
UNIVERSITY OF CALIFORNIA

SANTA CRUZ

KERNEL REGRESSION FOR IMAGE PROCESSING AND
RECONSTRUCTION

A thesis submitted in partial satisfaction of the
requirements for the degree of

MASTER OF SCIENCE

in

ELECTRICAL ENGINEERING

by

Hiroyuki Takeda

March 2006

The Thesis of Hiroyuki Takeda
is approved:

Professor Peyman Milanfar, Chair

Professor Ali Shakouri

Professor Michael Elad

Sina Farsiu, Ph.D.

Lisa C. Sloan
Vice Provost and Dean of Graduate Studies

Copyright c© by

Hiroyuki Takeda

2006

Contents

List of Figures v

List of Tables viii

Abstract ix

Dedication x

Acknowledgments xi

1 Introduction 1
1.1 Introduction to Image Processing and Reconstruction 1
1.2 Super Resolution . 2

1.2.1 Motion Estimation . 3
1.2.2 Frame Fusion . 4
1.2.3 Deblurring . 5

1.3 Previous Work . 5
1.4 Summary . 9

2 Kernel Regression 11
2.1 Introduction . 11
2.2 Kernel Regression for Univariate Data . 11

2.2.1 Related Regression Methods . 17
2.3 Kernel Regression for Bivariate Data and its Properties 20

2.3.1 Kernel Regression Formulation . 20
2.3.2 Equivalent Kernel . 23
2.3.3 The Selection of Smoothing Matrices 26

2.4 Super-Resolution by Kernel Regression . 29
2.5 Summary . 31

3 Data-Adapted Kernel Regression 33
3.1 Introduction . 33
3.2 Data-Adapted Kernel Regression . 34

3.2.1 Bilateral Kernel Regression . 35
3.2.2 Steering Kernel Regression . 37

iii

3.3 Iterative Steering Kernel Regression . 45
3.3.1 Filtering Algorithm . 45
3.3.2 Performance Analysis . 46

3.4 Summary . 47

4 Motion Estimation 53
4.1 Introduction . 53
4.2 Accurate Motion Estimation . 54

4.2.1 Motion Estimator Based on Optical Flow Equations 54
4.2.2 Multiscale Motion Estimation . 57

4.3 Image Warping . 59
4.4 Simulations . 60
4.5 Summary . 61

5 Demonstration and Conclusion 62
5.1 Introduction . 62
5.2 Image Denoising . 62
5.3 Image Interpolation . 64
5.4 Super-Resolution . 65
5.5 Conclusion . 66

6 Super Resolution Toolbox 78
6.1 Introduction . 78
6.2 Installation . 78
6.3 The Kernel Regression Function . 79
6.4 Examples . 80
6.5 Troubleshooting . 81
6.6 Summary . 82

7 Future Work 83
7.1 Robust Kernel Regression . 83
7.2 Segment Motion Estimation . 86

7.2.1 Motivation . 86
7.2.2 Image Segmentation . 86
7.2.3 Motion Models . 87

7.3 Example . 88
7.4 Summary . 88

A Image Deblurring 92

B Local Gradient Estimation 94

Bibliography 96

iv

List of Figures

1.1 (a) Interpolation of regularly sampled data. (b) Reconstruction from irregu-
larly sampled data. (c) Denoising. 2

1.2 Image fusion yields us irregularly sampled data. 3
1.3 A general model for multi-frame super-resolution. 6
1.4 Tank sequence. 8
1.5 An example of the estimated image from Tank sequence. 9

2.1 Examples of local polynomial regression of an equally-spaced data set. The
signals in the first and second rows are contaminated with the Gaussian noise
of var(εi) = 0.1 and 0.5, respectively. The dashed, solid lines, and dots repre-
sent the actual function, estimated function, and the noisy data, respectively.
The columns from left to right show the constant, linear, and quadratic in-
terpolation results. Corresponding RMSE’s for the first row experiments are
0.0025, 0.0025, 0.0009 and for the second row are as 0.0172, 0.0172, 0.0201. . 18

2.2 A comparison of the position of knots in (a) Kernel regression and (b) classical
B-Spline methods. 19

2.3 (a) A uniformly sampled data set. (b) A horizontal slice of the equivalent
kernels of orders N =0 , 1, and 2 for the regularly sampled data in (a). The
kernel KH in (2.22) is modeled as a Gaussian, with the smoothing matrix
H = Diag[10, 10]. 25

2.4 Equivalent kernels for an irregularly sampled data set are shown in (a). (b)
is the second order (N = 2) equivalent kernel. The horizontal and vertical
slices of the equivalent kernels of different orders (N = 0, 1, 2) are compared
in (c) and (d), respectively. In this example, the kernel KH in (2.22) was
modeled as a Gaussian, with the smoothing matrix H = Diag[10, 10]. 27

2.5 Smoothing (kernel size) selection by sample density. 28
2.6 The block diagram of the super-resolution algorithm using kernel regression. . 30
2.7 A super-resolution example on the tank sequence. 32

3.1 Kernel spread in a uniformly sampled data set. (a) Kernels in the classic
method depend only on the sample density. (b) Data-adapted kernels elon-
gate with respect to the edge. 34

3.2 Schematic representation of an example of clustering. 39
3.3 Schematic representation of typical linkage methods. 41

v

3.4 Schematic representation illustrating the effects of the steering matrix and
its component (Ci = γiUθiΛσiU

T
θi

) on the size and shape of the regression
kernel . 42

3.5 Footprint examples of steering kernels with covariance matrices {Ci} given
by the local orientation estimate (3.23) at a variety of image structures. . . . 44

3.6 Block diagram representation of the iterative adaptive regression. 46
3.7 A denoising experiment by iterative steering kernel regression. 49
3.8 The analysis of mean square error, bias, and variance. 50
3.9 The best estimation in mean square error with two different global smoothing

parameters. 50
3.10 Mean square error with different global smoothing parameters. 51
3.11 Bias with different global smoothing parameters. 51
3.12 Variance with different global smoothing parameters. 52

4.1 The forward and backward motion. 56
4.2 Multiscale motion estimation . 58
4.3 The block diagram of accurate motion estimation on a scale. 59
4.4 A simulated sequence. 60
4.5 The performance analysis of motion estimations with different warping methods. 61

5.1 The performance of different denoising methods are compared in this exper-
iment. The RMSE of the images (b)-(f) are 25, 8.91, 8.65, 6.64, and 6.66,
respectively. 68

5.2 Figures 5.1(c)-(f) are enlarged to give (a),(b),(c), and (d), respectively. . . . 69
5.3 The performance of different denoising methods are compared in this exper-

iment on a compressed image by JPEG format with the quality of 10. The
RMSE of the images (b)-(f) are 9.76, 9.05, 8.52, 8.80, and 8.48, respectively. 70

5.4 The performance of different denoising methods are compared in this exper-
iment on a color image with real noise. Gaussian kernel was used for all
experiments. 71

5.5 Upscaling experiment. The image of Lena is downsampled by the factor of 3
in (a). The factor of 3 up-sampled images of different methods are shown in
(b)-(f). The RMSE values for images (b)-(f) are 7.92, 7.96, 8.07, 7.93, and
7.43 respectively. 72

5.6 Figures 5.5(a)-(f) are enlarged to give (a)-(f), respectively. 73
5.7 Irregularly sampled data interpolation experiment, where 85% of the pixels

in the Lena image are omitted in (a). The interpolated images using different
methods are shown in (b)-(f). RMSE values for (b)-(f) are 9.15, 9.69, 9.72,
8.91, and 8.21, respectively. 74

5.8 Figures 5.7(a)-(f) are enlarged to give (a)-(f), respectively. 75
5.9 Image fusion (Super-Resolution) experiment of a real data set consisting of

10 compressed grayscale images. One input image is shown in (a) which
is up-scaled in (b) by the spline smoother interpolation. (c)-(d) show the
multi-frame Shift-And-Add images after interpolation by the Delaunay-spline
smoother and the steering kernel methods. The resolution enhancement fac-
tor in this experiment was 5 in each direction. 76

vi

5.10 Image fusion (Super-Resolution) experiment of a real data set consisting of
10 compressed color frames. One input image is shown in (a). (b)-(d) show
the multi-frame Shift-And-Add images after interpolating by the Delaunay-
spline smoother, classical kernel, and steering kernel regression methods, re-
spectively. The resolution enhancement factor in this experiment was 5 in
each direction. 77

6.1 Setting path. 79

7.1 An example of the salt & pepper noise reduction. Corresponding RMSE for
(b)-(h) are 63.84, 11.05, 22.47, 21.81, 21.06, 7.65, and 7.14. 84

7.2 Three large frames from a video sequence. The size of each frame is 350× 600. 89
7.3 The reconstructed image using the translational motion model. 90
7.4 The reconstructed image using the translational motion model with the block

segmentation. 91

vii

List of Tables

2.1 Popular choices for the kernel function. 15

3.1 The best estimation in mean square error by iterative steering kernel regres-
sion with different global smoothing parameters. 48

6.1 The parameter descriptions of “KernelReg” function. 80

7.1 Error norm functions and their derivatives [1]. 85

A.1 Regularization functions and their first derivatives. 93

viii

Abstract

Kernel Regression for Image Processing and Reconstruction

by

Hiroyuki Takeda

This thesis reintroduces and expands the kernel regression framework as an effective tool

in image processing, and establishes its relation with popular existing denoising and inter-

polation techniques. The filters derived from the framework are locally adapted kernels

which take into account both the local density of the available samples and the actual val-

ues of these samples. As such, they are automatically steered and adapted to both the

given sampling geometry and the samples’ radiometry. Furthermore, the framework does

not rely upon any specific assumptions about signal and noise models; it is applicable to a

wide class of problems: efficient image upscaling, high quality reconstruction of an image

from as little as 15% of its (irregularly sampled) pixels, super-resolution from noisy and

under-determined data sets, state of the art denoising of image corrupted by Gaussian and

other noise, effective removal of compression artifacts, and more. Thus, the adapted kernel

method is ideally suited for image processing and reconstruction. Experimental results on

both simulated and real data sets are supplied, and demonstrating the presented algorithm

and its strength.

Dedicated to my parents, Ren Jie Dong and Akemi Takeda,

my sisters, Tomoko Takeda and Asako Takeda,

and my grandmother, Kinu Takeda.

x

Acknowledgments

This work is the result of my spirit of challenge, supported and encouraged by many won-

derful people. I would like to express my deep gratitude to all of them here.

First of all, I would like to thank my advisor, Professor Peyman Milanfar. Without

his incredible guidance and support, I would have never done this work. His classes (Digital

Signal Processing, Statistical Signal Processing, and Image Processing and Reconstruction)

were also significant to helping me finish this thesis. I appreciate not only the excellent

materials in his class and his straightforward explanations, but also his teaching me how to

analyze problems and organize publications. His advice always cheered me up.

Dr. Sina Farsiu frequently suffered through correcting the draft versions of my

poorly organized publications. His modifications of my drafts and his advice were greatly

helpful in teaching me to organize content. I want to thank him for his incredible help.

The text of this thesis includes reprints of the following previously published ma-

terial: Image Denoising by Adaptive Kernel Regression [2], Kernel Regression for Image

Processing and Reconstruction [3], and Robust Kernel Regression for Restoration and Recon-

struction of Images from Sparse Noisy Data [4]. The co-authors listed in these publications,

Professor Peyman Milanfar and Dr. Sina Farsiu, directed and supervised the research which

forms the basis for the thesis. Hence, I would like to thank both of them one more time

here. The publications contain not only my ideas but also a lot of their ideas, suggestions,

and advices.

I want to thank the thesis reading committee (Professor Peyman Milanfar, Profes-

sor Ali Shakouri, Professor Michael Elad, and Dr. Sina Farsiu) for reviewing this thesis and

their valuable feedback.

I would also like to express my gratitude to one of my best friends, Shigeru Suzuki.

xi

He is the first person I met in Santa Cruz. Since then, his unique advice has helped me to

survive in graduate school. I am lucky to be his friend, and will never forget his support.

A lot of thanks to other supportive people: Professor John Vesecky (my first

academic advisor at UC Santa Cruz), Dr. Morteza Shahram , Dr. Dirk Robinson, and

the members in the Multi-Dimensional Signal Processing research group (Amyn Poonawala,

Davy Odom, and Mike Charest), and all of my other friends.

