the image content f, the
choice of filters g(n) and h(n), and the unknown trandation . Again, using the assumption
that trandlation islimited to (and equally likely to bein) somerange ) € [—V, V], we construct
the following cost function for a particular image for finding filter coefficients:

1%
C(g,h) = / y b* (g, h)dvo. (4.34)
Such a cost function captures the desired goal of minimally biased estimates of image transla-
tion. Note that a statistical prior on v, could be incorporated into the integral of (4.34).

We now explore a simple method for minimizing such a cost function. Because of
the complex nonlinear relationship between g and h in (4.34), we focus on the design of only
the gradient filter coefficients g. It would be possible to efficiently minimize (4.34) in acyclic
coordinated descent type algorithm which alternates between optimizing over g and h. How-
ever, in practice, we have found that optimizing both filters offers only modest improvement
in performance over optimizing the gradient filter alone. To alarger extent, the estimator bias
depends on the choice of gradient filters. Thus, to save on computational resources, we suggest
optimizing only the gradient filter. We note that the same simplifying steps used here to opti-
mize the gradient filter can also be applied to optimizing the pre-smoothing filter aswell. Here

we present the algebraic simplifications useful for highly efficient filter optimization. Basically,
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we find the closed form solution to the integral associated with (4.34), allowing us to perform
the optimization with minimal computational cost. We note that similar simplifying operations
are applicable for the 2-D case as well.

Because we assume the signal is bandlimited and periodic, our Fourier transform
F(0) hasonly N terms where the spatial frequency isindexed by 6 = 22, i = 1...N. As

such, we rewrite the bias function (4.15) in vector form as

v9)TKT
b(UO) = Sg(T'(:)gTKT: — Vo (435)
where
[s(vo)]; = sin(vob;)
F(6;)P|H6)]?, i=3
K, - |F(6:) |7 H (65)] J
0, i #J
[T]z‘,j = sin(j6;).

In these equations, the ¢ enumerates the spatia frequencies used in the DFT For instance, § =

12T
™ N -

The cost function C(g) can be written in vector form as

1%
Clg) = / b*(g)duvg

-V
_ /V 02 4 g" T"K"s(vp)s(vo)"KTg _ o s(vo)"KTg d
vl (g7 TTKTg)? g’ TTKTg
2V3 N g’ T'K"SKTg _ p’FTg (4.36)
3 (gTTTFTg)? gl'TTFTg '
where
~ v
{S}i,j = / Sin(’l)()@i) Sin(v()@j)d’l)()
-V
_ 2sin(V(0; —0;))  2sin(V(0; +6))) (437
N 0; — 0, 0; + 0, '
and
v . 2sin V@Z — QVHZ‘ COS V@Z
{p}i = / vo sin(6;)dvg = (V6:) 2 ( )
-V i
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It is the simple closed form solutions for such integrals that make such an optimization simple
to implement. While not obvious, it isimportant to note that matrixS in (4.37) represents a.con-
volution operation because of the spectral symmetry of |F(6)H (0)FG(6) about § = 0. Thus,
the left-multiply by the matrix S can be implemented using FFT operations, thereby removing
the necessity of constructing the large matrix S. In fact, none of the above computations are
performed by explicitly constructing the matrices. This saves space and improves numerical
efficiency. Such implementation details become critical for the 2-D scenario where matrix S
becomes adense N? x N2 matrix, effectively precluding explicit construction of the matrices.
Using these terms, we rewrite (4.36) as

2V3  glTg 2q9’g

= - 4.38
¢e) 3 (g'lg)? g'Tag (4:38)
where the terms
I, = TTKTSKT
rs = TI'FT
q = pTFT

need to be computed only once during the optimization, greatly simplifying the overall compu-
tational complexity. The nonlinearity of the cost function becomes immediately apparent in the
form of the cost function. Because the dimensions of the filters are relatively small (2-4 unique
coefficients), we perform the filter design utilizing the black box Matlab optimization routine
fminunc. This optimization takes only fractions of a second to run. In our experiments, we
use astandard filter such asthefilter of [1] asaninitial guessfor the optimization routine. While
such an optimization routine does not guarantee a global minimum, we have found in practice

that using such an optimization routine generates filters with improved performance.

4.4.2 Filter Design for 2-D Multiscale I ter ative Registration

One important departure of our proposed method from the filter design methods of

[62] and [61], is the extension to the design of 2-D filters. Both of these previous methods
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have addressed only the filter design problem for the 1-D case. The extension to the 2-D case
involves designing generic 1-D filters. For example, in [61] it was recommended that 1-D filters
be designed using o = 1 (not image dependent) and applied to a 2-D image in a separable
fashion.

In our case, we continue to assume that the 2-D filters are separable (although thisis
not a necessary assumption) to simplify not only the optimization routine, but aso the appli-
cation of such filters. However, unlike the previous works, our filters are designed taking into
account the 2-D image spectral content. In this section, we show how the design of 2-D filters
isanatural extension of the 1-D case presented in the previous section. In addition, we propose

amethodology for designing filters for multiscale iterative image registration.

Filter Design for 2-D Registration

Asin the 1-D case, we use a cost function of the form

Clg,g) = / b(vo)b(vg)dv (4.39)

to design our pair of gradient filters g; and g». While somewhat tedious to present, the same

agebraic simplifications apply to C(g1, g2) as those shown in Section 4.4.1.

Figure4.10: Tree, DC, and MRI, and Einstein images

To give an example of the performance improvement offered by such afilter design
methodology, we compare the bias magnitude for the range of trandations v, ,vo, € [—2,2]

for several popular filter sets. We measure overal performance by averaging the magnitude of
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Tree | DCSat. | MRI | Einstein
Centrd 0.098 | 0.137 | 0.124| 0.107

Fleet 0130 | 0.183 | 0.162| 0.150
Nestares | 0.061 | 0.086 | 0.080 | 0.063
Elad 0.112 | 0.074 | 0.056 | 0.063

Optimized | 0.048 | 0.064 | 0.061 | 0.045

Figure4.11: Overall registration error Err for therange v, , vo, € [—2, 2]

the registration RM SE for the different filter sets over aset of trandations in this test range. The
performance measure is given by
Brr — — > Tmse(vo) (4.40)
Ns jocs,

where S, isthe set of test trandation points of size Ng. We choose this performance measure
as it shows overall performance error in units of pixels. If SNR = oo (no noise added to the
pair of images), then 7mse(vo) = 3|b(vo)||. In asense, the overall error is a measure of the
average magnitude error over arange of trandations. For our experiments, we assume that the
range of translations is uniformly sampled in the test range.

We first examine the zero-noise case where SN R = oco. Such a scenario corresponds
to the typical experimental setup examined in gradient-based estimation literature where rarely
is noise added to the images prior to estimation [14, 61]. Under such conditions, only the
deterministic estimator bias affects the overall estimator performance. For our experiment, the
we uniformly sampled the region [—2, 2] x [—2,2] inincrements of [, 1] pixels to generate
our test set S, of trandlations. The filters compared were the smple central difference filter
(Central), the 2nd order derivative filter mentioned in [14] (Fleet), the Nestares filter and the set
of filters designed using the method of [61] (Elad). All of the filters have 5 taps (2 coefficients)
except the filters of [61] which were 9 tap filters. Prior to estimation, the images were pre-
filtered either with a sampled Gaussian pre-smoothing filter with standard deviation of 1/(3)
pixels or the specialy tuned filters of Elad. The performance for each filter set are shown in the

table in Figure 4.11 for the images in Figure 3.2. The optimized filter shows improved overall
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performance for all images except for the MRI image, where the optimized filter performance
was only dlightly worse than that of Elad. Recalling that the Elad filters were 9-tap filters
as opposed to the 5-tap optimized filters we see that, in general, the proposed filters improve
average estimator performance while realizing computational savings. Furthermore, we found
that when using larger optimized filters, we can achieve even greater improvement over the
other filters. This improved performance results from the increases degrees of freedom of the
optimization routine. Basically, larger filters allow for more precision in tuning the frequency
response of the filters. We shall show this momentarily.

To visudize the effect of the optimized filters, Figure 4.12 shows the bias magni-
tude ||b(vy)|| in registering the Tree. The top graph shows the bias magnitude when the [1]
(Nestares) filter was used (the second best filter). The bottom graph shows the bias magnitude
when using the filters designed by optimizing (4.39).

From the bias exhibited in Figure 4.12, we see that the bias magnitude primarily de-
pends on the magnitude of the trandlation ||vy||. Furthermore, Figure 4.12 reveals the polar
symmetry of the registration bias. Because of this symmetry, we plot the magnitude of reg-
istration bias for the collection of filter sets for the set of trandations ¢, = vg, € [0, 2]
in Figure 4.13. This representative dlice reveals the important performance characteristics of
each filter set. Figure 4.13 compares the bias magnitude for all of the filters when register-
ing the DC Satellite image. Here, we see that while the bias of al the filters becomes severe
as the magnitude of the trandation increases, the bias for the optimizing filter is minimized.
The optimized filters have the coefficients ¢y = [0.8792, —1.2459, 0 1.2459, —0.8792] and
g2 = [0.8969, —1.2606, 0 1.2606, —0.8969]" .

To evaluate the performance of the optimized filter in a more realistic scenario, we
must compare estimator performance in the presence of noise. To this end, we conduct Monte
Carlo (MC) simulations at SNR ranging from about 10 dB through 60 dB.? At each SNR,

we measure the MSE in estimating vy along the line vy, = v, € [0,2] in increments of %

o2 . . i
*The SNR ismeasured as SN R = 101log,, =% Where o7 isthe variance of the clean frame and ¢ the variance
of the noise.
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Figure 4.12: Magnitude of estimator bias ||b(v¢)|| vstransation using the Nestares gradient filters (top)

and the bias minimizing gradient filters (bottom).

pixels by averaging the square estimator error over 1000 MC runs. As before, we use the same
experimental setup used to produce Figure 4.13 in terms of filter sets. Here, we see that the
optimized filters continue to outperform the other filters over the wide range of SNR. We note
that the performance does not vary widely until very low SNR (12 dB) as the bias dominates
the MSE as shown in [76]. Essentially, Figure 4.14 shows that the optimized filters retain their

competitive performance over awide range of imaging SNR for non-iterative registration.

100



Bias Magnitude vs Translation Magnitude
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Figure 4.13: Magnitude of estimator bias ||b(v¢)|| vstransation magnitude ||vo|| where vy, = v,

Overall Registration Error at different SNR
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Figure 4.14: Overall estimation error Err at different SNR over vg, = v, € [0, 2] for the Tree image.

Filter Design for Multiscale I terative Registration

Traditionally, the same gradient filter has been applied at each level of the pyramid
during multiscale gradient-based estimation [36]. The performance and rate of convergence
of the multiscale method can be further improved using optimally designed bias-minimizing

filters. We suggest the novel approach of designing different gradient filters for each level of
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Tree DC Sat. MRI Einstein

Centra 0.006 0.010 0.004 0.012
Fleet 8.14e-4 | 0.002 0.001 0.008
Nestares 0.012 0.018 0.011 0.020
Elad 0.010 0.006 0.001 0.015

Optimized | 2.07e-4 | 5.57e-4 | 257e-4 | 0.006

Figure 4.15: Overdl registration error Err for multiscale estimation over therange v, , vo, € [—6, 6]

the pyramid, each according to the cost function (4.39). Optimizing gradient filters in such
a manner improves the convergence rates of the iterative estimation by reducing the residual
motion left over from biased estimates produced from earlier iterations. More importantly,
minimizing the estimator reduces the possibility of the iterative estimation process diverging,
thereby offering a more stable method of estimation. Furthermore, since at every iteration the
residual motion to be estimated is reduced, we propose designing filters which assume that the
ranges of translation shrink as the iterations proceed.

To show an example of such optimized filters for the multiscale registration scenario,
we design gradient filters for a three level multiscale pyramid. Asin Section 4.4.2, we first
examine the zero-noise scenario (SNVR = oo) where only the bias contributes to estima-
tor MSE. The optimized gradient filters were designed for the trandation ranges v, ,vo, €
[—2,2],[—.5,.5],[—.2,.2] for each of the three pyramid levels. Figure 4.15 shows the overall
multiscale registration error over the trandation test set v, , vo, € [—6, 6] uniformly sampled
with a spacing of [%, %] pixels. Again, we see that the optimized filters offer superior perfor-
mance for multiscale estimation in terms of the registration error over awide range of transla-
tions.

As before, to visualize the estimator performance in the multiscale setting, the regis-
tration error for the Tree image is plotted in Figure 4.16 aong the line v, = vy, € [0, 6] for
the zero-noise scenario. While al of the estimators show significant improvement over the non-
multiscale iterative approach, the bias-minimizing 5-tap filters offer consistent improvement in

estimator accuracy over the entire range of trandations. For practical applications, the registra-
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x107° Bias Magnitude vs Translation Magnitude
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Figure 4.16: Magnitude of registration bias ||b(v)|| vs translation magnitude ||v|| where vy, = v, for
the Tree image.
tion error is so small asto be considered almost unbiased. Overal, we see that principled filter
design offers improvement for multiscale image registration.

Again, we evaluate the performance of the optimized filters at different imaging SNR.
As before, we perform MC simulations at each SNR to measure the MSE of the multiscale
approach in estimating v along the line v, = vo, € [0, 6] this time in increments of 1. As
before, we use the same experimental setup used to produce Figure 4.14, only this time we use
the multiscale approach. Here, we see that the optimized filters outperform the other filters for
SNR greater than about 25 dB. In fact, below this SNR, the performance of the optimized filters
for multiscale estimation degrade substantially. In this SNR regime, the MSE is no longer
dominated by estimator bias. It is apparent that at this SNR, minimizing bias is no longer a
suitable objective for improving overall performance in the sense of MSE. We note, however,
that SNR below 25 dB represents a very noisy scenario not often encountered in typical video

imaging and rarely, if ever, addressed in the gradient-based motion estimation literature.
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Figure 4.17: Overal multiscale estimation error Err at different SNR over v, = vg, € [0, 6] for the
Treeimage.

45 Conclusion

In this chapter we have presented detailed analysis of the bias associated with gradient-
based algorithms. Detailed analysis of the estimator bias gives the practitioner of motion esti-
mation a keen insight into the performance tradeoffs associated with gradient-based algorithms.
In particular, our analysis explores the bias asit relates to image content, motion magnitude, and
choice of gradient-filters. Using this bias expression we have been able to present ageneral rule-
of-thumb M SE performance bound using the complete CR bound for gradient-based estimation
at high SNR. We believe such information will prove critical to the design and understanding of
systems relying on the output of gradient-based algorithms. Lastly, we have presented a novel
approach to designing gradient filters for the gradient-based algorithm which reduce estimator
bias and have verified the bias minimizing properties of such filters. We believe that the next

step in filter design will address a M SE minimizing criterion.
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4.A 2-D Biasand CR Bound for Gradient-Based Estimation

In this appendix, we derive the bias equations for the 2-dimensional case similar to
those in Chapter 4 and incorporate this bias function into the complete CR bound of (3.1). Here
we use vector notation. Namely, vg = [vg,, vo,]” and @ = [0y, 62]7 and k = [ny, n1]”. Thus,

we write the data model as
z(k) = f(k+vo) — f(k) +ek) (4.41)

We proceed to derive the bias directly in the frequency domain. The shifted sequence f(k+vp)
has aDTFT of F(§)e/@"v0) and the DTFT of the data model becomes

2(0) = F(0) [ 1] + ¢(0). (4.42)

We expand the exponential in a Taylor series @@ Vo) = 1+ j(67v,) — ... and truncate after the
linear term to obtain the formula Z(9) ~ jF(8) 67 vy + £(8) from which we obtain the linear
estimator

w=F" [ @iz )i (4.4
where F = [ |F(0)[? [067] db.

Similar to the 1-D case, the expected value of the estimate is

9. (4.44)

E[vy] :F1/|F(Q)|2Qsin(QTvo)d9

To aobtain this form, we have made the same simplification asin Section 3 wherein theimaginary
portion of the integrand isremoved asit is an odd function, hence integrating to zero. Thus, we

obtain the bias function
b(vg) = F~! / |F(0)]?0 sin(07 vo)dl — v (4.45)
To analyze this bias function, we approximate the sinusoid function within the integrand as a

truncated Taylor series expansion about v = 0 assin(¢ vo) ~ 67 vy — (67 vo)3. Noting that
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0"vy = [vo|0" n,, where ny, is the unit vector [cos(v)), sin(1)]” we can approximate the bias

function as

%

bvo) ~ F1 [ IF@PO[Evo - €"v0)*] 8~ vo

— vo- gF ! [ IF@POEv0 a8 - vy

3

- ’VO‘ /\F 2067 ny )P0 — — Y p-1q (4.46)
whered = [ |F(0)|?6(8" n,,)3d6. Thus, the bias behaves as a cubic function of the trandlation
magnitude |vy| where the coefficient depends on the spectrum of the image.

As with the 1-D case, in practice we must approximate the gradients using gradient

kernels ¢; (k) and g2 (k) which have corresponding frequency representations G; () and G2 (0)
or in vector notation G(6) = [G1(8), G2(8)]”. This produces the estimator,

G=F! / F(0)2jG(6)Z* (8)d6 (4.47)

wherenow F = [ |F(6)* [G(6)G(6)"] df. Using the same low-noise assumptions that we

made in Section 3, we examine only the deterministic bias which is
b(vo) = / |F(0)>G(8) sin(87vo)dd — v (4.48)

Using these equations for the bias, we can now derive the full CRLB for gradient-based estima-
tion of 2-D trandation. We first note that

E[
OBo| _ / IF(0)? [G(8)87] cos(87vo)dd = Z. (4.49)
8v0

Using this equation, we obtain for the complete CR bound for the 2-D case as

MSE(vo) > ZJ7'ZT + b(vy)v(ve)T (4.50)

where J represents the Fisher Information matrix derived in Chapter 3.
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4.B Projection-Based vs Direct Gradient-Based Estimator Bias

Armed with the bias expressions for the gradient-based agorithm, we can begin to
understand the performance improvement from the use of projections in estimating translation
reported in Chapter 2. We now offer some intuition behind the improved performance of the
gradient-based algorithm using projections. Basically, we compare the bias associated with the
projection-based agorithm, denoted b, (v() with the bias associated with the direct estimation
which we denote as b;(vy).

From the well known Projection-Slice Theorem, we see that the Fourier transform
of the projection of the image f (1, z2) a an angle ¢ is equivalent to a dlice of the Fourier
transform of the 2-D image function F'(6;, 62) through the origin at an angle ¢ [23]. Using this
theorem, we can relate the bias of the 1-D projection-based algorithm to that of the 2-D direct
agorithm.

We now address the simple case where only apair of projectionsat ¢ = 0 and ¢ =75
are used in the projection-based algorithm. Thus, the corresponding Fourier transforms of the

projected image function r(p, ¢) at these angles is given by
Flr(p,0)] = F(6:1,0)

A (3] - Foo

(4.51)

Using (4.9), we see that the components of the bias b, (v() for the projection-based estimation

are given by
~ JILIF(01,0)PGr(61) sin(vo, 61)d6
[by(vo)], = (0, 0GR (010 — v, (4.52)
" |F(0,62)|?>G2(02) sin(vg,02)do
b, (vo)l, Lﬂ‘ (0, 02)|*G2(02) sin(vo,02) 2_@02 (453)

ST |F(0,62)2G%(62)db;
We use the subscript p to indicate the 1-D or projection based estimator bias. Here we see that
the components of the bias function depend only on their respective trandational component.

This separability does not apply to the bias associated with the direct 2-D estimation algorithm.
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To simplify the presentation we make the assumption that the image spectrum has the

following symmetry

[F(61,02)] = [F(—61,02)] (4.54)
|[F'(01,02)] = |F(61,—62)] (4.55)

We make this assumption to simplify the matrix F defined by in Appendix 4.A. With such

symmetry, the matrix F' is given by

[Fli = /7r /7r |F(671,02)>G3(61)d01db-
[Fly

= / / |F(91792)|2G1(‘91)G2(92)d91d62

= 0

[Fl,, = / / (F (01, 05) P G3(02)d0, db

In other words, because of the symmetry assumption, the off-diagonal terms of F are zero. In

1

practice, natural images whose magnitude spectra approximately follow |F'(6,02)| ~
posses such symmetry.
With the simplified form for the matrix F, the components of the estimator bias for

the direct 2-D algorithm by(v() can be expressed as

(ba(vo)]; = [ J|F(61,02)|?G1(61) sin(vo, 61 + vo,02)d01d0: e
1 T 1F (01, 02)2G3(6r)dodb 1

f f |F(91, 92)|2G1(91) sin(vol 91) cos(v02¢92)d«91d«92

- - 4.56
[ [1F(61.02)]2G3 (61)d6,db vo,  (4.56)
[ba(vo)], = [ [ |F(61,02)|?G2(02) sin(vo, 61 + vo,02)d01d0: .
T ff|F(‘91792)|2G%(92)Ud91d92 02
_ J JIF(61,62)]?Ga(62) cos(vg, 01) sin(vo, 02)df1dbz v, (457)

J J1F(61,65)2G5(82)d61d6,
Again, the subscript 2 indicates the direct or 2-D algorithm. The simplified form of (4.56) and

(4.57) results from the symmetry assumptions of (4.54) and (4.55).
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From (4.56) and (4.57), we see that the each component of the bias vector depends on
both components of the trandation vector vy. For example, the bias associated with estimating
vp, also depends on the trandation parameter v, by way of the cos term in the numerator
of (4.56). For example, Figure 4.18 shows the bias magnitude surface ||b(w)|| for both the
projection-based as well as the direct gradient-based estimation algorithms for the Tree image.