Finally, I want to express gratitude to my family, Ren Jie Dong, Akemi Takeda,

Asako Takeda, Tomoko Takeda, and Kinu Takeda. I cannot find any other words for their

sacrifice and consideration. I thank my family so much. This work is dedicated to my family.

Santa Cruz, California

March 21st, 2006

Hiroyuki Takeda

xii

Chapter 1

Introduction

1.1 Introduction to Image Processing and Reconstruc-

tion

Ease of use and cost effectiveness have contributed to the growing popularity of

digital imaging systems. However, inferior spatial resolution with respect to traditional

film cameras is still a drawback. The apparent aliasing effects often seen in digital images

are due to the limited number of CCD pixels used in commercial digital cameras. Using

denser CCD arrays (with smaller pixels) not only increases the production cost but can also

result in noisier images. As a cost efficient alternate, image processing methods have been

exploited through the years to improve the quality of digital images. In this work, we focus

on regression methods that attempt to recover the noiseless high-frequency information

corrupted by the limitations of the imaging system, as well as degradation processes such

as compression.

This thesis concentrates on the study of regression, as a tool not only for interpola-

1

x1

x2

x1

x2

x1

x2

(a) (b) (c)

Figure 1.1: (a) Interpolation of regularly sampled data. (b) Reconstruction from irregularly
sampled data. (c) Denoising.

tion of regularly sampled frames (up-sampling) but also for reconstruction and enhancement

of noisy and possibly irregularly sampled images. Figure 1.1(a) illustrates an example of the

former case, where we opt to upsample an image by a factor of two in each direction. Figure

1.1(b) illustrates an example of the latter case, where an irregularly sampled noisy image

is to be interpolated onto a high resolution grid. Besides inpainting applications [5], inter-

polation of irregularly sampled image data is essential for applications such as multi-frame

super-resolution, where several low-resolution images are fused (interlaced) onto a high-

resolution grid [6]. Figure 1.2 presents a schematic representation of such super-resolution

algorithms. We note that “denoising” is a special case of the regression problem where sam-

ples at all desired pixel locations are given (illustrated in Figure 1.1(c)), but these samples

are corrupted and are to be restored. The following section gives us a brief review of the

general idea of super-resolution.

1.2 Super Resolution

The super-resolution technique reconstructs a high quality (less noise and higher

resolution) image from a noisy and low resolution video sequence. The key to super-

resolution is that the frames of a video sequence have aliasing; in other words, they are

2

Upsample
Shift Interlace

#1

#2

#N

Input frames

Finer grid

Measurement

Figure 1.2: Image fusion yields us irregularly sampled data.

sampled at under the Nyquist rate, so that the details of a real scene are disrupted in each

frame. Without aliasing, super-resolution becomes merely a denoising, upscaling, and de-

blurring process. There are mainly two approaches to reconstruct such a high quality image

in the image processing community. One class of methods are those that operate in some

transformed domain (e.g. the frequency domain and wavelet domain). The other approach

processes the video frames/samples in the spatial domain directly. In this thesis we focus on

the approach in the spatial domain, since it is more convenient to understand intuitively the

relationships among neighboring data (measured pixels). The super-resolution technique in

the spatial domain usually builds up with the three principle phases: motion estimation,

image (frame) fusion, and deblurring.

1.2.1 Motion Estimation

As a first step, we have to know motion (relative spatial distance between every

pair of frames) to within subpixel accuracy. Several motion models (such as translational,

affine, and so on) have been considered and, in this thesis, we try to estimate motion based

on optical flow equations1. Black et al. [1] have proposed to estimate motion containing

1A good review about the optical flow is in [7], and details can be found in [8].

3

occlusions with the robust estimation method with which they tried to eliminate outliers.

Estimating motion to subpixel accuracy is extremely difficult; hence, Chapter 4 sums up

our approach for such accurate motion estimation. Although the performance of the optical

flow estimator is poor when the motion is large, the multiscale version of the algorithm uses

the estimator many times properly and will give us a much more accurate estimate.

1.2.2 Frame Fusion

Once the motion between the set of frames is available, we upsample all the frames

and register them to a finer grid, as illustrated in Figure 1.2. This process is often called

Shift-and-Add method [9]. Since the estimated motion are usually fractional numbers, with

the exception of the measurements from the reference frame, most pixels will not be located

on the lattice points of the finer grid. The next step we have to take is to estimate all the

high resolution pixel values from the nearby measurements, which is so-called interpolation.

There are a variety of interpolation methods in the image processing literature. Nearest

neighbor, bilinear, and cubic spline interpolation [10, 11, 12] are typical. However, they are

not designed for irregularly sampled data sets. Furthermore, the measurements are noisy

not only in their values, but also positions. The principal purpose of this thesis is to propose

suitable interpolation techniques for such irregularly sampled data.

A famous interpolation technique is the Nadaraya-Watson Estimator (NWE) [13].

NWE estimates an appropriate pixel value by taking an adaptive weighted average of sev-

eral nearby samples, and consequently its performance is totally dependent on the choice

of weights. In Chapter 3, we propose a novel method of computing the weights taking into

account not only the local density of the available samples but also the actual values of

samples. As such, the weights are automatically steered and adapted to both the given

4

sampling geometry, and the samples’ radiometry. Furthermore, due to the minimal assump-

tions made on given data sets, the method will be applicable to a wide class of problems:

efficient image upscalling, high quality reconstruction of an image from as little as 15%

of its (irregularly sampled) pixels, super-resolution from noisy and under-determined data

sets, state of the art denoising of an image corrupted by Gaussian and other noise, effective

removal of compression artifacts, demosacing, and more.

1.2.3 Deblurring

The reconstructed images are often blurry due to the blurring effects of atmosphere

and camera aperture. The purpose of this phase is to revive some high frequency compo-

nents, which visually sharpens the images. One typical choice here is the Wiener filter

[10]. This thesis will not be concerned with this phase in much depth. A simple deblurring

method is described in Appendix A.

1.3 Previous Work

A super-resolution model, which can be found in [6, 9, 14, 15], is illustrated in

Figure 1.3. In the figure, X is a continuous real scene to be estimated, Batm and Bcam

are the continuous point spread functions caused by atmospheric turbulence and camera

aperture, respectively, F is the warp operator, D is the downsampling (or discretizing)

effect, ε is measurement noise, and Y is a noisy, blurry, low resolution image (frame). Based

on the model, we can mathematically express the frame at the position [l,m] and the time

n:

Yn[l,m] =

[
Bcam

n (x1, x2) ∗ ∗Fn

{
Batm

n (x1, x2) ∗ ∗X(x1, x2)
}]⏐⏐⏐⏐�+ εn[l,m], (1.1)

5

noise

Real scene blur effect
Motion effect

Downsampling

Frame

Batm F

Bcam

X

Y

ε

D

Atmosphere

effect
blur effect
Camera

Figure 1.3: A general model for multi-frame super-resolution.

where ∗∗ is the two dimensional convolution operator and ↓ is the discritizing operator. Now

we want to estimate a high resolution (discrete) unknown image X from all the measured

data Yn’s, where we define Yn and X as

Yn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Yn[1, 1] Yn[1, 2] · · · Yn[1,M]

Yn[2, 1] Yn[2, 2] · · · Yn[2,M]

...
...

. . .
...

Yn[L, 1] Yn[L, 2] · · · Yn[L,M]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1.2)

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X(1, 1) X(1, 2) · · · X(1, rM)

X(2, 1) X(2, 2) · · · X(2, rM)

...
...

. . .
...

X(rL, 1) X(rL, 2) · · · X(rL, rM)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1.3)

6

We call r the resolution enhancement factor. Using the notations, we can rewrite the model

(1.1) into the matrix form:

Yn = DBcam
n FnBatm

n X + εn, n = 1, · · · , N, (1.4)

where the underline is the operator which makes a matrix a column stack vector, X is a

r2LM×1 vector, Batm
n , Bcam

n and Fn are r2LM×r2LM matrices, D is a LM×r2LM matrix,

and Yn and εn are LM × 1 vectors. The model (1.4) can be simplified as follows. With

the two assumptions [6]: (1)spatially and temporally shift invariant point spread functions,

(2)translational motion, both Bcam
n and Batm

n become symmetric constant matrices, and Fn

becomes a symmetric matrix. Since the symmetric matrices are commutable, we can rewrite

(1.4) as

Yn = DBcamFnBatmX + εn, (1.5)

= DBcamBatmFnX + εn. (1.6)

Moreover, by defining B = BcamBatm, we finally have a convenient model:

Yn = DBFnX + εn, n = 1, · · · , N. (1.7)

This is a prevalent model of super-resolution. Based on the model, an appropriate way to

estimate X is regularized least squares estimator [16], which takes the form of

X̂RLS = arg min
X

[
N∑

n=1

∥∥∥DBFnX − Yn

∥∥∥2

2
+ λΥ(X)

]
, λ ≥ 0, (1.8)

where Υ(·) is the regularization function (see Table A.1 in Appendix A), and λ is a regular-

ization parameter (a positive number) which enables us to control how strongly we consider

the regularization term. Using the estimator, an example is demonstrated in the following.

Figure 1.4 shows Tank sequence (64 × 64, 8 frames) which is a real sequence taken by an

7

frame1

20 40 60

20

40

60

frame2

20 40 60

20

40

60

frame3

20 40 60

20

40

60

frame4

20 40 60

20

40

60

frame5

20 40 60

20

40

60

frame6

20 40 60

20

40

60

frame7

20 40 60

20

40

60

frame8

20 40 60

20

40

60

Figure 1.4: Tank sequence.

infrared camera, courtesy of B. Yasuda and the FLIR research groupe in the Sensors Tech-

nology Branch, Wright Laboratory, WPAFB, OH. A reconstructed high resolution image2

is shown in Figure 1.5. We can see the more details with the estimated image such as the

wheels of the truck which are impossible for us to realize in each low resolution frame.

This section showed that a prevalent super-resolution method. In Chapter 2, we

will present a different super-resolution approach, and show an example on Tank sequence.

In Chapter 5, we will demonstrate further real super-resolution examples with the different

super-resolution approach by combining motion estimation in Chapter 4, image fusion in

Chapter 2 and its extension in Chapter 3, and image deblurring in Appendix A.
2This image provided by a software coded by S. Farsiu [6], which is available online at

www.cse.ucsc.edu/∼milanfar/SR-Software.htm

8

50 100 150 200 250 300

50

100

150

200

250

300

Figure 1.5: An example of the estimated image from Tank sequence.

1.4 Summary

We briefly reviewed image reconstruction from irregularly sampled data sets with

existing algorithms in this introductory chapter. However, most of these algorithms are

designed for a specific model, and consequently they cannot be applicable for other prob-

lems. If only one method can do denoising and interpolation simultaneously with a superior

performance, we will be relieved from choosing the best algorithm for a specific problem.

The main purpose of this thesis is to present such a universal algorithm.

Contributions of this thesis are the following: (1) we describe and propose kernel

9

regression as an effective tool for both denoising and interpolating images, and establish

its relation with some popular existing techniques, (2) we propose a novel adaptive gener-

alization of kernel regression with superior results in both denoising and interpolation (for

single or multi-frame) applications. This thesis is structured as follows. In Chapter 2, the

kernel regression framework will be described as an effective tool for image processing with

its fundamental property, the relationships with some other famous methods, and a simple

example on Tank sequence. In Chapter 3, the data-adapted (non-linear) version of kernel

regression will be presented. In Chapter 4, we sum up the accurate motion estimation al-

gorithm in order to fuse images. In Chapter 5, many demonstrations on a wide class of

problems will be shown, and conclude this thesis. In Chapter 6, the installation and manu-

als of the program codes, which produce the results shown in Chapter 5, will be explained.

Finally, in Chapter 7, we indicate some of our future directions on this research.

10

Chapter 2

Kernel Regression

2.1 Introduction

In this chapter, we make contact with the field of non-parametric statistics and

present a development and generalization of tools and results for use in image processing

and reconstruction. Furthermore, we establish key relationships with some popular existing

methods and show how several of these algorithms are special cases of the framework.

2.2 Kernel Regression for Univariate Data

Classical parametric denoising methods rely on a specific model of the signal of in-

terest, and seek to compute the parameters of this model in the presence of noise. Examples

of this approach are represented in diverse problems ranging from denoising to upscaling

and interpolation. A generative model based upon the estimated parameters is then pro-

duced as the best estimate of the underlying signal. Some representative examples of the

11

parametrization are quadratic, periodic, and monotone models [17],

yi = β0 + β1xi + β2x
2
i + εi, yi = β0 sin (β1xi) + εi, yi =

β0

β1 + xi
+ εi, i = 1, 2, · · · , P,

(2.1)

where yi’s are the measurements, xi’s are the coordinates (positions), P is the number of the

measured samples, εi’s are independent and identically distributed zero mean noise value,

and {βn} are the model parameters to be estimated. Least square approach1 [16] is usually

employed to estimate the unknown model parameters. For example, in the quadratic case,

the unknown parameters are estimated as

min
{βn}

P∑
i=1

[
yi − β0 − β1xi − β2x

2
i

]2
. (2.2)

Unfortunately, as natural images rarely follow such fixed models, the quality of reconstructed

images is often not satisfactory.

In contrast to the parametric methods, non-parametric methods rely on the data

itself to dictate the structure of the model, in which case this implicit model is referred

to as a regression function [17]. With the relatively recent emergence of machine learning

methods, kernel methods have become well-known and used frequently for pattern detection

and discrimination problems [19], and estimation of real-valued functions by the support

vector method in Chapter 11 and 13 of [20]. Surprisingly, it appears that the corresponding

ideas in estimation - what we call here kernel regression, are not widely known or used in the

image and video processing literature. Indeed, in the last decade, several concepts related

to the general theory this thesis promotes here have been rediscovered in different guises,

and presented under different names such as normalized convolution [21, 22], the bilateral

filter [23] (the latter having been carefully investigated mathematically in [24]), mean-shift

1Total least square approach [18] is a more appropriate choice when the coordinates xi’s are also noisy.
A super-resolution algorithm using kernel regression, which we will present later in this chapter, is the case.

12

[25], edge directed interpolation [26], and moving least squares [27]. Later in this thesis,

some of these concepts and their relation to the general regression theory will be discussed.

To simplify the presentation, let us first treat the univariate data case where the measured

data are given by

yi = z(xi) + εi, i = 1, 2, · · · , P, (2.3)

where z(·) is the (hitherto unspecified) regression function and εi’s are the independent

and identically distributed zero mean noise values (with otherwise no particular statistical

distribution assumed). As such, kernel regression provides a rich mechanism for computing

point-wise estimates of the function with minimal assumptions on the signal model.

While the particular form of z(·) may remain unspecified, if we assume that it is

locally smooth to some order N , then to estimate the value of the function at any point x

given the data, we can rely on a generic local expansion of the function about this point.

Specifically, if x is near the sample at xi, we have the N -term Taylor series2

z(xi) ≈ z(x) + z′(x)(xi − x) +
1
2!

z′′(x)(xi − x)2 + · · · + 1
N !

z(N)(x)(xi − x)N (2.4)

= β0 + β1(xi − x) + β2(xi − x)2 + · · · + βN (xi − x)N . (2.5)

The above suggests that if we now think of the Taylor series as a local representation of the

regression function, estimating the parameter β0 yields the desired (local) estimate of the

regression function based on the data. Indeed, the other parameters {βn}N
n=1 will provide

localized information on the n-th derivatives of the regression function. Naturally, since

this approach is based on local approximations, a logical step to take is to estimate the

parameters {βn}N
n=0 from the data while giving the nearby samples higher weight than

samples farther away. A weighted least-square formulation [16] capturing this idea is to

2Other expansions are also possible, e.g. orthogonal series.

13

solve the following optimization problem:

min
{βn}N

n=0

P∑
i=1

[
yi − β0 − β1(xi − x) − β2(xi − x)2 − · · · − βN (xi − x)N

]2 1
h

K

(
xi − x

h

)
,

(2.6)

where K(·) is the kernel function (weight function) [17] which penalizes distance away from

the local position where the approximation is centered, and the smoothing parameter h (also

called the bandwidth) controls the strength of this penalty. In particular, the function K(·)

is a symmetric function which attains its maximum at zero, satisfying

∫
R1

tK(t)dt = 0,

∫
R1

t2K(t)dt = c, (2.7)

where c is a some constant value. The choice of the particular form of the function K(·) is

open, and may be selected as a Gaussian, exponential, or other forms which comply with

the above constraints (some popular choice of K(·) are shown in Table 2.1). Experimental

studies such as in [28] show that the choice of the kernel has an insignificant effect on the

accuracy of estimation and therefore the preference is given to the differentiable kernels with

low computational complexity such as the Gaussian kernel.

Several important point are worth making here. First, the above structure allows

for tailoring the estimation problem to the local characteristics of the data, whereas the

standard parametric model is intended as a more global fit. Second, in the estimation of

the local structure, higher weight is given to the nearby data as compared to samples that

are farther away from the center of the analysis window. Meanwhile, this approach does

not specifically require that the data follow a regular or periodic sampling structure. More

specifically, so long as the samples are near the point x, the non-parametric framework (2.6)

is valid. Again this is in contrast to the general parametric approach (e.g. (2.2)) which

generally either does not directly take the location of the data samples into account, or

14

Epanechnikov:

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

K(t) =

{ 3
4
(1 − t2) for |t| < 1

0 otherwise

Biweight:

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

K(t) =

{ 15
16

(1 − t2)2 for |t| < 1

0 otherwise

Triangle:

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

K(t) =
{

1 − |t| for |t| < 1
0 otherwise

Laplacian:

−4 −3 −2 −1 0 1 2 3 4
−0.1

0

0.1

0.2

0.3

0.4

0.5

K(t) =
1
2

exp (−|t|)

Gaussian:

−4 −3 −2 −1 0 1 2 3 4
−0.1

0

0.1

0.2

0.3

0.4

K(t) =
1√
2π

exp
(
−1

2
t2
)

Table 2.1: Popular choices for the kernel function.

relies on regular sampling over a grid. Third, and no less important, the proposed approach

is useful for both denoising, and equally viable for interpolation of sampled data at points

where no actual samples exist. Given the above observations, the kernel-based methods

appear to be well-studied for a wide class of image processing problems of practical interest.

Returning to the estimation problem based upon (2.6), one can choose the order

N to effect an increasingly more complex local approximation of the signal. In the non-

parametric statistics literature, locally constant, locally linear, and locally quadratic approx-

imations (corresponding to N = 0, 1, 2) have been considered most widely [17, 29, 30, 31].

In particular, choosing N = 0, a locally adaptive linear filter is obtained, which is known

15

as the Nadaraya-Watson Estimator (NWE) [13]. Specifically, this estimator has the form

ẑ(x) =

P∑
i=1

Kh(xi − x) yi

P∑
i=1

Kh(xi − x)

, Kh(t) =
1
h

K

(
t

h

)
. (2.8)

When all the data yi’s are uniformly distributed as shown in Figure 1.1(c), the NWE is

nothing but a simple convolution that has been practiced for 100 years in signal processing.

As described earlier, the NWE is the simplest manifestation of an adaptive filter

resulting from the kernel regression framework. As we shall see later in Section 3.2.1, the

bilateral filter [23, 24] can be interpreted as a generalization of the NWE with a modified

kernel definition.

Of course, higher order approximations (N > 0) are also possible. Note that

the choice of the order in parallel with the smoothness h affect the bias and variance of

estimation. Mathematical expression for bias and variance can be found in [32, 33], and

therefore here we briefly review their properties. In general, lower order approximates such

as NWE (N = 0), result in smoother images (large bias and small variance) as there are not

enough degree of freedom. On the contrary, over-fitting happens in regression using higher

orders of approximation, resulting in small bias and large estimation variance. We also note

that smaller values for h result in small bias and consequently large variance in estimates.

Optimal order and smoothing parameter selection procedures are studied in [27].

The performance of kernel regressors of different orders is compared in the illus-

trative examples of Figure 2.1. In the first experiment, illustrated in the first row, a set of

moderately noisy (variance of the additive Gaussian noise is 0.1) equally-spaced samples of

a function are used to estimate the underlying function. As expected, the computationally

more complex high order interpolation (N = 2) results in a better estimate than the lower

16

ordered interpolators (N = 0 or 1). The presented quantitative comparison of RMSE3 sup-

ports this claim. The second experiment, illustrated in the second row, shows that for the

heavily noisy data sets (variance of the additive Gaussian noise is 0.5), the performance of

lower ordered regressors is better. Note that the performance of the N = 0 and N = 1

ordered estimators for these equally-spaced sampled experiments are identical. In Section

2.3.2, we study this property in more detail.

2.2.1 Related Regression Methods

In addition to kernel regression methods, which this thesis is advocating, there

are several other effective regression methods such as B-spline interpolation [11], orthogonal

series [34, 30], cubic spline interpolation [12] and spline smoother [30, 11, 35]. We briefly

review these methods and see how they are related in this section.

Following the notation used in the previous subsection, the B-spline interpolation

is expressed as the linear combination of shifted spline functions

z(x) =
∑

k

βkBq(x − k), (2.9)

where the qth order B-spline function is defined as a q + 1 times convolution of the zero-th

order B-spline function [11],

Bq(x) = B0(x) ∗ B0(x) ∗ · · · ∗ B0(x)︸ ︷︷ ︸
q+1

, where B0(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1, − 1

2 < x < 1
2

1
2 , |x| = 1

2

0, else

. (2.10)

The scalar k in (2.9), often referred to as the knot, defines the center of a spline. The least

squares formulation [16] is usually exploited to estimate the B-spline coefficients {βk}.
3Root Mean Square Error of an estimate is defined as RMSE =

p
E{(z(x) − ẑ(x))2}, where E is the

expected value operator.

17

−2 0 2 4 6 8

0

0.5

1

1.5

x

z(
x)

−2 0 2 4 6 8

0

0.5

1

1.5

x

z(
x)

−2 0 2 4 6 8

0

0.5

1

1.5

x
z(

x)

−2 0 2 4 6 8

0

0.5

1

1.5
Local Constant Estimator (N=0)

x

z(
x)

Actual function
Estimated function
Data

−2 0 2 4 6 8

0

0.5

1

1.5
Local Linear Estimator (N=1)

x

z(
x)

−2 0 2 4 6 8

0

0.5

1

1.5
Local Quadratic Estimator (N=2)

x

z(
x)

Figure 2.1: Examples of local polynomial regression of an equally-spaced data set. The
signals in the first and second rows are contaminated with the Gaussian noise of var(εi) =
0.1 and 0.5, respectively. The dashed, solid lines, and dots represent the actual function,
estimated function, and the noisy data, respectively. The columns from left to right show
the constant, linear, and quadratic interpolation results. Corresponding RMSE’s for the first
row experiments are 0.0025, 0.0025, 0.0009 and for the second row are as 0.0172, 0.0172,
0.0201.

The B-spline interpolation method bears some similarities to the kernel regression

method. One major difference between these method is in the number and position of the

knots as illustrated in Figure 2.2. While in the classical B-spline method the knots are

located in equally spaced positions, in the case of kernel regression the knots are implicitly

located on the sample positions. A related method, the Non-Uniform Rational B-Spline

(NURBS) is also proposed in [36] to address this shortcoming of the classical B-spline

method, by irregularly positioning the knots with respect to the underlying signal.

18

x

Regression function

Measurements Bumps

(a) Kernel regression

x

Knots

(b) B-spline
Figure 2.2: A comparison of the position of knots in (a) Kernel regression and (b) classical
B-Spline methods.

Cubic spline interpolation technique is one of the most popular members of the

spline interpolation family which is based on fitting a polynomial between any pair of con-

secutive data. Assuming that the second derivative of the regression function exists, cubic

spline interpolation is defined as

z(x) = β0(i) + β1(i)(xi − x) + β2(i)(xi − x)2 + β3(i)(xi − x)3, x ∈ [xi, xi+1] , (2.11)

where under the following boundary conditions

z(x)
∣∣∣
x−

i

= z(x)
∣∣∣
x+

i

, z′(x)
∣∣∣
x−

i

= z′(x)
∣∣∣
x+

i

, z′′(x)
∣∣∣
x−

i

= z′′(x)
∣∣∣
x+

i

,

z′′(x1) = z′′(xP) = 0, (2.12)

all the coefficients Bi’s can be uniquely defined [12].

Note that an estimated curve by cubic spline interpolation passes through all data

points which is ideal for the noiseless data case. However, in most practical applications,

data are contaminated with noise and therefore such perfect fits are no longer desirable.