To generate these surface plots, no pre-smoothing filters were applied to the images. We see

Bias Magnitude vs Translation 1-D Estimation

15—

Bias Magnitude (pix)

V, (pix)

Bias Magnitude (pix)

v, ()

Figure 4.18: Magnitude of estimator bias ||b(v)|| vs trandation using the Nestares gradient filters [1]
for the projection-based algorithm (top) and the direct algorithm (bottom).
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in Figure 4.18 that the difference in bias between the 1-D and 2-D agorithms is most severe
for large translation magnitudes ||vy||. We observe this behavior for awide variety of images.
We have already shown that both the 2-D and 1-D bias expressions behave approximately as
a cubic function of ||vp|| and |vg| respectively. Because of the separability of the projection-
based algorithm, the 2-D bias of the projection-based algorithm grows approximately asacubic
function of max(|uvy, |, |vo,|). The bias of the direct 2-D agorithm, however, grows as a cubic
function of ||vo||. Thus, for large translation magnitudes ||vy ||, the bias of the projection-based

is less than that of the direct algorithms. We note that the average bias magnitude ||b(v)|| for

the surface plots shown in Figure 4.18 are 0.164 for the projection-based approach and 0.268
for the direct approach. In other words, on average, the bias of the projection-based approach
has significantly magnitude over the range [—2,2] x [—2,2] than the direct approach. This
property of the projection-based estimator explains, in part, the improvement in performance of

the projection-based algorithm over the direct for translation estimation.
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Chapter 5

Performance Analysis of Multiframe

Registration of Aliased I mages

5.1 Introduction

In Chapter 3, we studied the performance bound for pair-wise image registration as-
suming that the images were sampled above the Nyquist rate. In this chapter, we extend these
results to the scenario where the images are sampled below the Nyquist rate and hence contain
aliased information. Furthermore, we show that a natural consequence of aliased imaging is
the need for multiframe registration. We will show that this estimation problem is intimately
related to the problem of super-resolution. In general, the problem of super-resolution can
be expressed as that of combining a set of noisy, low-resolution, blurry images to produce a
higher resolution image or image sequence. In the last decade, severa papers have proposed
algorithms addressing the problem of super-resolution. [63] offers a broad review of the work
this area. With some simplifying assumptions, the estimation problem is typically divided into
the tasks of first registering the low resolution images with respect to the coordinate system of
the desired high resolution image followed by fusing the low-resolution data (reconstruction)

and finally deblurring and interpolating to produce the final high resolution image (restoration).
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Historically, most research in super-resolution has tended to focus on the latter stages assuming
that generic image registration algorithms could be trusted to produce estimates with a high
level of accuracy. As we shall show, however, such an approach is necessarily sub-optimal at
best or inherently biased. Relatively recently, researchers have noted the importance of solving
the estimation problems of image registration and super-resolution in ajoint fashion [64—66].
Conversely, the only paper (to our knowledge) concerning registration of aliased (sub-Nyquist)
images [43], does not directly address the problem of image restoration during registration.
Instead, it focuses on mitigating generic (none image specific) effects of aliasing on the regis-
tration algorithm. The one other paper which claims to addresses sub-pixel trandation estima:
tion between a pair of downsampled images, makes the assumption that " no spectral fold-over
(overlap) occurs’ after downsampling [70]. In other words, the images are downsampled, but
contain no aliased information. We shall show that the performance analysis (and algorithmic
design) for the sub-Nyquist scenario must study the problems of image registration and image
reconstruction in ajoint fashion.

Similar to Chapter 3, we analyze the joint problem of image registration and its related
counterpart (high resolution image reconstruction) in the context of the Cramér-Rao inequality.
To date, no work has addressed the performance limits associated with the registration of aliased
images. In this chapter, we primarily study the M SE performance bound on sub-Nyquist image
registration. We also address the problem of image reconstruction as it is a natural byproduct
of proper image registration. Finally, we outline the relationship of the sub-Nyquist image
registration problem to the problem of super-resolution.

This chapter is organized as follows. In Section 5.2, we derive the Fisher Information
Matrix (FIM) for the joint problem of image registration and reconstruction. With the Fisher
Information, we present the Cramér-Rao (CR) inequality bounding the MSE for the class of
unbiased estimators. In Section 5.3, we analyze the performance bounds and offer insight into
the inherent challenges and tradeoffs in the registration of aliased images. In Section 5.4, we

study the influence of prior information on the joint problem of sub-Nyquist image registration.
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Finally, in Section 5.6, we summarize the contribution of this work and suggest future research

directions.

5.2 CR Bound on the Registration of Aliased I mages

For the general problem of registering aliased images, it isassumed that we are given a
set of low resolution images which consist of noisy, warped, blurred, and downsampled versions
of an unknown high resolution image. As we studied in Chapter 3, we focus on the motion
captured by aglobal shift or atransglation between frames.

To simplify the notation and remain consistent with the related problem of super-
resolution, we formulate the data model using matrix notation making a notational departure
from the model of 1.1. To do so, we represent the samples of image function f(x, x2) at the

sample locations in vector form by raster scanning the samples as

£(0,0)

g | Wm0 (5.1)

f(0,1)

f(Nu, Nu)

Using a similar raster scanning procedure we use z to represent the measured image at the
sampled time ¢ = kT;. For such an assumption, we represent the forward process by the linear

equation

zi, = DU(vi)f+e, £=0...K (5.2

The vectors z;, represent the samples of the measured images scanned in some fash-
ion to form Ny, dimensional vectors. Likewise, f represents the unknown origina high reso-

lution image similarly scanned to form a Ny dimensional vector. The matrix D captures the
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downsampling operation (which leads to aliased images), and U(v;) the translational motion
operation with v;, = [v,, v,]? being the unknown translation vector for measured frame k.
Finally, e, represents the vector of additive white Gaussian measurement noise with variance
O'2 .

For the purpose of this chapter, we make several additional assumptions about our
forward model (5.2). First, we assume that the unknown high resolution image f is a bandlim-
ited image sampled above the Nyquist rate. In other words, the unknown high resolution image
does not contain aliasing, but the noisy measurement images do contain aliasing. From this as-
sumption, the matrix U(vy) (which we will refer to as Uy) representing the translational shift

of theimage f(n —vo,, n2 — vy, ), reflects aconvolution operation with ashifted 2 dimensional

sinc function. In other words,
f(m — Vo, N2 — 1}02) = f(nl, ng) * *sinc(nl — V0, N2 — ’1)02)

Such a motion formulation allows arbitrary, possibly non-integer shifts. The matrix U, has
the property that U;{Uk = I where I istheidentity matrix. In other words, shifting the image
followed by ashift in the reverse direction does not change the pixel values of the high resolution
image. Furthermore, we note that when the motion vector v;, reflects integer shifts (in units of
high resolution pixels), then the matrix Uy is simply a permutation of the identity matrix I.

Second, we assume that the downsampling operation is based on a known downsampling factor

1

57z+ For our purposes, we assume that the downsampling factor A is an

M where F& =
integer. The M? come from the assumption that the downsampling factor for both the 2; and
xo dimensionsis M. Thus, D isan Nz, by Ny matrix representing the downsampling operation.
Third, in our formulation, we suppose that K + 1 low resolution measured images are available.
Without loss of generality, we assume that the initial image z, dictates the coordinate system so
that Uy = I and hence we only have to estimate K unknown trandation vectors v;, during the
super-resolution process for a given set of K + 1 low resolution frames.

Depending on the application, it isnatural to distinguish the problem of estimating the

tranglational motion parameters {v;, } from the estimation of the image f. To simplify the nota-
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tion, we define v to be the set of all unknown motion parameters, or ¥ = [t,, Vi,, - - - » Uiy, VK, -
Because of this dichotomy, we show the Fisher Information Matrix J(f, ¥) using the following

partitioned structure

J(E,7) = o Jey (5.3)

I Jwe
where the matrix Jg captures the available information solely pertaining to the unknown image
f, and Jy the information pertaining the motion parameters v, and Jgy reflects the informa-
tion inter-correlation between the two sets of unknown parameters. Were Jr; = 0, then the
problem of image reconstruction could be de-coupled from the prablem of sub-Nyquist image
registration. Aswe shall show momentarily, such structure is impossible except for degenera-
tive cases which are of no practical interest. Thus, we argue that the problems of sub-Nyquist
registration and image reconstruction must be solved in ajoint fashion. Consequently, through-
out this chapter we study the performance bound on image reconstruction as a byproduct of our
analysis.

Although the estimation must be performed jointly, based on the block decomposition
of (5.3), we can separate the performance analysis for the two estimation problems using the
block matrix inversion principle [67]. Using this principle, the inverted FIM (and hence the CR
bound) is given by

JUE W) = S’ T eSSy (5.4)

-1 -1 -1
RSN N S

where the S matrices are the Schur matrix complements given by

S = Jov — Jfedg' Jes (5.5)

S¢ = Jg—Jeed i Iis (5.6)

In this block partitioned formulation, we see a certain symmetry of the two estima-

tion problems. At first glance, we observe that there is a net loss in information due to the
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interdependence of the two estimation problems because the second terms in (5.5) and (5.6)
are positive semidefinite matrices. For instance, in the case of trandation estimation, the term
J fTvJ f‘flJ ¢y represents the orthogonal projection of the information about the registration pa-
rameters projected onto the linear subspace encompassing the information about the unknown
image f [68]. The Fisher Information captures the relationship between small perturbations of
the unknown signal parameters and the likelihood function of the measured data. As such, the
net loss of information reflects the ambiguity arising from a small perturbation in either sets of
signal parameters producing the same perturbation in the likelihood function. Simply put, such
a structure captures the ability to distinguish variations in the measured data as depending on
one parameter set versus the other.

Typically, for the problem of image reconstruction, we are interested in a performance
measure reflecting the goal of reconstructing an entire image f. One natural performance metric
is the component-wise MSE summed over all pixels in the image. The CR bound for such a
measure of image restoration over the entire image is given by

tr(MSE(£)) 2 (s 2
T(f) = (T(TH())> > (TN—;> (5.7)

Asintroduced in Chapter 3, the CR bound for such an overall performance measure is given by
rmse(f) > T(f) (5.8

where 7mse was defined by equation (3.7). This performance measure offers a bound in units
of gray levels.

Similarly, an overall measure of registration performance for the set of unknown
trandations is given by the average M SE in estimating the entire set of unknown motion vectors

V. We denote the bound on such a performance measure by

r(S:1 %
T(F) = (t ;‘i} )> (5.9)

which gives the root average MSE error in estimating translation units of pixels over the given

set of K unknown trandations. The 2 comes from the 2 components of vi,. The corresponding
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CR inequality is given by
rmse(V) > T(V) (5.20)

It is the structure and behavior of these performance measures which we analyze in the follow-

ing section.

5.3 Analysisof the CR Bound

In this section we explore the various aspects of the joint registration and restoration
problem as it relates to the CR bound. Specifically, we study the complex relationship between
image content, noise power, and motion vectors. We break down the analysis into the two
subprablems of sub-Nyquist image registration and image reconstruction. For each subproblem,
we first study the scenario where there is no available prior information about the unknown
parameters, or J, = 0. Later, we study the effect additional prior information has on the
estimation performance bounds for each subproblem. To simplify the presentation and convey
the maximum intuition, we study the 1-D version of the problem. Where applicable, we denote
the unknown motion for the 1-D case by the scalar trandation parameter .. We show in the
appendix later that the extension to 2-D is straightforward.

Before we begin our analysis, we note that much of the analysis is simplified by
examining the problem in the Fourier domain. Furthermore, many of the relevant matrices are
diagonalized by the Fourier Transform alowing very efficient numerical implementations. To
differentiate between the Fourier domain and spatial domains, we use atilde as inf to indicate
vectors and matrices in the Fourier domain. Furthermore, we note that because the Discrete
Fourier Transform (DFT) operation (F = & ppprf) isaunitary transformation, the global bounds

on image reconstruction (5.8) remains unchanged. In other words,
tr(S; ) = tr(®pprSy '@ P pr).- (5.11)
because ¢ ppr isaunitary operator [67]. Thisis basically Parseval’s relation.
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For the duration of this chapter, we assume that the unknown image f and the mea-
sured images z;, are both real-valued signals. Such a constraint induces symmetries in the
frequency domain signal. Thus, whilethere are 2Ny coefficients (Vg real and Ny imaginary),
we only need to estimate Ny of these components because of the symmetry. For instance, we
define the problem as that of estimating the spectral coefficients in the positive frequency half-
plane. Furthermore, to avoid the use of complex notation, we separate the real and imaginary

components of the Fourier domain signal and stack them asin

[ Re{F (b, 2 N
f= Fly ) -, _m2m = 0,..., 2 (5.12)

raiFe) ) Ne TR
where F(0) is the DFT of the signa fo, f1,... (the components of f). Here, the 6, terms
indicates the spatial frequencies comprising the signal f. We note that the dimensions of the
image vectorsf and z are equal to those of their spatial counterparts f and z.

The convolution operator U is block-diagonalized by the DFT. As such, the shift

matrix Uy, is given by

O, - diag(cos(viby,)) —diag(sin(vgb,)) (5.13)
diag(sin(viby,))  diag(cos(viby))

Finally, the downsampling matrix D has the following structure

ﬁ:% D ~0 (5.14)
0 Dy
where
1, i=j5—2aNg, a=0,1,...
{Dr}ij = {1, i=2aN,—j, a=1,2,... (5.15)
0, else
1, ¢t=j—2aNp, a=0,1,...

(Dr}ij = { -1, i=2N,—j, a=1,2,... (5.16)

0, else
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This structure reflects the spectral 'folding’ or aliasing due to the downsampling operation.

Figure 5.1 shows an example image of the matrix D for M = 3. We note that in the Fourier

Figure5.1: Image of the matrix D for M = 3.

domain, the upsampling operation (D’ in the time domain) is noted DT where
T

DT = (5.17)

differing from D only in that the weight % is not used.

Under these assumptions, we can show that the terms of the FIM J, are given by

K K

~ 1 i~~~ 1 ~

Jg = ;ZU{DTDUk: ;ZQ(vk) (5.18)
k=0 k=0

~ 1 i~~~ ~ 1 ~ ~

Jeo = ﬁ[”' UgDTDUk@f ] = ﬁ[”' Q(vp)Of -] (5.19)

~ 1 ~ e~~~ ~ 1 ~ ~ ~

Jow = —diag[f"®"UD™DU,0f] = — diag[f’ ©" Q(v;,)Of] (5.20)

(o (o

where the matrix © arises from
0 ~ . 0 diag{0;} -
5, 0(ur) = U(y) T =U0wye (5.21)
Uk diag{0;} 0
The matrix ® corresponds to a derivative operation in the spatial domain. The derivation of
these terms for the 2-D case can be found in Appendix 5.A. To simplify the notation, we

represent the derivative signal byd asin



The matrix DTD can be interpreted as a projection operator which maps the high
resolution (dimension) image onto a lower dimensional measurement space. Simple calcula
tions will verify that DTD = DTDDTD. Furthermore, because the operator U, is a unitary,
Q(vr) = UIDTDU; is also a projection operator [67]. Finally, we note that the matrix Qy,
can be expressed as alinear combination by

M-1

Qk = <I+ Z ¢ cos(maoy) + Al Sln(mqﬁk)]> (5.22)

where ¢, = % The term ¢, can be thought of as the sampling phase offset for the kth mea-
sured low resolution image. This expansion is shown in Appendix 5.C. The matrices A, are
al symmetric matrices with zeros along the diagonal. They represent the portions of the folded
spectrum due to the downsampling. As we shall soon show, the information content present in
the signal is dependent on the sampling phase offset ¢. Or, the Fisher Information is a periodic
function of the the motion in the range v € [0, M]. In the following sub-sections we analyze
the CR bound matrices associated with subproblems of image reconstruction, registration, and
restoration. As we shall show, the CR performance bounds associated with the image recon-
struction problem possess a certain symmetric interdependence with the bounds on sub-Nyquist

image registration.

5.3.1 Boundson Registration of Aliased | mages

In this section, we analyze the performance bound for the problem of registering
aliased images. For this problem we must study the matricesJ ¢ and jfvjf}ljf; of (5.5). To
date, the problem of registering aliased images has not been studied in relation to that of image
reconstruction. As we will show in this section, if the images to be registered are sampled
above the Nyquist rate, then image registration can be performed in a pairwise fashion and the
registration performance isindependent of image reconstruction. When the images are sampled
below the Nyquist rate (hence are aliased), however, image registration and reconstruction are

tightly coupled problems and they must be solved jointly using the entire set of images. In this
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section, we study the overall registration performance bound 7'(v), as measured by (5.9), and its
relationship to the image reconstruction performance arriving at ageneral CR bound for aliased
image registration.

We can learn much from the performance bound for sub-Nyquist image registration
by looking at the first term of Sg, which is Jo¢. In fact, this term is the FIM for image regis-
tration when the high resolution image? is known prior to estimation. As such, j\;\_} offers an
optimistic lower bound on sub-Nyquist registration performance. BecauseJ ¢ isadiagona ma
trix, we can infer that, were the high resolution imagef known prior to estimation, the process
of registering the measured images to the known high resolution image could be performed in
aframe-by-frame fashion. Such an observation is consistent with the intuition that, if given the
high resolution imagef, one need not look at other low-resolution frames to register a particular
low resolution imagezy,.

In looking at the diagonal terms of the FIM sub-matrix jw, we can see that the
information for a particular frame {jw}kk, depends directly on the unknown translation

according to the function

M-1
_ % (aTa + 30 (@7 AGd) cos(ma) + (d7A,d) sin(m¢k)}>(5.23)

m=1
In other words, the information necessary for registration depends on the energy in the spatial
derivatives (texture) of the unknown signal d projected into the lower dimensional measurement
sub-space via the operator Qk defined in (5.18). We can make severa observations about the
information function Z as it relates to the signa f, motion vectors g, and the downsampling
factor M. First, recalling that d = ©f, we see that any low pass filtering due to the blurring of
theimaging system reducesthe ability to register theimages by damping the energy in the higher
spatial frequencies. For example, let us suppose that, prior to capturing the image, the image
function were to be blurred by a low-pass filter denoted H. Then, Z(¢, ©f) > Z(¢, ©HIF) for

al sampling phase offsets ¢. This generalizes the observation introduced earlier in Chapter 3
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that higher frequency information or texture improves the ability to register images. Naturally,
the amount of information lost due to the low pass filter H depends on the spectral content of
the image f. Second, we now see the periodicity of the Fisher Information Z as a function of v
with aperiod of M. For the super-Nyquist case studied in Chapter 3, the information matrix was
shown to be independent of the unknown trandation v. Because of the downsampling operation
D, this observation no longer holds for sub-Nyquist registration. In general, the information
lost due to the downsampling operation can be quite significant.

As afirst approximation, the downsampling operation aone reduces the information
on the order of % For example, Figure 5.2 shows the value of 7 (¢,a) of (5.23) throughout
the range of sample phase offsets ¢ using the signal f shown in Figure 5.6. The function is

shown in polar coordinates about the angle ¢. Immediately, we see that the information can

90

15000

==L
nwowonn

AWN P

*A Do

270
Figure5.2: Polar plot of Z(¢, d) (in units of %) verses ¢ (in degrees) for different downsam-
pling factors.
vary quite dramatically for different sampling offsets ¢. Because the performance bound can
vary so widely for different values of ¢, it isimportant to explore the entire space of trandlations
v when performing simulation-based experiments. We note that this has generally not been the

practice in the past.
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Perhaps more common is the scenario where the estimator has no knowledge of the
high-resolution "reference” image prior to registration of the low resolution images. In this
situation, the information loss due to uncertainty about the high-resolution image is captured
by the term J£.J 2! J¢¢. By way of the matrix inversion lemma[67], we see that the complete

performance bound is given by

Sit = I RIS el (5.24)
From this equation, we see that the performance bound for sub-Nyquist image registration is
dependent on the image reconstruction performance bound §f‘ L. Consequently, if the set of
trandations is such that the image reconstruction is ill-posed (or§f is singular), then the cor-
responding problem of image registration is ill-posed as well. In other words, if the signalf
could not be reconstructed even if the sampling phase offsets were known perfectly (hence5‘f
is singular), then the problem of registering the aliased images is singular as well. When the
Fisher Information matrix is singular, any unbiased estimator of the set of translations will nec-
essarily have infinite variance [69]. This raises avery important point concerning the canonical
experimentation scenario used in [43, 70]. For such experiments, an image is downsampled ac-
cording to the forward model (5.2) and experiments which perform pair-wise image registration
are presented. For 2-D images, a pair of images is always insufficient to reconstruct the under-
lying high-resolution image. As such, these experiments fail to acknowledge the implicit bias
which necessarily accompanies such algorithms. Without prior information about the unknown
image, unbiased pairwise registration of aliased images isimpossible.

In fact, even when M measured images are available with the trandations falling
perfectly onto the high resolution sampling grid, the problem of multiframe image registration
is still ill-posed. While such image measurements can be shown to be optima from a signal
reconstruction perspective (assuming the trand ations were known) [71], when the translations
must also be estimated from the data, the Fisher Information is singular. This is proved in
Appendix 5.B. Furthermore, it can be shown that the FIM is singular whenever the offset differ-

ences modulo M, {mody; (vi, —v;)|Vi, j} havelessthan M + 1 unique elements. Furthermore,
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the FIM becomes very ill-conditioned when the offset vectors are even 'near’ singular regions.
For example, Figure 5.3 shows a surface plot of the CR bound 7'(v) for a downsampling fact
M = 2 when three measured frames are available (K = 2) for the signa in Figure 5.6. We
see that near the boundaries v 2 = v, and aong the line v; = v9, the CR bound goes to

infinity (the values are cropped for display). The performance bound exhibits similar behavior

Root Average MSE bound, M =2, K=2

o o

Root Average MSE bound (pix)
IS

(SN

05
05

v, (P 0 o v, (pix)

Figure5.3: Plot of T'(¥) for the signal of Figure 5.6 with M = 2, K = 2.

when extended to higher dimensions. Here, we see that performance bound for equally spaced
trandlations v; = %, v, = 3 fals within the well of the performance bound plot. Thus, while
equally spaced trandations may not offer the best set of trandations, it ensures that the perfor-
mance bound does not exhibit the singular behavior. We note that such singular behavior is
independent of the signal under observation. Furthermore, as we will show later in Section 5.4,
such singular behavior can be mitigated with prior information. In this section, however, we
assume that the additional information comes from an additional |ow-resolution measurement
at aunique offset. This guarantees that the Fisher Information will not be singular.