Consequently a related method called spline smoother is proposed. In spline smoother the

above hard conditions are replaced with soft ones, by introducing them as Bayesian priors

which penalize rather than constrain non-smoothness in the interpolated images. A popular

19

implementation of the spline smoother [11] is given by

ẑ(x) = arg min
z(x)

[
P∑

i=1

{yi − z(xi)}2 + λ‖z′′‖2
2

]
, ‖z′′‖2

2 =
∫

{z′′(x)}2
dx, (2.13)

where z(xi) can be replaced by either (2.9) or any orthogonal series4, and λ is the regulariza-

tion parameter. Note that assuming a continuous sample density function, the solution to

this minimization problem is equivalent to the NWE (2.8) with the following kernel function

and a variable smoothing parameter h

K(t) =
1
2

exp
(
− |t|√

2

)
sin

(|t|√
2

+
π

4

)
, h(xi) =

(
λ

Pf(xi)

) 1
4

, (2.14)

where f(·) is the density of samples [30, 38]. In Chapter 5, performance comparisons with

data-adapted kernel regression (q.v. Chapter 3) will be presented.

2.3 Kernel Regression for Bivariate Data and its Prop-

erties

This section introduces the formulation of the classical kernel regression method

for bivariate data and establishes its relation with the linear filtering idea. Some intuitions

on computational efficiency will be also provided as well as weakness of this method, which

motivate the development of more powerful regression tools in the next chapter.

2.3.1 Kernel Regression Formulation

Similar to the univariate data case in (2.3), the model of bivariate data (e.g. the

samples in Figure 1.1(b)) is given by

yi = z(xi) + εi, xi = [x1i, x2i]T , i = 1, 2, · · · , P, (2.15)
4A successful implementation based on this method for image reconstruction has done by Arigovindan

et al. [37].

20

where the coordinates of the measured data yi is now the 2× 1 vector xi. Correspondingly,

the local expansion of the regression function is given by

z(xi) ≈ z(x) + {∇z(x)}T (xi − x) +
1
2!

(xi − x)T{Hz(x)} (xi − x) + · · ·

= z(x) + {∇z(x)}T (xi − x) +
1
2
vecT{Hz(x)} vec

{
(xi − x)(xi − x)T

}
+ · · · ,

(2.16)

where ∇ and H are the gradient and Hessian operators, respectively and vec(·) is the

vectorization operator [32], which lexicographically orders a matrix into a vector. Defining

vech(·) as the half-vectorization operator [32] of the lower-triangular portion of the matrix,

e.g.,

vech

⎛⎜⎜⎝
⎡⎢⎢⎣ a11 a12

a21 a22

⎤⎥⎥⎦
⎞⎟⎟⎠ = [a11 a21 a22]

T
, (2.17)

vech

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ = [a11 a21 a31 a23 a32 a33]
T

, (2.18)

and considering the symmetry of the Hessian matrix, (2.16) simplifies to

z(xi) = β0 + βT
1 (xi − x) + βT

2 vech
{
(xi − x)(xi − x)T

}
+ · · · . (2.19)

Then, comparison between (2.16) and (2.19) suggests that β0 = z(x) is the pixel value of

interest and the vectors β1 and β2 are

β1 =

[
∂z(x)
∂x1

∣∣∣∣
x=xi

∂z(x)
∂x2

∣∣∣∣
x=xi

]T

, (2.20)

β2 =
1
2

[
∂2z(x)
∂x2

1

∣∣∣∣
x=xi

2
∂2z(x)
∂x1∂x2

∣∣∣∣
x=xi

∂2z(x)
∂x2

2

∣∣∣∣
x=xi

]T

. (2.21)

21

As in the case of univariate data, the {βn} are computed from the following optimization

problem:

min
{βn}N

n=0

P∑
i=1

[
yi − β0 − βT

1 (xi − x)T − βT
2 vech

{
(xi − x)(xi − x)T

}− · · ·
]2

KH(xi − x),

(2.22)

with

KH(t) =
1

det (H)
K
(
H−1t

)
, (2.23)

where K(·) is the 2-D realization of the kernel function illustrated in Table 2.1, and H is

the 2 × 2 smoothing matrix, which will be studied more carefully later in this chapter. It

is also possible to express (2.22) in a matrix form as a weighted lease squares optimization

problem [16, 27],

arg min
b

‖y − Xxb‖2
Wx

= arg min
b

(y − Xxb)T Wx (y − Xxb) , (2.24)

where

y = [y1 y2 · · · yP]T , b =
[
β0 βT

1 βT
2 · · ·

]T

, (2.25)

Wx = diag [KH(x1 − x), KH(x2 − x), · · · , KH(xP − x)] , (2.26)

Xx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 (x1 − x)T vechT
{
(x1 − x)(x1 − x)T

} · · ·

1 (x2 − x)T vechT
{
(x2 − x)(x2 − x)T

} · · ·
...

...
...

...

1 (xP − x)T vechT
{
(xP − x)(xP − x)T

} · · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.27)

with “diag” defining the diagonal elements of a diagonal matrix.

Regardless of the regression order (N), as our primary interest is to compute an

estimate of the image (pixel values), the necessary computations are limited to the ones that

estimate the parameter β0. Therefore the weighted least squares estimation is simplified to

ẑ(x) = β̂0 = eT
1

(
XT

xWxXx

)−1
XT

xWx y, (2.28)

22

where e1 is a column vector (the same size of b in (2.25)) with the first element equal

to 1, and the rest equal to zero. Of course, there is a fundamental difference between

computing β0 for the N = 0 case, and using a high order estimator (N > 0) and then

effectively discarding direct calculation of all {βn} except β0. Unlike the former case, the

latter method computes estimates of pixel values assuming a N th order locally polynomial

structure is present.

2.3.2 Equivalent Kernel

In this subsection we derive a computationally more efficient and intuitive solution

to the classic kernel regression problem. Study of (2.28) shows that XT
xWxXx is a (N +

1) × (N + 1) block matrix, with the following structure:

XT
xWxXx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s11 s12 s13 · · ·

s21 s22 s23 · · ·

s31 s32 s33 · · ·
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.29)

where slm is an l×m matrix (a block). The block elements of (2.29) for the orders of up to

N = 2 are as follows:

s11 =
P∑

i=1

KH(xi − x) (2.30)

s12 = sT
21 =

P∑
i=1

(xi − x)T KH(xi − x) (2.31)

s22 =
P∑

i=1

(xi − x)(xi − x)T KH(xi − x) (2.32)

23

s13 = sT
31 =

P∑
i=1

vechT
{
(xi − x)(xi − x)T

}
KH(xi − x) (2.33)

s23 = sT
32 =

P∑
i=1

(xi − x)vechT
{
(xi − x)(xi − x)T

}
KH(xi − x) (2.34)

s33 =
P∑

i=1

vech
{
(xi − x)(xi − x)T

}
vechT

{
(xi − x)(xi − x)T

}
KH(xi − x). (2.35)

Considering the above shorthand notation, (2.28) can be represented as a local linear filtering

process:

ẑ(x) =
P∑

i=1

Wi(x;N,H) yi, (2.36)

where

Wi(x; 0,H) =
KH(xi − x)

s11
(2.37)

Wi(x; 1,H) =

{
1 − s12s−1

22 (xi − x)
}

KH(xi − x)

s11 − s12s−1
22 s21

(2.38)

Wi(x; 2,H) =

[
1 − S12S−1

22 (xi − x) − S13S−1
33 vech

{
(xi − x)(xi − x)T

}]
KH(xi − x)

s11 − S12S−1
22 s21 − S13S−1

33 s31

.

(2.39)

and

S12 = s12 − s13s−1
33 s32, S22 = s22 − s23s−1

33 s32,

S13 = s13 − s12s−1
22 s23, S33 = s33 − s32s−1

22 s23. (2.40)

Therefore, regardless of the order, the classical kernel regression is nothing but local weighted

averaging of data (linear filtering), where the order determines the type and complexity

of the weighting scheme. This also suggest that the high order regressions (N > 0) are

equivalents of the zero-th order regression (N = 0) with a more complex kernel function. In

other words, to effect the higher order regressions, the original kernel KH(xi−x) is modified

to yield a newly adapted equivalent kernel [33].

24

−10 0 10

−15

−10

−5

0

5

10

15

Sample distribution

x
1

x 2

−15 −10 −5 0 5 10 15

0

0.05

0.1

0.15

0.2

0.25

Equivalent kernel

x
1

W

N=2

N=0,1

(a) (b)

Figure 2.3: (a) A uniformly sampled data set. (b) A horizontal slice of the equivalent
kernels of orders N =0 , 1, and 2 for the regularly sampled data in (a). The kernel KH in
(2.22) is modeled as a Gaussian, with the smoothing matrix H = Diag[10, 10].

To have a better intuition of equivalent kernels, we study the example in Figure

2.3, which illustrates a uniformly sampled data set and the horizontal slices of its corre-

sponding equivalent kernels for the regression orders N = 0, 1 and 2. The direct result of the

symmetry condition (2.7) on KH(xi −x) with uniformly sampled data is that all odd-order

moments (s2j,2k+1 and s2k+1,2j)’s consist of elements with values very close to zero. As this

observation holds for all regression orders, for the regularly sampled data, the N = 2q − 1

order regression is preferred to the computationally more complex N = 2q order regression,

as they produce almost identical results. This property manifests itself in Figure 2.3, where

the N = 0 or 1 ordered equivalent kernels are identical.

This example also shows that unlike the N = 0, 1 cases in which the equivalent

kernel only consists of positive values, the second order equivalent kernel has both positive

and negative elements. Therefore, when we look at the response of equivalent kernel in the

25

frequency domain, the second order equivalent kernel has a clearer cutoff between passed

and filtered frequencies than the zero-th or first order equivalent kernel. The response of

the second order one is very similar to the second order Butterworth low-pass filter.

In the next experiment, we compare the equivalent kernels for an irregularly sam-

pled data set shown in Figure 2.4(a). The second order equivalent kernel for the sample

marked with “×”, is shown in Figure 2.4(b). Figure 2.4(c) and Figure 2.4(d) show the

horizontal and vertical slices of this kernel, respectively. This figure demonstrates the fact

that the equivalent kernels tend to adapt themselves to the density of available samples.

Also, unlike the regularly sampled data case, since the odd-order moments are not equal to

zero, the N = 0 and N = 1 equivalent kernels are no longer identical.

2.3.3 The Selection of Smoothing Matrices

The spread of the kernel as defined in (2.23), and consequently the performance of

the estimator, depend on the choice of the smoothing matrix H [32]. For the bivariate data

cases, the smoothing matrix is a 2× 2 positive definite matrix which is generally defined for

each measured sample as

Hi =

⎡⎢⎢⎣ h1i h2i

h3i h4i

⎤⎥⎥⎦ , (2.41)

where Hi extends the kernel5 to contain a sufficient number of samples. As illustrated in

Figure 2.5, it is reasonable to use smaller kernels in the areas with more available samples,

and likewise larger footprint is more suitable for the more sparsely sampled regions of the

image.

The cross validation (leave-one-out) method [17, 30] is a popular method for es-

5The kernel is often called the mercer kernel, which measures similarity between data, in vast literature
on kernel based regression in multidimensional machine learning, and the way to define the smoothing matrix
Hi by (2.41) is a more general version of the mercer kernels.

26

−10 0 10

−15

−10

−5

0

5

10

15

Sample distribution

x
1

x 2

−15
−10

−5
0

5
10

15

−15
−10

−5
0

5
10

15
−0.05

0

0.05

0.1

0.15

0.2

x
1

Equivalent kernel, N=2

x
2

W

−15 −10 −5 0 5 10 15

0

0.05

0.1

0.15

0.2

0.25

Equivalent kernel

x
1

W

−15 −10 −5 0 5 10 15

0

0.05

0.1

0.15

0.2

0.25

Equivalent kernel

x
2

W

N=2

N=1

N=0

N=2

N=1

N=0

(a) (b)

(c) (d)

Figure 2.4: Equivalent kernels for an irregularly sampled data set are shown in (a). (b)
is the second order (N = 2) equivalent kernel. The horizontal and vertical slices of the
equivalent kernels of different orders (N = 0, 1, 2) are compared in (c) and (d), respectively.
In this example, the kernel KH in (2.22) was modeled as a Gaussian, with the smoothing
matrix H = Diag[10, 10].

timating the elements of the local Hi’s. However, as the cross validation method is com-

putationally very expensive, we usually use a simplified and computationally more efficient

27

small footprint
large footprint

Figure 2.5: Smoothing (kernel size) selection by sample density.

model of the smoothing matrices as

Hi = hµiI, (2.42)

where µi is a scalar that captures the local density of the data samples and h is the global

smoothing parameter.

The global smoothing parameter is directly computed from the cross validation

method, by minimizing the following cost function

ζcv(h) =
P∑

i=1

{ẑh,−i(xi) − yi}2
, (2.43)

where ẑh,−i(xi) is the estimated pixel values without the ith sample with the global smoothing

parameter h. As ζcv might not be differentiable, we use the Nelder-Mead optimization

algorithm [39] to estimate h. To further reduce the computations, rather than leaving a

single sample out, it is possible to leave out a set of samples (a hole row and column).

Following [28], the local density parameter µi is estimated as follows

µi =
(

f(xi)
g

)−α

, (2.44)

28

where f(·) is the density function measured by the kernel density estimator [28] as

f(x) =
1
P

P∑
i=1

KH(xi − x), (2.45)

g is the geometric mean of the density function f(·) given by

g = exp

{
1
P

P∑
i=1

log f(xi)

}
. (2.46)

and α is the density sensitivity parameter which is a scalar satisfying6 0 < α < 1.0. µi

obtained by this method has the property of E{µi} = 1, that is to say that the parameter

makes the footprint slightly larger at a sparse region and slightly smaller at a dense region.

As h and µi are interdependent, we estimate them iteratively. That is, in one

iteration by fixing h, the µi is estimated. In the next iteration µi is fixed and h is estimated.

This process is repeated a few times until more reliable estimates of Hi’s are obtained.

However, we cannot guarantee the convergence of this iterative method. Constructing an

algorithm for this is an ongoing work.

2.4 Super-Resolution by Kernel Regression

This section presents a super-resolution algorithm using the kernel regression tech-

nique. The block diagram of the algorithm is illustrated in Figure 2.6. Suppose we have N

frames. First, we estimate motion between every pair of frames (q.v. Chapter 4). Once the

motion is available, the image fusion method (Shift-and-Add method) shown in Figure 1.2

gives a data set {yi,xi}P
i=1. This data set is irregularly sampled data in all the time unless

we have perfect motion estimation. Second, using the kernel regression method (2.36), we

6In this thesis, we choose α = 0.5, which is proved in [40] to be an appropriate choice for the density
sensitivity parameter.

29

#1

#2

#N

Input frames

Motion Shift-and-Add

KernelDeblurringX

{yi,xi}P
i=1

Z

methodestimation

regression

Figure 2.6: The block diagram of the super-resolution algorithm using kernel regression.

estimate the high resolution image Z, which is defined as

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z(1, 1) z(1, 2) · · · z(1, rM)

z(2, 1) z(2, 2) · · · z(2, rM)

...
...

. . .
...

z(rL, 1) z(rL, 2) · · · z(rL, rM)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.47)

However the estimated image Z is often blurry due to the blur effects caused by atmospheric

turbulence and camera aperture. Hence, third, we need to deblur it by using (A.2) in

Appendix A in order to obtain the sharper image X.

In Figure 2.7, an simple example on Tank sequence shown in Figure 1.4 is illus-

trated with the algorithm just stated above. Figures 2.7(a), (b), and (c) are showing the

estimated images by (2.36) with the regression order N = 0, 1, and 2, respectively. The same

global smoothing parameter, h = 0.8, was used for each case. We can see the significant

improvements between the regression order 0 and 1, since equivalent kernels are different

in the case of irregularly sampled data (see Figure 2.4). With the second order (N = 2),

30

we have an even better image (Figure 2.7(c)). Using the deblurring technique described in

Appendix A (5 × 5 Gaussian blur kernel with variance 1.0, the regularization term of 5× 5

bilateral total variation, the regularization parameter λ = 0.2 and α = 0.5 are used with 50

iterations), the final output is shown in Figure 2.7(d), as applied on the image in Figure

2.7(c).

2.5 Summary

In this chapter we reviewed the classical kernel regression framework, and showed

that it can be regarded as a locally adaptive linear filtering process and an example of image

reconstruction on the tank sequence. The tank sequence has relatively little noise and no

compression artifacts, hence the reconstructed image are quite good. However a real video

sequence could have more noise and compression artifacts. In order to produce a superior

quality output from such a severe case, in the next chapter, we propose and study the

adaptive kernel regression methods with locally non-linear filtering properties.

31

(a) N = 0 (b) N = 1

(c) N = 2 (d) The reconstructed image

Figure 2.7: A super-resolution example on the tank sequence.

32

Chapter 3

Data-Adapted Kernel Regression

3.1 Introduction

In the previous chapter, we studied the kernel regression method, its properties, and

showed its usefulness for image restoration and reconstruction purpose. One fundamental

improvement on the above method can be realized by noting that, the local polynomial kernel

regression estimates, independent of the order (N), are always local linear combinations

(weighted averages) of the data. As such, though elegant, relatively easy to analyze, and

with attractive asymptotic properties [32], they suffer from an inherent limitation due to

this local linear action on the data. In what follows, we discuss extensions of the kernel

regression method that enable this structure to have nonlinear, more effective, action on the

data.

A strong denoising effect and interpolating all the pixels from a very sparse data

set can be realized by making the global smoothing parameter (h) larger. However, with

such a larger h, the estimated image will be more blurred so that we have sacrificed details.

33

edgeedge

(a) (b)

Figure 3.1: Kernel spread in a uniformly sampled data set. (a) Kernels in the classic
method depend only on the sample density. (b) Data-adapted kernels elongate with respect
to the edge.

In order to have both a strong denoising/interpolating effect and a sharper image, one can

consider an alternative approach that will adapt the local effect of the filter using not only

the position of the nearby samples, but also their gray values. That is to say, the proposed

kernels will take into account two factors: spatial distances and radiometric (gray value)

distances. With this idea, this chapter presents a novel non-linear filter algorithm called

data-adapted (or steered) kernel regression.

3.2 Data-Adapted Kernel Regression

Data-adapted kernel regression methods rely not only on the sample density, but

also on the benefits of edge artifacts from the radiometric properties of these samples.

Therefore, the effective size and spread of the kernel is locally adapted to the structure of

objects on an image. This property is illustrated in Figure 3.1, where the classical kernel

spreads and the adaptive kernel spreads in presence of an edge are compared.

On the data-adapted kernel regression approach, in order to take into account the

structure information of a data set, we can simply add one more concept to the kernel

34

function as a parameter. The optimization problem arises here as follows:

min
{βn}N

n=0

P∑
i=1

[
yi − β0 − βT

1 (xi − x)T − βT
2 vech

{
(xi − x)(xi − x)T

}− · · ·
]2

K(xi −x, yi − y),

(3.1)

where the data-adapted kernel function K now depends on the spatial differences (xi − x)

as well as the local radiometric differences (yi − y). The rest of this chapter presents the

selections of the adapted kernel (K).

3.2.1 Bilateral Kernel Regression

A simple and intuitive choice of the K is to use separate terms for penalizing the

spatial differences between the position of interest x and its nearby position {xi}, and the

radiometric differences between the corresponding pixel value y and {yi}:

K(xi − x, yi − y) ≡ KHs(xi − x)Khr (yi − y), (3.2)

where Hs is the spatial smoothing matrix defined as Hs = hsI, and hs and hr are the

spatial and radiometric smoothing parameters. We call this the bilateral kernel. However,

the kernel has a weakness in that the radiometric value y at an arbitrary position x is not

available occasionally as is the case for interpolation problems. Hence we cannot compute

the radiometric weight Khr (yi − y) directly. We may still use the radiometric kernel, but in

such cases a pilot estimate will be needed first to estimate the y. When, in general, y at a

arbitrary position x does exist, the optimization problem with the kernel can be rewritten

as:

min
{βn}N

n=0

P∑
i=1

[
yi − β0 − βT

1 (xi − xj)T − βT
2 vech

{
(xi − xj)(xi − xj)T

}− · · ·
]2

·KHs(xi − xj)Khr (yi − yj),

(3.3)

35

which we call Bilateral Kernel Regression. Note that the regression now lost the interpolation

ability. This can be better understood by studying the spacial case of N = 0, which results

in a data-adapted version of the Nadaraya-Watson [13] estimator:

ẑ(xi) =

P∑
i=1

KHs(xi − xj)Khr (yi − yj) yi

P∑
i=1

KHs(xi − xj)Khr (yi − yj)

. (3.4)

Interestingly, this is nothing but the recently well-studied and popular bilateral filter [23, 24],

both of whose kernels were chosen as Gaussian. In our framework, it is not required for

us to pick the same kernel for both spatial and radiometric kernels. Of course, the higher

order regressions (N > 0) are also available and they can have better performance than

the bilateral filter (the zero-th order bilateral kernel regression (3.4)). As described above,

we cannot apply this regression directly to interpolation problems, and the direct solution

of (3.3) is limited to the denoising problem. Later in this chapter, this limitation can be

overcome by using an initial estimate of y in an iterative set-up.

In any event, breaking K into the spatial and radiometric kernels as utilized in

the bilateral case weakens the estimation performance. A simple justification for this claim

comes from studying the very noisy data sets, where the radiometric differences (yi − yj)’s

tend to be large and as a result all radiometric weights are very close to zero, and effectively

useless. Buades et al. gave this discussion in [41], and they proposed the non-local means

algorithm to enhance denoising effect. However, the algorithm has also a limited scope

of use: image denoising. The following subsection provides a solution to overcome this

drawback of the bilateral kernel approach and the limited scope of use.

36

3.2.2 Steering Kernel Regression

The filtering procedure we proposed above takes the idea of the bilateral kernel one

step further, based upon the earlier kernel regression framework. In particular, we observe

that the effect of computing Khr (yi − y) in (3.2) is to implicitly measure a function of the

local gradient estimated between neighboring pixel values, and to use this estimate to weigh

the respective measurements. As an example, if a pixel is located near an edge, then pixels

on the same side of the edge will have much stronger influence in the filtering. With this

intuition in mind, we propose a two-step approach where first an initial analysis of the image

local structure is carried out. In a second stage, this structure information is then used to

adaptively “steer” the local kernel, resulting in elongated, elliptical contours spread along

the directions of the local edge structure. With these locally adapted kernels, the image

restoration and reconstruction are effected most strongly along the edges, rather than across

them, resulting in strong preservation of detail in the final output. To be specific, we study

an alternative choice of K with a joint spatial and radiometric kernel function

K(xi − x, yi − y) ≡ KHs
i
(xi − x), (3.5)

where, unlike the classic smoothing matrices (2.42), the smoothing matrices {Hs
i}P

i=1 are

the data-adapted full matrices defined as

Hs
i = hµiC

− 1
2

i , (3.6)

where {Ci}P
i=1 are (symmetric) covariance matrices based on the local gray values (and

estimated from the image structure analysis as described below), in other words, all the

Ci’s are implicitly the function of the given data set {yi}P
i=1. We call KHs

i
(·) the steering

kernel and Hs
i the steering matrix from now on. With such steering matrices, for example,

37

if we choose a Gaussian kernel, the steering kernel is mathematically represented as

KHs
i
(xi − x) =

√
det (Ci)

2πh2µ2
i

exp
{
− (xi − x)T Ci(xi − x)

2h2µ2
i

}
. (3.7)

A good choice for Ci will effectively spread the kernel function along the local edges as shown

in Figure 3.1(b). It is worth noting that if we choose a large h in order to have a strong

denoising effect, the undesirable blurring effect which would have resulted, is tempered

around edges with an appropriate choice of {Ci}P
i=1. The method bears some resemblances

to the pre-whitened kernel density estimator in [42, 28].

In the following subsections, two methods to analyze image structure and obtain

the covariance matrices {Ci}P
i=1 are presented. One method is based on pattern classification

[43], and the other is based on local orientation estimate [44].