Because of the complicated structure of the CR bound, henceforth we compute the
bound numerically for a given signal, trandations, and noise power. For example, Figure 5.4

shows the overall performance bound 7'(¥), over the set of unknown motions for the signal

shown in Figure 5.6. Each point in the plot indicates the performance bound for aset of K + 1
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frames with equally spaced trandations in the range [0, M| assuming noise power & = 1.
We note that increasing the number of frames does not affect the performance bound for the

Registration RMSE Bound vs Number of Frames
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Figure 5.4: Overall Registration RMSE bound T'(¥) for equally spaced translations.

super-Nyquist scenario when M = 1. This suggests that an algorithm that performs pairwise
registration could conceivably work as well as a more complicated algorithm which estimates
a set of registration parameters using a set of low resolution images. This is not the case when
the low resolution images contain aliasing. For downsampling factors greater than M = 1, we
see that increasing the number of measured frames improves the overall performance bound.
In some cases, the presence of additional frames cuts the overall performance bound in half.
We can interpret this to mean that optimal sub-Nyquist image registration algorithms must es-
timate the set of translations {v; } from a set of low resolution measurements in ajoint fashion.
Estimating translations in using subsets of the collection of measured images {z; } will nec-
essarily result in a poorer performance bound. We shall see an example of such performance
degradation in our experiments section.

Idedlly, we would like to study the performance bounds as a function of these offsets
as they deviate from the equally-spaced scenario. Because of the difficulty in characterizing

this explicitly, instead we study the average performance bounds when the offsets are drawn
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from a uniform distribution over the range [0, M]. In doing so, we can observe the qualitative
behavior of the bounds as it relates to the set of translations {, }. For example, the Figure 5.5
shows T'(v) for 1000 sets of such random trandlations as dashed curves (shown in log scale)
for the downsampling factors M = 2,3,4. For comparison, the dark-dashed lines represent

Registration CR Bound vs Number of Frames for Random Translations
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Figure5.5: Registration CR bound T'(¥) vs number of frames K + 1 for randomly selected trandlations.

the performance bounds for the equally spaced motions and the dark-solid lines represents the
average of T'(v) over the 1000 random sets of translations. We can make several observa-
tions about the relationship between the performance bounds and the set of trandations. First,
we observe that the performance bound can be significantly worse for random offsets than for
equally spaced offsets. While the random translations can sometimes offer slightly improved
performance bounds, the equally spaced offsets provides a good approximation to the overall
performance bound. Second, as the number of frames increases the average performance bound
for the random offsets approaches the bound for the equally spaced offsets. This suggests that
were the trangdlations actually drawn from a random distribution, as the number of frames in-
creases, we can reasonably expect the performance bound to be approximated by the equally
spaced trangdlations bound. Third, we see that the performance bound seems to flatten out sug-

gesting that after a certain point, additional frames do not improve the performance bound for
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sub-Nyquist registration.

5.3.2 Boundson Image Reconstruction

As we saw earlier, the bounds on image registration depend, in part, on the perfor-
mance bounds in reconstructing the imagef Therefore, we now study the performance bounds
for the problem of multi-frame image reconstruction. To study the performance bounds associ-
ated with image reconstruction, we must analyze the matrix S¢ of equation (5.6) in the context
of image reconstruction.

As in the last section, the first term of Sg, which is Jg, reflects the available in-
formation for image reconstruction when the estimator has full knowledge of the translation
parameters prior to reconstruction. In fact, J¢ isthe FIM for such a scenario. Correspondingly,
3&1 offers an overly optimistic bound on the more genera problem of image reconstruction
when the tranglation parameters must be estimated from the data. Another way to see thisis by

noting that
Je > Jeed 0L (5.25)

in the sense that the difference between these two terms is a positive semi-definite matrix [67].
From this, we see that ;' < S; . Even as aweaker lower bound, much can be learned about
the problem through analysis of Jg by itself.

When analyzing the problem in the presence of aliasing (M > 1), we can interpret
the matrix Jg as a generalization of accumulating the amount of measurements for each high
resolution pixel. We use the term amount rather than the number of measurements because
when the sampling offset falls in between two grid points (i.e. not an integer), the pixel mea
surement is spread across the local pixels. By grid points, we refer to the common terminol ogy
used to describe the M, (or M x M for 2-D), sample locations corresponding to integer shifts
of the high resolution image. This observation about Jg has been noted for the case of integer

motion in [72]. Because of this, we expect the performance bound to vary spatially depending
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on the set of trandations. In this section, we do not address the concern thatjﬂe might not be
full rank. The condition number of Jg is related to the performance of signal restoration from
interlaced sampling. This problem has been well studied in the signal processing community.
For instance, [71] analyzes the stability of restoration for a given set of sampling offsets. It is
interesting to note that the authors show that the ideal sampling offsets (assuming the offsets
are known perfectly) corresponds to integer trandations. We now show the more general prop-
erty that tr(if‘fl) is minimized by equally spaced motions v € [0, M] (not necessarily integer

motion). To see this we use the matrix inequality
)22

which applies for all maIricesjff which are symmetric [73]. Thus,

5.26
{Jff}zz ( )

~ 1 o’NyM
—1 _ H
tr(Jg) > E Tl o (5.27)

Next, we note that the matrix J¢ for equally spaced mations is given by

M-1
Jg = —Z(I—i— Z [AY, cos(my) + A}, Sln(m¢k)]>

1 M-1 K
= a7 ((K + DI+ YD A, cos(mey) + A, sin(mqbk)])

m=1 k=0

K+1

= ——1L 5.28
] (5.28)

where the trigonometric terms cancel since the motions are equally spaced. In other words,

the trigonometric sums are of the form Y"1 cos(ZL) = ST o sin(ZE) = 0. As such,

tr(Jgt) = %flM showing that equally spaced translations, assuming they known prior to
image reconstruction, matches the weak lower bound (5.27). Thus, the set of all equally spaced
motions achieves the bound on image reconstruction performance. Uniformly or equally spaced
trandations arise naturally if we assume that the image measurements are taken as samplesin
time of a scene with constant motion v(t) = ct sampled uniformly at ¢ = k7. Furthermore,

it is not unreasonable to assume that if the images are samples from a scene whose motion
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is very slowly varying, for short periods of time, and high frame rates, the motion model is
approximately constant.

To begin looking at the more general case, where the tranglations are not known a
priori, we analyze the simple scenario where M = 1, or no downsampling (and hence no alias-
ing). The performance bound for this case characterizes the general behavior of the performance
bound for M > 1. By way of the matrix-inversion lemma [67], we see that the general inverse

Sy ! can bewritten as
Sito= T+ I TSI (5.29)

(Here again, we see that jgfl is aweak lower bound on reconstruction performance.) When
M =1, wehave
1 K dd?

S-1
p— I ~ o~
5 T ETDara

. (5.30)

In this case, we see that for M = 1, the form for Jg is independent of the trandations. The
second term is a rank 1 matrix composed of outer product of the spatial derivative signd d.
Such aterm reflects the idea that image reconstruction (and later restoration) is more difficult
in the textured regions. Essentialy, this reflects the intuitive observation that errors in motion
estimation will be most detrimental to image restoration in highly textured or high spatial fre-
guency areas. For example, poor registration during multi-frame image reconstruction causes
an edge-like feature to be distorted, creating sawtooth type artifacts [63]. This presents an in-
teresting tradeoff in that the very image content which is easiest to register (highly textured) is
also the content which is most prone to errors in the reconstruction. The full derivation ofgl: !
for the case M = 1 can be found in Appendix 5.D.

When M > 1, the second term J' J¢¢S; ' IR J " adds uncertainty in the regions
with large spatia derivatives. The graphs of Figure 5.7 shows the variance bound (diagonal of
S¢ 1) for estimating the coefficient for each pixel/frequency for the signal shown in the graphs
of Figure 5.6. The bound was calculated assuming four measured low resolution images with

thetranslations {0.5, 1, 2} and the reference frame, adownsampling factor of A/ = 3 and noise
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Figure5.6: Plot of the signal f (left) and its separated Fourier Transform f (right).

power o2 = 1. Here, we show the bound in the spatial domain to simplify its interpretation.
The per-pixel variance bound has two distinct characteristics. First, the sawtooth-like periodic
function comes from Jg' which reflects the amount of measured data associated with each pixel
location in the high resolution image. Thisterm isindependent of the signal f and depends only
on the number and the offsets of the low resolution images. Second, the spikes in performance

bound arise from the J ! J ¢S ' J%.J 2! term. Note that the spikes in the bound correspond to

the locations of the 'edges’ or high-frequency detail in the original spatial domain signal f.

Pixlewise RMSE Bound in Spatial Domain
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Figure5.7: Variance bounds on image reconstruction shown for every pixel.
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We can obtain a weak lower bound on the overall reconstruction performance using

the inequality

~ N2
TS 2 T'r(%f)

from [68]. From this, we can bound on the RMSE bound T'(f) by

N

N
TE) > o - =
Tr(Jg) — Tr(Jeed oz If:)

1

. Ny 520 MNy 2
NulKFD) _ pe Nu(K+1) - KM

MNy 2
= 0
Ny(K+1)— KM

(5.31)

To compare this bound with the actual performance bound as the number of frames increases,

we computed T'(f) for the signal shown in Figure 5.6 assuming > = 1. In Figure 5.8, sym-

bols show the value of T'(f) for equally-spaced offsets. The solid lines indicate the weaker
bound of (5.31). We note that the generic bound is fairly accurate, but seems to weaken as the
downsampling factor M increases. Thisfurtherstheideathat equally spaced motions are nearly
ideal for the problem of image reconstruction. We note that the weak bound suggests that the
performance of image reconstruction depends primarily on the number of frames available.
Finally, to understand the sensitivity of the performance bound on the set of motion

vectors v on the overall reconstruction performance bound, we compute the performance bound

for randomly selected motions. In other words, we compute the value T'(f) for the signal

in Figure (5.6) for motion vectors drawn uniformly in the range [0, M]. Figure 5.9 shows

the computed performance bound 7'(f) for these randomly drawn translations as the cloud of

points. The solid line indicates the average of T'(f) over the random set for each vaue of

K + 1. Asapoint of reference, the dashed lines indicate the bound 7'(f) for the equally

spaced trandations. While Figure 5.9 does not offer insight into the functional relationship
between 7'(f) and ¥, it does show that as the number of frames increases, the variability of

T'(f) diminishes quite substantially. To summarize, if given alarge enough collection of images
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Image Fusion RMSE Bound vs Number of Frames
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Figure5.8: Plot of T'(f) (symbols) and the weak bound approximation (5.31) (solid lines) vs K + 1 for
equally spaced trandations.
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Figure 5.9: Scatter plot of T'(f) for random trand ations vs number of frames K + 1.

with reasonably random offsets, the performance bound can be expected to be very close to the

bound for equally spaced trangd ations.
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54 CR Bound with Prior Information

In practice, it is not uncommon to have some information about the unknown image
prior to estimation. Such information is captured in the CR bound by the information term J,
in (3.5). Perhaps the most common form of prior information comes in the form of a Gaussian
prior distribution over the space of unknown imag&f [64,72]. It suggests that the unknown
image comes from the distribution f~N (155 %Cff), where 4z is the mean image with a co-
variance C; and ) is a parameter capturing the overall confidence in the prior knowledge. In
an algorithmic setting, often the A term is used as a tuning parameter to control the strength of
the prior information and hence its effect on the final estimate. From a statistical perspective,
however, this term should reflect the true prior distribution. The Gaussian prior distribution has

the probability density function

~ 1 A ~ o~
(5)2|Cq2
Typically, the image distribution is assumed to have a diagonal covariance matrix G of the

form
C.— diag(Re[X (6;)]) 0 (5.33)
0 diag(Im[X (6;)])
where X'(6) isthe the power spectral density for the image signal which isthe Fourier transform
of the image autocorrelation function. Prior information of this sort stems from some physical
property relating to the functional smoothness of the image signal. In the Fourier domain, a

natural measure of functional smoothness is given by
X (0)] ~ (5.34)

where 7 defines the global smoothness of the signal function [74]. Typicaly, the smoothness
is chosen such that » = 2. The foundations of this prior information can be traced to physical
properties inherent to natural scenes [52]. Such prior information can be interpreted to mean

that the variability of the image signal diminishes for higher spatial frequencies.
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Assuming that no prior information is available about the unknown tranglation pa-

rameters, the additional information provided by the prior onf is given by

T

I, = A (5.35)

Interestingly, when n = 2, we see that Cg I — ©7@. In other words, the statistical prior offers
information about total energy in thefirst derivative of the signal. Thisform of prior information
iscommonly utilized in the literature to motivate the regul arization penalty term in a Maximum
A-Posteriori (MAP) estimator.