3.2.2.1 Pattern Classification

One intuitive way of obtaining steering matrices {Ci}P
i=1 is to cluster measured

data by their radiometric values. Suppose we have a clustering result as illustrated in Figure

3.2, and the ith sample is now belonging to the cluster ci, in which case the covariance matrix

for the data is simply given by

Ĉi =

⎡⎢⎢⎣ cov (χ1, χ1) cov (χ1, χ2)

cov (χ1, χ2) cov (χ2, χ2)

⎤⎥⎥⎦
−1

, (3.8)

where

χ1 = [· · · , x1j , · · ·]T , χ2 = [· · · , x2j , · · ·]T , xj = [x1j , x2j]T , xj ∈ ci. (3.9)

The matrix tells us how the samples having similar radiometric values are distributed in the

local region. In the following a classification method called the agglomerative algorithm [43]

is reviewed and redesigned for obtaining the covariance matrices.

38

the ith data

ci

Analysis window

Figure 3.2: Schematic representation of an example of clustering.

Agglomerative algorithm is a well-known bottom-up clustering methods. In the

beginning of the clustering process, each single sample is regarded as a cluster. Then we

compute dissimilarities (distances) between every possible pair of the clusters, find a pair

of clusters which has the smallest dissimilarity, and combine them into a new cluster. We

repeat this procedure several times until the number of clusters reaches a predetermined

value. The dissimilarities between pairs of clusters are measured with a distance measure

and a linkage method [43]. The distance measure computes a dissimilarity between a sample

from a cluster and a sample from another cluster, and linkage method is the way of which

data in a cluster is used for computing the dissimilarity against another cluster.

The common distance measures for agglomerative algorithm are listed below,

L1 distance : dl1(vj ,vk) = ‖vj − vk‖1 (3.10)

L2 distance : dl2(vj ,vk) = ‖vj − vk‖2 (3.11)

Euclidean distance : deu(vj ,vk) = ‖vj − vk‖2
2 . (3.12)

The vectors v’s we have here are three dimensional vectors, since we want cluster measured

39

data with considering both spatial and radiometric values, defined as

vi = [x1i x2i yi]
T

, (3.13)

where x1i and x2i are the coordinates of the ith sample, and yi is the radiometric value of

the sample. Since, in certain cases, we would prefer to consider the spatial differences more

strongly than radiometric differences, or vise versa, we may place some weights on them

with a 3 × 3 weight matrix as

Ω =

⎡⎢⎢⎢⎢⎢⎢⎣
σ2

s 0 0

0 σ2
s 0

0 0 σ2
r

⎤⎥⎥⎥⎥⎥⎥⎦ , (3.14)

where σs and σr are spatial and radiometric weight coefficients, respectively. We define the

weighted distance measures as follows:

Weighted l1 : dWL1(vj ,vk) = σ−1
s |x1j − x1k| + σ−1

s |x2j − x2k| + σ−1
r |yj − yk|

(3.15)

Weighted l2 : dWL2(vj ,vk) =
√

(vj − vk)T Ω−1(vj − vk) (3.16)

Weighted Euclidean : dWL2(vj ,vk) = (vj − vk)T Ω−1(vj − vk). (3.17)

Using one of the above distance measures, a dissimilarity between a pair of clusters is

calculated with the linkage methods, whose typical choices are

single linkage : D(c1, c2) = min
vj∈c1,vk∈c2

d(vj ,vk) (3.18)

complete linkage : D(c1, c2) = max
vj∈c1,vk∈c2

d(vj ,vk) (3.19)

average linkage : D(c1, c2) =
1

N1N2

∑
vj∈c1

∑
vk∈c2

d(vj ,vk) (3.20)

mean linkage : D(c1, c2) = d

⎛⎝ 1
N1

∑
vj∈c1

,
1

N2

∑
vk∈c2

⎞⎠ , (3.21)

40

(a) single (b) complete

(c) average (d) mean

c1 c2

1
2 3 4

5

c1 c2

1
2

3
4

5

c1 c2

1
2

3
4

5

c1 c2

1
2

3 4

5

Figure 3.3: Schematic representation of typical linkage methods.

where N1 and N2 are the number of the data in the cluster c1 and c2, respectively. Figure

3.3 is illustrating schematic representations of each linkage method.

3.2.2.2 Local Orientation Estimate

The local edge structure is related to the gradient covariance (or equivalently, the

locally dominant orientation), where a naive estimate of this covariance matrix may be

obtained as follows:

Ĉi ≈

⎡⎢⎢⎢⎢⎣
∑

xj∈wi

zx1(xj)zx1(xj)
∑

xj∈wi

zx1(xj)zx2(xj)

∑
xj∈wi

zx1(xj)zx2(xj)
∑

xj∈wi

zx2(xj)zx2(xj)

⎤⎥⎥⎥⎥⎦ (3.22)

where zx1(·) and zx2(·) are the first derivatives along x1 and x2 directions and wi is a local

analysis window around the position of interest. The dominant local orientation of the

gradients is then related to the eigenvectors of this estimated matrix. While this approach

(which is essentially a local principal components method) is simple and has nice tolerance to

noise, the resulting estimate of the covariance may in general be rank deficient or unstable,

and therefore care must be taken not to take the inverse of the estimate directly in this

41

Λi Uθi

θi

σi

1
σi

Elongate Rotate

γi

γiσi

γi

σi

Scale

Figure 3.4: Schematic representation illustrating the effects of the steering matrix and its
component (Ci = γiUθiΛσiU

T
θi

) on the size and shape of the regression kernel .

case. In such case, a diagonal loading or regularization methods can be used to obtain

stable estimates of the covariance matrix. In [44], Feng et al proposed an effective multiscale

technique for estimating local orientations, which fits the requirements of this problem nicely.

Informed by the above, this thesis takes a parametric approach to the design of the steering

matrix.

In order to have a more convenient form of the covariance matrix, we decompose

the covariance matrix into three components as follows:

Ci = γiUθiΛiUT
θi

, Uθi =

⎡⎢⎢⎣ cos θi sin θi

− sin θi cos θi

⎤⎥⎥⎦ , Λi =

⎡⎢⎢⎣ ρi 0

0 ρ−1
i

⎤⎥⎥⎦ , (3.23)

where Uθi is a rotation matrix and Λi is the elongation matrix. Now the covariance matrix

is given by the three parameters γi, θi, and ρi, which are the scaling, rotation, and elongation

parameters, respectively. Figure 3.4 schematically explains how these parameters affect the

spreading of kernels. First, the circular kernel is elongated by the elongation matrix Λi,

and its semi-minor axis and semi-major axis are given by ρi. Second, the elongated kernel

is rotated by the rotation matrix Uθi . Finally, the kernel is scaled by the scaling parameter

γi.

42

This thesis defines the scaling, elongation, and rotation parameters as follows.

Following the orientation estimation method in [44], the dominant orientation of the local

gradient field is the singular vector corresponding to the smallest (non-zero) singular value

of the local gradient matrix arranged in the following form

Gi =

⎡⎢⎢⎢⎢⎢⎢⎣
...

...

zx1(xj) zx2(xj)

...
...

⎤⎥⎥⎥⎥⎥⎥⎦ = UiSiVT
i , x ∈ wi, (3.24)

where UiSiVT
i is the truncated singular value decomposition of Gi. Si is a diagonal 2 × 2

matrix representing the energy in the dominant directions. Then, the second column of the

orthogonal 2 × 2 matrix Vi, v2 = [ν1, ν2]T , gives the dominant orientation angle θi:

θi = arctan
(

ν1

ν2

)
. (3.25)

That is, the singular vector corresponding to the smallest non-zero singular value of Gi

represents the dominant orientation of the local gradient field. The elongation parameter

ρi can be selected corresponding to the energy of the dominant gradient direction:

ρi =
s1 + λ′

s2 + λ′ , λ′ ≥ 0, (3.26)

where λ′ is a regularization parameter for the kernel elongation, which dampens the effect

of the noise, and restricts the denominator away from becoming zero. The intuition behind

(3.26) is to keep the shape of the kernel circular in flat area (s1 ≈ s2 ≈ 0), and elongate it

near edge areas (s1
 s2). Finally, the scaling parameter γi is defined by

γi =
(

s1s2 + λ′′

M

) 1
2

, (3.27)

where λ′′ is again a regularization parameter, which dampens the effect of the noise and

keeps γi from becoming zero; and M is the number of samples in the local analysis window.

43

Figure 3.5: Footprint examples of steering kernels with covariance matrices {Ci} given by
the local orientation estimate (3.23) at a variety of image structures.

The intuition behind (3.27) is that, to reduce noise effects while producing sharp images,

large footprints are preferred in the flat (smooth) areas and smaller ones in the textured

areas. Note that the local gradients, as well as the eigenvalues (or singular values) of the

covariance matrix Ci, are smaller in the flat (low-frequency) areas than the textured (high-

frequency) areas. As the scaling parameter γi is given by the geometric mean of the singular

values of Ĉi in (3.27), γi makes the steering kernel area large in the flat areas, and small in

the textured areas. Figure 3.5 illustrates such behaviors of steering kernels at a variety of

image structures of Lena.

While it appears that the choice of three parameters in the above discussion is

44

purely ad-hoc, we direct the interested reader to a more careful statistical analysis of the

distributional properties of the singular values (sj) in [44, 45, 46]. The particular selections

for these parameters are directly motivated by this earlier work. However, to maintain focus

and conserve space, we elected not to include such details.

3.3 Iterative Steering Kernel Regression

3.3.1 Filtering Algorithm

The estimated smoothing matrices of the steering kernel regression method are data

dependent, and consequently sensitive to the noise in the input image. As we experimentally

demonstrate in the next section, steering kernel regression is most effective when an iterative

regression/denoising procedure is used to exploit the output (less noisy) image of each

iteration to estimate the radiometric terms of the kernel in the next iteration. A block

diagram representation of this method is shown in Figure 3.6. In this diagram, the data

set is used to create the initial (dense) estimate of the interpolated output image (Figure

3.6(a)). In the next iteration, the reconstructed (less noisy) image is used to recalculate a

more reliable estimate of the gradient (Figure 3.6(b)), and this process continues for a few

more iterations. While we do not provide an analysis of the convergence properties of this

proposed iterative procedure, we note that while increasing the number of iterations reduced

the variance of the estimate, it also leads to increased bias (which manifests as blurriness).

Therefore, in a few (typically around 5) iterations, a minimum mean-squared estimate is

obtained (an example will be shown below). A future line of work will analyze the derivation

of an effective stopping criterion and a careful study of convergence properties from first

principles.

45

Gradient Est.
Smoothting

Kernel Reg.y
H(0)

i β̂
(0)

1

Ẑ(0)

(a) Initialization

Smoothing
Kernel Reg.

H(n+1)
i β̂

(n+1)

1

Ẑ(n+1)

β̂
(n)

1

(b) Iteration

Noisy data

Ẑ(n)

Initial
Matrix Est.

Matrix Est.

Figure 3.6: Block diagram representation of the iterative adaptive regression.

It is worth pointing out that the iterative regression method has the luxury of

using directly estimated gradients. Note that the discrete gradients used in (3.24) are usually

approximated by convolving a bandpass filter with the image. However, comparison of (2.16)

and (2.19) shows that the vector β1 is the direct estimate of the image gradients. Indeed, the

direct estimation of the gradient vector is more reliable but at the same time computationally

more expensive. In Appendix B, computation of β1, directly in the regression context, is

presented.

3.3.2 Performance Analysis

In this section, we illustrate some properties and performance of iterative steering

kernel regression with a simple image denoising example. Adding white Gaussian noise with

standard deviation 25 to Figure 3.7(a) generates the noisy image shown in Figure 3.7(b).

The denoising results by the iterative steering kernel regression method with h = 2.75 are

illustrated in Figures 3.7(c)-(f). As seen in these results, the mean square error (MSE) is

minimized after 3 iterations. However, too many iterations result in the blurry image. As

we will illustrate shortly, this blur is caused by increasing bias in the estimate. On the other

46

hand, the variance is reduced with each iteration. It is known (q.v. [16]) that the mean

square error is expressed as

MSE [ẑ(x, h)] = Bias2[ẑ(x, h)] + Var [ẑ(x, h)] , (3.28)

and the graph in Figure 3.8 illustrates the behavior of MSE, bias, and variance, which are

yielded by Monte Carlo simulations (100 denoising experiments per pixel by adding white

Gaussian noise with variance 25 and different noise seeds).

While in this case, choosing h = 2.75, with 3 iterations yielded the best estimate,

the necessary number of iterations is different for different h. Figure 3.10, Figure 3.11, and

Figure 3.12 illustrate the behavior of MSE, bias, and variance, respectively, and Table 3.1

shows the best estimates with for four different global smoothing parameters. Interestingly,

the best MSE’s are nearly the same even though the smoothing parameters are not. However

the ratio of bias and variance is different in each case. The larger the smoothing parameter

(h), the fewer iterations are necessary to reach the minimum MSE. With a larger h, however,

the estimated image has larger bias, which means the resulting image is more blurry. Figure

3.9 shows that two denoised results with a smaller h(= 2.25) and a larger h(= 3.0). As

Table 3.1 tells us, with the larger h, the estimated image (Figure 3.9(b)) is more blurry

than Figure 3.9(a), nonetheless their MSE are quite close. In general, a smaller h and more

iterations give us a visually superior result.

3.4 Summary

This chapter presented data-adapted (non-linear) kernel regression with two new

approaches: the bilateral kernel and the steering kernel, for image processing and reconstruc-

tion based on kernel regression. Moreover, a novel iterative filtering algorithm (Figure 3.6)

47

h 2.25 2.50 2.75 3.00
it # 9 5 3 2
MSE 101.35 98.87 98.33 98.93
Bias2 46.70 49.22 51.29 54.82

Variance 54.65 49.65 47.04 44.11

Table 3.1: The best estimation in mean square error by iterative steering kernel regression
with different global smoothing parameters.

and its performance are also presented. Using the data-adapted kernel regression method

with the iterative filtering algorithm, estimated images will have superior quality, which will

be demonstrated with real data sets in Chapter 5.

In the next chapter, we will discuss the application of ideas presented so far to

motion estimation. As reviewed in Section 1.2, to reconstruct a high quality image, we

need to have motions as accurately as possible. Surprisingly, the kernel regression method

has a power to improve the estimation performance of the current state of the art motion

estimation methods which use optical flow in a multi-resolution context.

48

(a) Original image (b) Noisy image, σ = 25

(c) Initial estimation, MSE=131.28 (d) 3 iterations, MSE=98.33

(e) 6 iterations, MSE=112.07 (f) 9 iterations, MSE=134.99

Figure 3.7: A denoising experiment by iterative steering kernel regression.

49

0 2 4 6 8 10 12
0

20

40

60

80

100

120

140

160

The number of iteration

M
ea

n
sq

ua
re

 e
rr

or
, S

qu
ar

e
bi

as
, V

ar
ia

nc
e

Mean square error
Square bias
Variance

Figure 3.8: The analysis of mean square error, bias, and variance.

(a) h = 2.25 and 9 iterations (b) h = 3.00 and 2 iterations

Figure 3.9: The best estimation in mean square error with two different global smoothing
parameters.

50

0 2 4 6 8 10 12
80

100

120

140

160

180

200

The number of iteration

M
ea

n
sq

ua
re

 e
rr

or

h=2.25
h=2.50
h=2.75
h=3.00

Figure 3.10: Mean square error with different global smoothing parameters.

0 2 4 6 8 10 12
0

20

40

60

80

100

120

140

160

180

200

The number of iteration

S
qu

ar
e

bi
as

h=2.25
h=2.50
h=2.75
h=3.00

Figure 3.11: Bias with different global smoothing parameters.

51

0 2 4 6 8 10 12
0

20

40

60

80

100

120

140

160

180

The number of iteration

V
ar

ia
nc

e

h=2.25
h=2.50
h=2.75
h=3.00

Figure 3.12: Variance with different global smoothing parameters.

52

Chapter 4

Motion Estimation

4.1 Introduction

Motion estimation is one of the most important issues in image reconstruction, or

super-resolution. Once the motions are available, we know where measured data must be

located. After that we place all data onto a finer resolution grid, and interpolate them to

have a high quality image; a concept we reviewed in Section 1.2. In this chapter, we review

a widely-used motion estimation algorithm first (optical flow + multiscale) and then will

see how kernel regression makes the performance better.

Before going through the review of motion estimation, let’s remark on what factors

affect the performance. Motion estimation based on optical flow equations [8] is severely

influenced by measurement noise since the equations are built up on image gradients. And

when computing the gradients, we tend to amplify the noise. Moreover, computing correct

gradients is not so easy. Using sobel gradient operator [10], the estimated gradients have

errors [47], and such errors cause motion estimation errors. Hence, estimating gradients

53

itself is an important problem, and fortunately we can use higher order kernel regression

as a gradient estimator. The second order regression is a preferable choice to estimate the

first derivatives since the second derivative term β2 implicitly regularizes the first derivative

term β1. There is another problem that makes motion estimation difficult. Using multiscale

algorithm to cope with large motions, we propagate a motion estimated in coarse resolu-

tion fields to fine resolution fields. This propagation requires that we warp images by some

method, such as cubic spline interpolation. This image warping is, therefore, also affecting

the performance of motion estimation due to the distortion introduced by the image warp-

ing methods. To summarize, there are three factors which complicate motion estimation.

Namely: measurement noise, gradient errors, and image warping. Kernel regression is an

excellent tool to deal with these problems and will give us denoised and warped gradients

with a high quality.

We will deal with only translational motion [7] in this thesis. However the algorithm

is, of course, applicable to more complex parametric motion estimation. Translation is

the simplest motion model, in which we assume that all motions at every pixel are same,

and consequently there are two unknown motion parameters in the vertical and horizontal

directions.

4.2 Accurate Motion Estimation

4.2.1 Motion Estimator Based on Optical Flow Equations

In the first instance, we review briefly the motion estimation based on optical flow

equations. Suppose y(x, t) is the pixel value at x = [x1, x2]T and time t. A point in a frame

at x moves to x + d at the time t + dt, where d = [dx1 , dx2]
T . Assuming constancy in the

54

pixel’s brightness, we can write the following equation:

y(x + d, t + dt) = y(x, t), (4.1)

where dx1 , dx2 and dt are assumed small. If these differential values are small enough to

neglect the higher order terms of a Taylor expansion, we have:

y(x + d, t + dt) ≈ y(x, t) +
∂y

∂x1
dx1 +

∂y

∂x2
dx2 +

∂y

∂t
dt. (4.2)

By comparing (4.1) with (4.2), we obtain

∂y

∂x1
dx1 +

∂y

∂x2
dx2 +

∂y

∂t
dt = 0. (4.3)

Dividing both sides by dt, we arrive at

∂y

∂x1
vx1 +

∂y

∂x2
vx2 +

∂y

∂t
= 0. (4.4)

This is the optical flow equation for a point x. Assuming constant vx1 , vx2 , We have as many

optical flow equations as the number of pixels of a frame, while the number of unknown

parameters is only two; namely vx1 and vx2 . Therefore, motion estimation in this case is

always an overdetermined problem. While this is encouraging, due to measurement noise

and gradient errors, motion estimation can still be unstable.

Suppose we have a pair of frames #n and #n + 1. The motion from the frame

#n to #n + 1 we call the forward motion. Analogously, from #n + 1 to #n, we have the

backward motion in the opposite direction. Figure 4.1 indicates the forward and backward

motion schematically. The magnitude of the (estimated) forward and backward motions

should the be same, but the directions are opposite. Using this property, we construct the

optical flow constraint. The optical flow equations of the forward motion between the nth

and (n + 1)th frames can be expressed in the vector form as

Y(n)
x1

vx1 + Y(n)
x2

vx2 + Y(n)
t = 0, (4.5)

55

t
x2

x1

t

t + dt

t − dt

forward

backward

frame #n

frame #n + 1

frame #n − 1

Figure 4.1: The forward and backward motion.

where the underline is the operator lexicographically ordering the elements of a matrix, and

Y(n)
x1

=
∂Yn

∂x1
, Y(n)

x2
=

∂Yn

∂x2
, Y(n)

t =
∂Yn

∂t
≈ Yn − Yn+1. (4.6)

For the backward motion, we have

Y(n+1)
x1

vx1 + Y(n+1)
x2

vx2 − Y(n)
t = 0. (4.7)

By combining (4.5) and (4.7)⎡⎢⎢⎣ Y(n)
x1

Y(n+1)
x1

⎤⎥⎥⎦ vx1 +

⎡⎢⎢⎣ Y(n)
x2

Y(n+1)
x2

⎤⎥⎥⎦ vx2 +

⎡⎢⎢⎣ Y(n)
t

−Y(n)
t

⎤⎥⎥⎦ = 0. (4.8)

Thus by incorporating this symmetry constraint, the number of optical flow equation is

doubled now. This idea can by applicable in any motion models based on optical flow

equations, and the result is more stable. For convenience let us rewrite (4.8) as

Jx1
vx1 + Jx2

vx2 + Jt = 0, (4.9)

⇒ C(v) ≡ Jv + Jt = 0, (4.10)

56

where J =
[
Jx1

Jx2

]
and v = [vx1 vx2]

T is the motion vector. We call C(v) the symmetric

optical flow constraint from now on.

Now we drive our translational motion estimator based on the optical flow con-

straint (4.10). Least squares estimator is a widely-used choice and the estimator is written

as

v̂ = arg min
v

∥∥∥Jv + Jt

∥∥∥2

2
= arg min

v

(
Jv + Jt

)T(
Jv + Jt

)
, (4.11)

= −(JT
J
)−1

J
T Jt. (4.12)

However this estimator does not work well if the motion is large, we derived it under the

assumption that motions are small. To overcome this drawback of the estimator, multiscale

motion estimation are currently widely used (q.v. [48]). In the next section, we review it.

4.2.2 Multiscale Motion Estimation

For large motions, the approximation of (4.2) becomes inaccurate and inconsistent.

In order to overcome this difficulty, we construct pyramids as illustrated in Figure 4.2, each

scale of which is obtained by blurring with a low-pass filter (preferably Gaussian) and

downsampling with the factor of 2 for both vertical and horizontal directions. First, we

estimate the motion between the anchor and target frame in the top scale since the motion

is diminished in that scale, and hence the approximation of (4.2) works well. Now we have

a rough motion vector. After that we go down to one-lower scale and propagate the rough

motion to the scale. In other words, we warp (shift) the anchor or target image at that

scale, so that the motion between the two frames becomes small. Then we perform motion

estimation (4.12) again on that scale. We repeat this until arriving at the bottom scale. In

57

v̂2

v̂1

v̂0

anchor frame target frame
Yn Yn+1

Figure 4.2: Multiscale motion estimation

this way, the final motion vector is given by

v̂ =
L∑

l=0

2lv̂l, (4.13)

where L is the number of scales.

Using the multiscale motion estimation as mentioned above, we can deal with large

motions. However, in order to estimate motions more accurately in each scale, we perform

motion estimate iteratively several times in the same scale. The algorithm is simple; repeat-

ing motion estimation and image warping at the same scale. In that way, the motion to be

estimated between anchor and target frames are small, and consequently the approximation

(4.2) becomes more precise. Figure 4.3 illustrates the block diagram of the accurate motion

estimation in a scale. As the number of iterations increases, the estimated motion v̂ between

anchor and warped target are smaller. We put µ (in Figure 4.3) as a damping factor to

make the estimation process stable, and it takes a value of 0 < µ ≤ 1.0. We do the iteration

58

Motion
estimation

Warp

µ
v̂

v̂(n)
l

v̂(n)
l

v̂(n+1)
l

Anchor

Target

propagate it to
one lower scale

Figure 4.3: The block diagram of accurate motion estimation on a scale.

until the motion vector converges1, put it differently, until v̂ becomes close to 0.

4.3 Image Warping

If the elements of the motions were integer number, it would be very easy for us to

warp images, since we could just shift the pixel to be neighboring pixels. However we need

a motion with sub-pixel accuracy, and this demands precise image warping. Well-known

image warping techniques are bilinear and cubic spline interpolation. As an attractive alter-

native, we present a new warping technique, based on kernel regression. Interestingly, kernel

regression can be an image warping tool, and it has great possibility, since the regression

estimates denoised, less inconsistent, warped derivatives directly. In the next section, the

performance analysis with different warping techniques are demonstrated.
1It hopefully will converge. There is no guarantee. This issue must be investigated in the future work.

59

· · ·

Frame #1 Frame #2 Frame #20

Figure 4.4: A simulated sequence.