Typically, iterative super-resolution algorithms operating in the spatial domain use a
finite impulse response (FIR) filter to approximate G ! which for the case n = 2 turns out
to be an FIR derivative filter. For example, perhaps the most common filter used to regularize
the image estimates is the Laplacian approximation filter whose 1-D analogous filter is given
by [—1, 2, —1]. In practice, higher order filter approximations can, but are rarely, used to more
effectively incorporate prior information. Throughout the simulations which follow, we assume
that the 1st order Laplacian filter approximation is used.

The prior information examined thus far is generic in the sense that it can be applied
to alarge class of images. Unfortunately, the generality of such prior information ultimately re-
ducesits effectiveness in improving performance. Ideally, the practitioner of multi-frame image
reconstruction and super-resolution may be able to ascertain more precise information when fo-
cusing on aparticular application. In some situations, statistical properties about a certain class
of images can be learned from large data sets providing very useful information. For instance,
the authors of [75] show examples of incorporating learning-based priors into super-resolution
for the particular restoration of facial and text images. It must be noted, however, that much care
must be taken to ensure that training data sets are truly representative of the class of imagesfor a
particular application. Otherwise, the practitioner runs the very real risk of producing estimates
heavily biased towards the training set. In many settings, a non-informative prior (suggesting

higher variance) is safer than producing a biased estimate.
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We now show the effect of such prior information on the respective bounds of image

reconstruction and aliased image registration.

5.4.1 Prior Information and I mage Registration Performance

In this section, we address the performance bound for image registration in the pres-
ence of aliasing under the assumption that prior information is available. Previous algorithms
for sub-Nyquist registration implicitly incorporate prior information about the unknown signal.
For instance, in [43], the authors make the observation that the effects of aliasing on measured
image spectra is most prominent at high frequencies. As such, a generic algorithm for sub-
Nyquist registration when M = 2 (or M = 4 for the 2-D scenario) is proposed which applies
a nonlinear mask to the measured data prior to estimation to account for such aliasing effects.
While such an algorithmic approach may indeed offer improved performance, the characteriza-
tion of the prior information is ad hoc and needs to be quantified not only to understand general
estimator performance, but also to derive efficient unbiased estimators.

Prior information about the unknown image can improve the performance bound for
image registration, even in the event that no direct prior information is available about the un-
known translations. Here, we focus on the performance bounds for the singular casesintroduced
in Section 5.3.1 and show how a prior on the image?, such as the Gaussian prior of (5.35), can
significantly mitigate the singular behavior of the performance bound on motion estimation. For
instance, in Figure 5.3 we showed the singular behavior of the CR bound for M = 2, K = 2
when the trand ations were near the singular set of translations. Correspondingly, the two graphs
of Figure 5.10 show the same performance bound surface as Figure 5.3 with the addition of a
Gaussian prior on the unknown image of the form (5.35) with A = .001, and A = .01. We see
that the singular behavior near the integer motion shown in Figure 5.3 has been substantially
diminished by the addition of prior information aboutf. Furthermore, we observe that the prior
information does not affect the performance bounds away from the singularities. This suggests

that if the motions were approximately equally spaced, little to no prior estimation is necessary
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Figure 5.10: Surface plot of T'(v) with prior informationfor M = 2, K = 2.

to accurately register the images.

Next, welook at the effect of adding prior information while increasing the number of
frames. Figure 5.11 shows the performance bounds averaged over the same 1000 random offsets
from Figure 5.5, thistime assuming differing amounts of prior information as parameterized by

A. Rather than show the point clouds of Figure 5.5, only the value of T'(V) averaged over the
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1000 random trandations for M = 4 is shown. As evidenced by Figure 5.5, when the tranda
tions are random, the performance bound tends to fluctuate wildly when only a few frames are
available. For comparison, the faint lines show the performance bounds for the equally spaced

trandations for the same values of A. When the trandations are random, even small amounts
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Figure 5.11: Registration CR bound for M = 4 with prior information vs number of frame K + 1
averaged over the set of 1000 random tranglations.

of prior information substantially improves the stability of the performance bound when only a
few frames are available. By stability, we refer to the fact that the average performance bound
T'(V) over the set of 1000 random translations is much lower. Of course, when the trandlations
are equally spaced, however, the problem is well conditioned and such small amounts of prior
information does little to improve the performance bound.

In the last section, we studied the optimistic performance bound jv:vl which bounds
performance where the imageffT is known prior to estimation. When we have a prior onf, as
the strength of prior information (in our case parameterized by \) increases, the bound will
approach this optimistic bound. For example, Figure 5.12 shows the performance bound for
equally spaced trandations versus the number of frames K + 1 as the A goes from O (no prior
information) to oo (perfect knowledge of the imagef). The image function used in this experi-

ments is that of Figure 5.6. Here, we see that as A increases, the bound approaches that ofjviv1
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Registration CRB vs Number of Frames with different lambdas
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Figure 5.12: Registration CR bound for M = 4 with prior information vs number of frame K + 1 as A
goesfrom 0 to cc.
(thick dotted ling). When the prior information reaches this point, multiframe registration offers

no improvement over pairwise estimation as evidenced by the flattened performance curve.

5.4.2 Prior Information and I mage Reconstruction

As expected, prior information about the unknown image? naturally offers informa-
tion about f. Specifically, we see that a Gaussian prior onf corresponds to a Gaussian prior

information on f accordi ngto

f ~ N (g, AC5). (5.36)

Recalling that J = J; + J,, we see that the only term which changes with the addition of prior
information is Jg which is now given by
~ 1 Ko
Je = — > Qux) + AC;! (5.37)
k=0
In practice, such prior information mostly helps improve performance in the high
frequency regions. For example, Figure 5.13 shows the CR bound on the variance per pixel

(in the spatial domain) for the signal of Figure 5.6 with different amounts of prior information

captured by A. The bound was computed for M = 3 and K = 4 equally spaced motions (hence
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the lack of sawtooth behavior). It is apparent that the addition of prior information improves the
performance bound in the flat regions somewhat, but has a much more significant effect at the
edge locations. Thisimprovement can be explained by both the additional knowledge about the

Pixelwise Variance Bound with different Prior Information
1.6 T T

= No Prior
= = lambda = .5
 lambda=1

141

0.8

o8 V\—MA.MNN L_A/

A nohA n

Iy

P AP N, LA

Variance Bound (gray Ievel§)

. .
.
B S LR L L SO

0.2 L L
0 50 100 150
Pixel Index

Figure5.13: CR variance bound per pixel with different amounts of prior information.

high frequency content as well as improved registration performance.

5.5 Multiframe Image Registration Experiments

In this section, we compare the estimator performance of astandard multiscal e gradient-
based estimation algorithm as well as the aliased image registration agorithm [43] with the
corresponding CR bounds on multi-frame aliased image registration. As we have shown pre-
viously, the standard gradient-based algorithm is designed to address non-aliased images. For
our experiments, we used a 3 level multiscale algorithm with the Fleet gradient filter shown to
offer reasonable performance in Chapter 4. Such an algorithm is expected to perform poorly in
the presence of aiasing. The Stone et.al. algorithm [43], however, was specifically proposed to
address the problem of registering a pair of aiased images. As we have shown, without prior

information, such pairwise aliased image registration isill-posed. In deriving the agorithm, the
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Figureb5.14: Treeimage with no downsampling (left), M = 2 (middle) and M = 3 (right).
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Figure5.15: 2-D Equally-spaced trandationsfor M = 2 and M = 3.

authors make several heuristic observations which they use to motivate the algorithm. In par-
ticular, the algorithm applies a nonlinear weighting of zeros and ones (a mask) to prune away
portions of the image spectrum where the negative effects of aliasing are assumed to worsen es-
timation performance. For our experiments, we used parameter settings recommended in [43].
As we shall see, while such assumptions improve performance over the gradient-based algo-
rithm, the a gorithm’s performance suggest significant room for improvement.

We perform our experiments using the Tree image shown in Figure 5.14. Figure 5.14
also shows an example of the Tree image downsampled by afactor of M = 2 and M = 3.

We conduct experiments using equally-spaced trandation (in 2-D). In order that the

estimation problem be well conditioned, weuse K + 1 = 8 framesfor M =2and K +1 = 16
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frames for M = 3. Figure 5.15 shows a scatterplot of the trandlation locations. Such offset
locations guarantee that the FIM iswell conditioned for both downsampling factors.

We evaluated the estimator performances for SNR values ranging from 20 to 60 db.
Both registration algorithms were applied in a pair-wise fashion assuming the same reference
frame. Figure 5.16 compares the performance of the two algorithms with the CR bound for
the given set of images. Each point on the curve represents the value of 7mse(v;) computed
numerically for 500 MC runs. Here we see that the Stone algorithm outperforms the gradient-
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Figure 5.16: Experimental 7mse(v) versus CR bound for M = 2 (blue) and M = 3 (red).

based algorithm at higher SNR’s. We see that for SNR of 20 db, the gradient-based algorithm
actually improves performance. Thisindicates that the statistical estimator bias balances out the
deterministic bias associated with the gradient-based algorithm. Again, both algorithms show a
flattening out of RM SE performance as SNR increases indicative of significant estimator bias.
For a downsampling factor M = 3, the bias for both algorithms is greater than %0 of a pixel.

While such biasis highly dependent on the original image content, such estimator performance
suggests that there is much work to be done in the area of aliased image registration. Overall,

we conclude from these experiments that the current approaches to registering aliased images,
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utilizing either asuper-Nyquist algorithm or a heuristically designed sub-Nyquist algorithm, are

inappropriate.

5.6 Conclusion

In this chapter, we have derived and explored the use of the Cramér-Rao inequality in
bounding the performance for the joint problem of multiframe image reconstruction and aliased
image registration. We have shown for the case of trandational motion how the problem of reg-
istering aliased images naturally depends also on the subproblem of image reconstruction. We
have analyzed the rel ationships between these two problems and characterized the performance
limits of each. In addition, we outlined the importance of prior information in stabilizing the
performance bound. Overall, the work has outlined several areas of research needing further
attention. For instance, the problem of registering aliased images has been almost ignored as
evidenced by the dearth of algorithms in the literature. Those that have looked at the problem,
have approached the problem in avery ad-hoc fashion ignoring the fundamental relationship be-
tween image reconstruction and registration. Furthermore, to date the few algorithms address-
ing the problem of joint image registration and reconstruction have not addressed the problem
from a proper estimation theoretic perspective. In our experimental section, the performance
gap between the CR bound and the popular sub-Nyquist registration algorithm [43] revealing
the need for further algorithmic development in the area of sub-Nyquist image registration. We
will discuss this more in our final chapter. Finally, we note that much of the analysis of this

chapter may be cross-applied to the problem of super-resolution.

5.A Fisher Information Matrix for the 2-D Scenario

In this appendix we show the necessary derivations for the 2-D version of the CR

bounds for multi-frame image reconstruction and motion estimation. Recall that the modified
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forward model in the Fourier domainis
Zr = DU(v),)f + &y

The vector f isa Ny dimensional vector with the first % dimensions representing the real

components and the the second % dimensions representing the imaginary components. For the
1-D scenario, we used 6; to identify the spatial frequency. For the 2-D scenario, we represent the
gpatia frequencies in the two dimensions as 6, and 6-. For the 2-D scenario, all of the matrices
have a similar structure as those of the 1-D scenario. Only the translation matrix ﬁ(vk) is

different in that the trigonometric terms are now are a function of the translation vector as
cos(v161, + v2bh;) and sin(v101; + vabs,).

The log-likelihood function for the observed datais given by

S &, L T e
{2z }E, V) = 55 > (Zk - DU(Vk:)f> (Zk - DU(Vk:)f>
k=0

Recal that the Fisher Information Matrix J isfor such a problem is given by

o21({z}IE, V>]

Jij=—E
7 0O

where 1); represents the particular parameter of interest. Computing these partial derivatives we

see that
21({ZVE, ¥ 1 [ & eme =
_E 0 ({Zﬁ}\ V) _ ZU{DTDUk
of? o2
k=0
and
. [ PU{F ) F, v)] 1 | f7eTUIDDU,O,f f7e7UID'DU;O,f
- - a.2 - 9 ~ e e~ ~ o~ ~ e e~ ~
vy o | FTelUID'DU,0:f 7elUID’DU,0,f

- fel.

where ©, - are the partial derivative operators in the Fourier domain which are block diagonal
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matrices of the form

0 —diag(0
o, — 9(61)
diag(6r) 0
0 —diag(0
0, — g(02)
diag(62) 0
Finally, we see that,
PL({Fk}HE, ¥) [ P e
-E s S T T
v OF o2 [UkD DU;0,z U, D'DU,O,f
= by
So that our final FIM is given by
N Jg Jeo
SR
JL T
where
~ K ~ ~
Jg = ) U/D'DU;
k=0
Jeg = [ by -]
_ [va}ll 0
Jyg = 0
0 0 [EW
KK

5.B Singular FIM for Translations” On the Grid”

In this appendix, we show that the Fisher Information matrix is necessarily singular

when the set of trandations {v} are al in units of whole pixels in the high resolution image.

This corresponds to the canonical example in super-resolution experiments of having the low

resolution frames falling perfectly onthe ”grid” points. In this derivation, it is easier to concep-

tualize the proof in the spatial domain. Again, we show the proof for the 1-D case to simplify

the presentation.
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When the trandations v, are multiples of integer sample translations, the matrixjf‘f1
is adiagonal matrix with the terms along the diagonal being KL where K; represents the total
number of low resolution frames with motions v, = wv; (corresponding to a particular grid
location for the high-resolution image). This property has been noted in [72]. There are only
M unique tranglations in the set of all translations and these tranglations are all integer offsets
of the reference frame (in the high-resolution image coordinates). In other words, the motions
are al on the super-resolution "grid” points. We use 4; to denote the index set such that v, =
vi, Yk € A;. Without loss of generality, we assume that the unknown translations are ordered

such that all k& € A; are contiguous. This ordering induces the structure onJ such that

COIKO 0 0
Jop = 0 0 (5.38)
0 0 C]V[fllKM_l

where the subscript I, indicates the dimension of theidentity matrix. The coefficients are given
by ¢; = Z(¢;, f). This ordering a so induces structure on the matrix jfv where the columns of
jf\‘,‘ which are associated with motions in the set 4; are al egqual. Because of the structures of

Jg and J ¢y, we see that J7.J ' I has ablock diagonal form

My, 0 0
HTg'Tee=| 0o . 0 (5.39)
0 0 My

where
1
M, = (—fTQlqQ,f) 117
(Lerarar)

= <IC(_ZZ> 117 (5.40)

where the last equality holds because Q is a projection operator and hence ' Q = Q.
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Thus, we see that the Schur complement Fisher Information is given by

Sg, O 0
Sg = o . 0 (5.41)
0 0 &, ,

where
e {IKZ. _ K%nﬂ )

Sg =
Ci [IKi — ﬁllT] , else

7

(5.42)

which accounts for the fact that the first trandation is assumed to be vy = 0 and is not an
unknown. This shows that the for the very common scenario where the motions are in units of
pixels, the information matrix is singular since &, is singular for ¢ # 0. Each matrix S, is of

rank K; — 1 suggesting that the matrix S isonly rank deficient by M — 1.

5.C Decomposition of the Projection Operator Q

In this appendix, we study the projection operator Qk First, we note that

~ e 1 [ Qh Qf
Q=UDDU, = | ' (5.43)
Q5 Qb
Here, we show that thereisasimplified M x M representation of the sub-matric&@ij. To see

this, we note that

I cos(p)I"  cos(gp)T  cos(26y,)1"
cos (¢ )I" I cos(2¢3)1"  cos(¢)I
Ql, = cos(dp)L  cos(264)1F I cos(3¢y)IF
cos(2¢5)1"  cos(gp)T  cos(3¢x)T" I
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where I represents the permutation matrix

| - : (5.44)

1 0

which when applied reverses the ordering of avector. Thus, we can represent the matrices much

more simply as

1 cos(¢)  cos(¢r) cos(2¢y)
cos(¢r) 1 cos(2¢x)  cos(oy)
Qfy = | cos(¢r) cos(2pr) 1 cos(3¢y)
cos(2¢)  cos(¢y)  cos(3¢y) 1

The pattern for thisis shown in Figure 5.17.

Cos@,
COS2¢,

Cos3¢p,

Figure5.17: Pattern of the sub matrix Q¥ .
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Similarly, the other sub-matrices are given by

1 —cos(¢p)  cos(dr)  —cos(2¢y)
— cos(¢y) 1 —cos(2¢)  cos(¢k)
Q% = | cos(d) —cos(2k) 1 —cos(3¢x)
—cos(2¢x)  cos(¢k)  —cos(3¢y) 1
0 —sin(¢p)  —sin(¢r) —sin(2¢y)
—sin(¢) 0 —sin(2¢x)  —sin(¢k)
Qf, = | sin(¢r) —sin2%) 0 —sin(3¢y)
—sin(2¢x)  sin(¢gr)  —sin(3dy) 0
0 —sin(¢g)  sin(¢r)  —sin(2¢y)
— sin(¢) 0 —sin(2¢x)  sin(¢y)
Qi = | —sin(¢p) —sin(2¢;) 0 —sin(3¢y)
—sin(2¢x) —sin(¢r) —sin(3¢x) 0

where ¢, = F

From this, we see that we can expand the matrix Qk as

M-1
Qk = — (I + Z ¢ cos(mor) + A, sm(mgbk)]> (5.45)

where theterms A, refer to the matrices of all £1’s denoting the locations of the trigonometric
coefficients cos(mgy,) and sin(mey). Such an expansion will help us understand the behavior

of the CR bounds.
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5.D Derivation of the Schur Matricesfor M =1

Here we look at the case where there is no downsampling (just image fusion and

registration). In this case we have that

Jg = (K+ 1) (5.46)
Jeg = [+ OF -] (5.47)
Joo = (?T@TG)?)I: (&T&)I (5.48)

First, we note that the Schur complement of Jgis given by

~ ~ %

1

. (AT3\T _ 3T 7.
= (d'd)I ran 1vava (5.49)
T3 T
= I- 11 .
d'd [ i1 } (5.50)
Using the matrix inversion lemma[67], we see that
1 -1 1
I- ——117 = I+1(K+1-1"1) 17
] = ey

= I+(K+1-K)"11”

= I+117 (5.51)

where 1 represents a column vector of all ones of length K. So, the inverse of Sq is given by

(using the matrix inversion lemma)

~ 1
-1 _ T
S = o+ 11h) (5.52)

This has the same form as derived previously for looking only at the performance bounds for
estimating translational motion [76]. Furthermore, it isinteresting to note that for the case when
no aiasing is present, adding additional frames to the problem does not influence the image
registration problem. In other words, registration can be done in a pairwise fashion without any

loss of information. Thisis not the case when aliasing occurs.
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To capture the MSE performance in estimating the image termsf, we need only to

look at theterm

Sto= I+ Tg e8I T
1 1 1~ o~ = -
_ I NN (J I+ ~11TJT~)
K41 ' (Kr1pqrg e Tt
Lo, K+ K2 dd?
K+1  (K+1)2gTq
1 K dd”

K +1 (K +1)drq

Finally, we note that for this simple scenario the root average M SE bound as measured by (5.8)
is given by
1

=~ tr(T) K dfd)?
o = <NH(K+1)+NH(K+1)5TJ>
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Chapter 6

Contributions and Future Work

This chapter summarizes the contributions made in the analysis of performance in motion es-
timation. We also detail several open questions related to this thesis as well as map out future

research directions.

6.1 Contributions

In this thesis we studied general aspects of performance in estimating motion con-
tained in image sequences. We constructed a well-defined description of the problem from an
estimation theoretic point of view, allowing us to make foundational contributions to both the
methodology and the science of motion estimation. We hope that our analytical framework will
help guide and inform further advances in the wide array of fields that study and utilize motion

estimation algorithms.

e In Chapter 2, we described a general theory regarding the use of tomographic projec-
tions to estimate motion. In particular, we presented the precise and approximate models
of affine motion under tomographic projection. From this we showed a general scheme
for estimating these affine motion parameters from a set of estimates of motion in the

projected domain. Such concepts were presented in a general form so as to be agnos-
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tic regarding any particular algorithm for estimating the projected motion parameters.
Specifically, we showed how to incorporate tomographic projections into a multiscale
gradient-based algorithm for estimating affine motion. Such an algorithm was shown to
achieve dramatic computationa speedups while sacrificing little in the way of estimator

accuracy for awide range of operational scenarios.

In Chapter 3, motivated by the interesting performance characteristics of the gradient-
based algorithms, we posed the question of fundamental performance limits to motion
estimation. Utilizing the Cramér-Rao bound, we explored these fundamental perfor-
mance limits associated with transational motion estimation. We presented the exper-
imental performance of several popular agorithms and compared their performance with
the derived bound, showing the tendency for common algorithms to contain significant

estimator bias.

In Chapter 4, we focused on the class of gradient-based motion estimation algorithms.
Motivated by the observations of estimator bias in Chapter 3, we derived a closed-form
expression for the estimator bias for gradient-based algorithms. We verified that this bias
expression indeed reflects estimator performance for high SNR scenarios and offered
detailed analysis of the various components associated with this bias function. Using
this bias formulation we constructed rule-of-thumb performance limits for the class of
gradient-based algorithms. Also, from the bias formulation we proposed a novel method
for improving algorithm performance for high SNR scenarios where the bias dominates

performance.

In Chapter 5, we extended our fundamental performance limits associated with image reg-
istration to the sub-Nyquist case showing the implicit relationship between sub-Nyquist
registration and the problem of super-resolution. Our analysis offered new insight into the
estimation theoretic challenges associated with the registration of aliased images, often

revealing the implicit assumptions made by genera practitioners. Finally, we proved the
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fundamental importance of prior information about the image function when attempting

motion estimation in the sub-Nyquist scenario.

In closing, we note that much of the work presented in this thesis has resulted in

severa publications in peer reviewed journals and conferences [21, 34, 76, 77].

6.2 Future Work

In this section, we outline afew of the open questions related to the research presented
in this thesis. In particular, we offer possible extensions to each of the chapters. Findly, we

outline future areas of research which deserve attention.

6.2.1 Projection-Based Motion Estimation

The work presented in Chapter 2 explored a few of the many benefits of incorporat-
ing tomographic projections into motion estimation as an efficient mechanism for improving
computational efficiency. In fact, we demonstrated that, in some instances, the projection-based
estimation scheme offered improved performance. Here, we list several open questions and

extensions to this work.

¢ We conjectured that the performance improvement/loss is highly dependent on the choice
of projection angles. Further investigation into the choice of projection angles is war-

ranted to maximize the possible performance for the projection-based estimators.

¢ In the field of gradient-based estimation, severa robust estimators have been proposed
over the years such as[38]. Such estimation techniques are much more computationally
taxing than the traditional gradient-based algorithms but have been shown to offer im-
proved performance under a wide variety of conditions. Because of their computational
complexity, such algorithms would naturally benefit from the use of projections. It re-
mains to be seen, however, if such robust projection-based estimators could achieve a

similar improvement in performance while minimizing computational complexity.
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e We believe that much of the analysis presented in this section will be useful to indirect
imagine where only tomographic projections are measurable (magnetic resonance image,
positron emission tomography etc). It would be interesting to explore the application of

our projection-based estimators on such data.

6.2.2 Performance Analysisof Image Registration

There are severa extensions to Chapter 3 that could prove extremely beneficial to the

motion estimation community.

e Theanaysis presented in Chapter 3 focused on the simple case of tranglational estimation.
One natural extension of thiswork is the examination of higher order motion models such
the complete affine, bilinear, projective, etc. One would hope that detailed understanding
of the performance bounds for such problems might illuminate the problem of model

selection as it pertains to loca estimation methods.

e Much of the performance analysis presented in Chapter 3 bears resemblance to the 1-
D signal processing problem of delay estimation. It has been shown that for low SNR
situations, the CR bounds begin to be overly optimistic for delay estimation. To address
the performance bounds in these regions, other more sophisticated bounds such as the
Ziv-Zakai bound [78], [79] and Barankin bounds [80, 81]. In certain applications where
the SNR of the imaging system falls into this low SNR region, such bounds would be

helpful in producing more realistic performance bounds.

e Aswe observed in Chapter 3, several translational estimation algorithms contain estima-
tor bias. While the complete CR bound is capable of incorporating the bias term into the
M SE bound, the bound becomes only applicable to the class of estimators with the same
bias function. Recently, there have been several attempts to generalize the CR bounds for
larger classes of biased algorithms whose bias gradients are constrained by some bound

in what is called the Uniform CR bound [82]. Application of such bounds to the prob-

154



lem of image registration might offer insight into the fundamental bounds associated with

general classes of biased estimators.

6.2.3 Gradient-Based Estimator Bias

In Chapter 4, we offered in-depth analysis of the bias structure associated with gradient-

based translational estimation. Here, we offer afew general open questions related to thiswork.

e Asbefore, one could imagine studying the bias properties of the gradient-based estimators
for higher order parametric motion models. Finding such bias structures and employing a
bias minimizing filter design approach could prove very useful for alarge class of global

image registration problems.

e The work on bias minimizing filters has severa natural extension. One might derive the
bias for lower SNR situations where the MSE is not dominated by bias. Thus, one could
possibly design MSE optimal filters for gradient-based motion estimation. To do so, a
functional characterization for the MSE at lower SNR must be developed. One simple
approximation uses the CR bound itself as a cost function for optimizing the gradient

filters.

e Much of the filter design process requires a reasonably accurate characterization of the
image spectral content. Such characterization becomes difficult to obtain for local esti-
mation with small windows. One possible research direction involves decomposing the
gradient filter into abank of filters each having well characterized bias structures. It might
be possible to find an optimal locally adaptive linear combination of such filters which

minimizes overall estimator bias.

6.2.4 Performance Analysisof Aliased Image Registration

Perhaps of all the chapters, Chapter 5 uncovers multiple areas for promising research.
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General Open Research Questions

e Overal, the work in Chapter 5 uncovers the dearth of research into the area of motion
estimation and image registration of aliased images. The application of superresolution

requires such estimates making the analysis very relevant.

e Thework presented in Chapter 5 may provide afoundation for systematic imaging system
design where superresolution is known to be applied after capturing data. We imagine a
scenario where engineering design decisions may be informed by the fundamental bound

on image restoration.

e We note that a true Maximum Likelihood estimator for the joint problem of motion es-
timation and image restoration has not been addressed. Below, we detail future work

related to such an estimator.

Maximum Likelihood Registration of Aliased | mages

A natural question to ask when studying the CR bounds for a given estimation prob-
lem is wether an efficient estimator exists which can attain the given performance bounds. In
genera, this is an extremely difficult task, but it is well known that a Maximum Likelihood
(ML) estimate is asymptotically efficient. In other words, as the number of measurements in-
creases, the performance of the ML estimator approaches the CR bound. In this section, we
show that finding the ML estimate for the joint image registration and reconstruction problem
requires solving anonlinear Least Squares (NLS) problem.

As noted in previous works such as [64, 72], the ML estimates for image reconstruc-

tion and registration minimize a cost function of the form
Cun(f, %) = |z — DULE|3 (6.1)
k

Thus, we see that finding the ML solution requires minimizing a NL S cost function

as both the set of motion vectors v and the high resolution image f are unknown. Several
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approaches have been offered to minimizing such cost functions. Early work suggested that
the estimation process could follow a two stage approach by first estimating the registration
parameters between pairs of low resolution frames followed by minimization of alinear Least
Squares (LLS) cost function to reconstruct the high resolution image. It was noted in [64],
that such an algorithm often fails when the low resolution images contain significant aiasing
artifacts due to sub-Nyquist sampling. In these situations, the image registration algorithms will
amost assuredly provide biased estimates of the registration parameters. The authors in [64]
correctly note that the proper approach must directly minimize the nonlinear cost function (6.1).
They propose to do so using a cyclic coordinate descent algorithm where the algorithm cycles
between the task of estimating the image f and the registration parameters {v; }, in each step
assuming the other set is known. The authors also incorporate a prior on the unknown image f
to improve the condition of the LLS problem. With such an algorithm, however, no assurance
is given concerning the global convergence.

When examining the structure of (6.1), we see that the cost function is a special case
of NLS where there exists a natural separability of the unknown parameters. In our case, we
see that the data depend linearly on the unknown image f and nonlinearly on the registration
parameters V. If we knew the registration parameters prior to image reconstruction problem, we
see that the ML estimate of the image f is given by

-1
f = [ZU{DTDUk] [ZU{DTzk] (6.2)

k k
which is the well known Shift-and-Add algorithm for integer pixel motions [63]. Plugging this

estimate back into the cost function Cy,;, we obtain

Crur(f9)e_g = D llze — DULE|3
k

—1 2
> ||z — DU [Z U{DTDUk] [Z UZDTzk] (6.3)

k k k 9

Future work on superresolution must address the minimization of the nonlinear estimation prob-

lem that is (6.3). Such an optimization problem is not easy to solve, but will undoubtable im-
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prove the shortcomings in performing super-resolution associated with the standard two step

procedure of estimating motion followed by image reconstruction.

6.2.5 Performance Analysisof Orientation Estimation

In this thesis, we have analyzed the performance bound on the estimation of transa
tion for apair of images. If we make the assumption that the unknown translation is constant for
aloca (in space and time) region €2 in the image sequence, the problem of motion estimation
becomesintimately connected to the problem of orientation estimation. To seethis, we note that
when the image sequence is of the form f(x, z2,t) = f(x1 — vo,t, x2 — vo,t,0), we see that
the function f is actually a 2-D function embedded in a 3-D space, consisting of parallel lines
of constant gray levels. The problem of trandation estimation for alocal region in space-time
becomes that of estimating the orientation of these paralel lines [83].

Without loss of generality, we present the lower dimensional problem of estimating
orientation in a 2-D plane. For such a scenario, we assume that locally the image function is
given by

2(x1,22) = n(x"n) + e(z1, 12), x €Q (6.4)

where x = [z1, 5]7 and n = [cos ¢, sin ¢]” denotes the unit length orientation vector. This
model finds use in many image processing applications where it is of interest to find the domi-
nant directional orientation n of the texture present in images. This problem is very similar to
the problem of array processing in the signal processing literature [84]. One fundamental differ-
ence between the two problems is that in array processing, the function 7 is typically assumed
to be anarrowband signal which significantly simplifies the problem.

In the image processing domain, the signal is no longer narrowband and the goal
is to estimate the orientation vector field n(z;,z2) for an entire image. Applications using
such vector fields have ranged from biometrics such as fingerprint similarity measures [85] to
the design of directional filters for image data [86]. The loca orientation can be thought of

as the vector n which is perpendicular to the gradient field Vz(z;, z2) on average over some
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local region 2. The problem of finding such alocal image orientation can be formulated as a
maximization problem of the following function
C(n) = Z k(nTV2) (6.5)
r1,x2€5)
subject to the constraint that ||n|| = 1. A standard choice for the cost function « isthe quadratic

functional which leads to

Cn)= > @'Vz)’= Y n"(Vz(Vz)")n (6.6)
x1,2€52 r1,L2€80
Given the constraint that ||n|| = 1, the problem as stated is a genera eigenvalue problem

where the solution to the optimization problem is the eigenvector corresponding to the largest
eigenvalue of thematrix 3, . g Vz(Vz)T. This solution has been noted in the past [83, 87,
88].

The solution is the eigenvector or basis vector which best represents the collection of
gradient vectors. This problem is an example of the canonical problem of finding an optimal
representation of avector field. Currently, this processisapplied locally to acollection of image
regions to approximate the spatially varying orientation vector field n(z, x2). Unfortunately,
this approach fails to consider the underlying topological and geometric structure of the vector
field. For instance, the orientation vector field must satisfy the global property of being curl-
free. It would be interesting to study the performance limits in estimating the orientation vector
field with additional information relating to the global topology of the orientation vector field.
For instance, in computer graphics, it is well known that a sufficiently smooth vector field
can be decomposed using the Helmholtz-Hodge decomposition [89]. Such a decomposition
distinguishes the curl-free, divergence-free, and the harmonic components of a vector field.
The divergence and curl free components are uniquely identified by the location of the sources
and sinks and vortices respectively. It would be interesting to study the performance bounds
in detecting and localizing these components. Armed with such knowledge, one might explore

novel methods for finding local, statistically optimal orientation estimates which are coupled
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across space in novel ways to integrate such global information. Finally, one might study the
statistical properties of such local estimators to find more robust versions of (6.5) using a cost
function other than quadratic. Specifically, one can attempt to create a robust solution using a

technique similar in spirit to the bilatera filter [90].
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