4.4 Simulations

This section examines the performance of motion estimation. Using the motion

estimation algorithm of Figure 4.3 with some different warping methods: (1)linear inter-

polation2, (2)cubic interpolation3, (3)classic kernel regression (N = 2 and h = 0.7 with

Gaussian kernel), we illustrate which method is better using noisy sequences. The noisy

sequence4 is generated by adding white Gaussian noise with a variety of standard devia-

tions to the simulated sequence shown in Figure 4.4. We generated the simulated sequence

by the following procedures: (1) take the convolution the original high resolution image

(1200 × 1200) with a 5 × 5 Gaussian kernel with variance 1.5, (2) randomly shift (integer

shift) the blurry image to the vertical and horizontal directions (translational motion), (3)

downsample the shifted image with factor 20 for both the vertical and horizontal directions

(4) do the procedure (1)-(3) 20 times. The experimental result (100 times Monte Carlo

simulations) is shown in Figure 4.5. The performance of the multiscale optical flow motion

estimations with linear and cubic warping are very close to each other. On the other hand,

the motion estimation with classic kernel regression yields us more accurate results.
2MATLAB’s function “interp2” with the ’linear’ option.
3MATLAB’s function “interp2” with the ’cubic’ option.
4The corresponding signal to noise ratio is 9[dB] when the standard deviation is 20.

60

0 2 4 6 8 10 12 14 16 18 20
0.005

0.01

0.015

0.02

0.025

0.03

0.035

Standard deviation

R
oo

t m
ea

n
sq

ua
re

 e
rr

or

Linear interpolation
Cubic interpolation
Classic kernel regression

Figure 4.5: The performance analysis of motion estimations with different warping
methods.

4.5 Summary

In this chapter, we investigated accurate motion estimation, and showed that ker-

nel regression has great potential for use as image warping for motion estimation. The

simulations demonstrated the performance improvements.

61

Chapter 5

Demonstration and Conclusion

5.1 Introduction

In this chapter, we demonstrate how suitable the kernel regression technique is

for image processing and reconstruction. To show the ability of the proposed algorithm

in Chapter 3, we present three different applications: denoising, interpolation, and super-

resolution.

5.2 Image Denoising

In the first set of experiments, we compare the performance of several denoising

techniques. We set up a controlled simulated experiment by adding white Gaussian noise

with standard deviation (STD) of σ = 25 to the Lena image shown in Figure 5.1(a). The

resulting noisy image with PSNR1 of 20.17[dB], is shown in Figure 5.1(b). This noisy image

1Peak Signal to Noisy Ratio is defined as 20 log
10

`
255

RMSE

´
.

62

is then denoised by the spline smoother2 of (2.13) with3 λ = 0.43, result of which is shown in

Figure 5.1(c) (zoomed in Figure 5.2(a)). The result of applying the bilateral filter (3.4) with

hs = 1.5 and hr = 7.4 is shown in Figure 5.1(d) (zoomed in Figure 5.2(b)). For the sake

of comparison, we have included the result of applying the recent wavelet based denoising

method4 of [49] in Figure 5.1(e) (zoomed in Figure 5.2(c)). Finally, Figure 5.1(f) (zoomed

in Figure 5.2(d)) shows the result of applying the iterative steering kernel regression of

Section 3.2.2 (N = 2, h = 2.4, and 7 iterations). The RMSE values of the reconstructed

images of Figure 5.1(b)-(f) are 25.0, 8.91, 8.65, 6.64, and 6.66, respectively.

We set up a second controlled simulated experiment by adding JPEG compression

artifacts to the uncompressed image of Figure 5.3(a). The JPEG image was constructed

by using MATLAB JPEG compression routine with a quality parameter equal to 10. This

compressed image with a RMSE value equal to 9.76 is illustrated in Figure 5.3(b). We

applied several denoising methods (similar to the ones used in the previous experiment) to

acquire higher quality estimates. The results of applying the spline smoother with λ = 0.11,

bilateral filter (3.4) with hs = 2.0 and hr = 4.1, wavelet [49], and the iterative steering kernel

regression (N = 2, h = 2.0 and 3 iterations) are given in Figure 5.3(c)-(f), respectively. The

RMSE values of the reconstructed images of Figure 5.3(c)-(f) are 9.05, 8.52, 8.80, and 8.48,

respectively.

In the third denoising experiment, we applied several denoising techniques on the

color image shown in Figure 5.4(a), which is corrupted by real film grain noise and scanning

process noise. To produce better color estimates, following [50], first we transferred this RGB

image to the YCrCb representation. Then we applied several denoising techniques (similar

2We used MATLAB’s spline smoother function “csaps”, for this and other spline smoother experiments.
3The criteria for parameter selection in this example (and other examples discussed in this thesis) was

to choose parameters which produce visually most appealing results.
4In this experiment, we used the code (with parameters suggested for this experiment) provided by the

author of [49] available at http://decsai.ugr.es/∼javier/denoise/index.html .

63

to the ones in the previous two experiments) on each channel (the luminance component

Y, and the chrominance components Cr and Cb), separately. The results of applying

Wavelet [49], and bilateral filter (3.4) (hs = 2.0 and hr = 3.5 for all the channels), and the

iterative steering kernel regression (N = 2, h = 2.0, and 3 iterations) are given in Figures

5.4(b)-(d), respectively. Figures 5.4(e)-(g) show the absolute values of the residuals in the

Y channel. It can be seen that the proposed steering kernel method produces the most

noise-like residuals.

5.3 Image Interpolation

In the forth experiment, we downsampled the Lena image of Figure 5.1(a) (zoomed

in Figure 5.6(a)) by a factor of 3 in each direction. The resulting aliased image is shown

in Figure 5.5(a). We compare the performance of different techniques, for upscaling this

(regularly sampled) image back to its original size (with the resolution enhancement factor

of 3 in each direction). Figure 5.5(b) (zoomed in Figure 5.6(b)) shows the result of applying

the spline smoother with λ = 0.0006. Figure 5.5(c) (zoomed in Figure 5.6(c)) is the result of

using the classic kernel regression (h = 1.75). Figure 5.5(d) (zoomed in Figure 5.6(d)) shows

the result of implementing the bilateral kernel regression of Section 3.2.1 (N = 0, hs = 1.75

and hr = 3.0). Figures 5.5(e) and (f) (zoomed in Figures 5.6(e) and (f), respectively) are

the results of the iterative steering kernel regression (N = 0, h = 1.0 and no iterations) and

(N = 2, h = 1.25 and no iterations) of Section 3.2.2. The RMSE values of the reconstructed

images of Figures 5.5(b)-(f) are 7.92, 7.96, 8.07, 8.03, and 7.42, respectively.

The fifth experiment is a controlled simulated regression of an irregularly sampled

image. We randomly deleted 85% of the pixels in the Lena image of Figure 5.1(a), creating

the sparse image of Figure 5.7(a). To fill the missing values, first we implemented the

64

Delaunay-spline smoother5 with λ = 0.087 to fill the missing values, the result of which is

shown in Figure 5.7(b), with some clear artifacts on the edges. Figure 5.7(c) shows the result

of using the classic kernel regression (2.36) (N = 2 and h = 2.25). The result of the bilateral

kernel regression (N = 0, hs = 2.25, and hr = 3.0) is shown in Figure 5.7(d). Figures 5.7(e)-

(f) show the results of implementing iterative steering kernel regression (N = 0, h = 0.8,

and no iterations), and (N = 2, h = 1.6, and 1 iteration), respectively. The RMSE values

for images in Figures 5.7(b)-(f) are 9.15, 9.69, 9.72, 8.91, and 8.21, respectively.

5.4 Super-Resolution

The sixth experiment is a multi-frame resolution enhancement (see Figure 2.6) of

a real compressed gray-scale video sequence captured with a commercial webcam (3COM,

Model no.3718). A total of 53 frames were captured with the camera, where the underlying

motion was assumed to follow the translational model, and motions are estimated by the

algorithm introduced in Chapter 4. The first frame of the sequence is shown in Figure

5.9(a) We used the spline smoother with λ = 0.01 to interpolate this image by the resolution

enhancement factor of 5 in each direction, as shown in Figure 5.9(b). To produce better

estimates, first we fused these frame on a high-resolution grid with 5 times more pixels in

each direction (shift-and-add method of Figure 1.2) and then interpolated the missing pixel

values. The result of interpolating the shift-and-add image by the Delaunay-spline smoother

with λ = 0.01, and the proposed steering kernel regression method of Section 3.2.2 with the

order of 2 and h = 1.0, are shown in Figure 5.9(c)-(d), respectively.

The last experiment is a multi-frame super-resolution of a real compressed color
5To implement the Delaunay-spline smoother we used MATLAB’s “griddata” function with “cubic”

parameter to transform the irregularly sampled data set to a dense regularly sampled one (Delaunay trian-
gulation). The quality of the resulting image was further enhanced by applying MATLAB’s spline smoother
routine “csaps”.

65

image sequence captured with a commercial video surveillance camera; courtesy of Adyoron

Intelligent Systems, Ltd., Tel Aviv, Israel. A total of 10 frames were used for this exper-

iment, where the underlying motion was assumed to follow the translational model. One

of these frames is shown in Figure 5.10(a). To produce better color estimates, following

[50], first we transferred the RGB frames to the YCrCb representation, and treated each

channel separately, as we did in the third experiment of Section 5.2. We used the method

described in Chapter 4 to estimate the motion vectors. Then, we fused each channel of

these frames on a high-resolution grid with 5 times more pixels as illustrated in Figure 1.2,

interpolated the missing values, and then deblurred the interpolated image using Bilateral

Total Variation regularization6 [6]. The result of interpolating the irregularly sampled image

by the Delaunay-spline smoother (implementation similar to the previous experiment with

λ = 0.5 for the luminance and λ = 1.0 for the chrominance channels) followed by deblurring

is shown in Figure 5.10(b). The results of applying the classic kernel regression (N = 2

and h = 2.0 for the luminance channel and h = 3.5 for the chrominance channels) followed

by deblurring and the iterative steering kernel regression (N = 2, h = 4.0 for the luminance

channel and h = 8.0 for the chrominance channels, and 1 iteration) followed by deblurring

are shown in Figures 5.10(c)-(d), respectively. Comparison of these diverse experiments

demonstrate that the proposed iterative steering kernel method not only performs best in a

quantitative sense but also results in sharper images with fewer artifacts.

5.5 Conclusion

In this thesis, we studied a non-parametric class of regression methods. We rein-
6For this experiment the camera point spread function (PSF) was assumed to be a 5 × 5 Disk kernel

(obtained by the MATLAB command “fspecial(’disk’, 2)”). The deblurring regularization coefficient
for the luminance channel was chosen to be 0.2 and for the chrominance channels was chosen to be 0.5.

66

troduced kernel regression, as a general framework for studying several efficient denoising

and interpolation algorithms. We compared the similarities of the classic kernel regression

and another popular family of regressors, namely, spline smoother. We showed that the clas-

sic kernel regression in essence simplifies to a computationally efficient local linear filtering

process, the properties of which were studied under the topic of equivalent kernels.

To overcome the inherent limitations dictated by the linear filtering properties

of the classic kernel regression, we introduced the non-linear data-adapted class of kernel

regressors. We showed that the popular bilateral filtering technique is a special case of

data-adapted kernel regression. Later, we introduced and justified a novel adaptive kernel

regression method, called steering kernel regression, with superior performance as compared

to other regression method studied in this thesis. Experiments on simulated and real data

attested to our claim.

The superior performance of the data-adapted kernel regression can be explained by

noting that the spline smoother (2.13) in effect exploit the Tikhonov regularizers. However,

the data-adapted kernel regression in its simplest form (bilateral filter) exploits the Total

Variation (TV) regularization [51, 52]. The relation between the bilateral filtering and TV

regularization is established in [6]. The study in [6] also shows the superior performance of

the TV based regularization compared to the Tikhonov based regularization. More details

on the adaptive bilateral filters and their relation with the TV regularization can be found

in [6].

Finally, in Section 3.3, we proposed an iterative scheme to further improve the

performance of data-adapted kernel regression methods. Seeking an automatic method for

picking the optimal number of iterations or a stoping criterion for the iterations as well as

the optimal regression order is a part of our ongoing work.

67

(a) Original image (b) Noisy image, σ = 25

(c) Spline smoother (d) Bilateral filter

(e) Wavelet [49] (f) Iterative steering kernel

Figure 5.1: The performance of different denoising methods are compared in this experi-
ment. The RMSE of the images (b)-(f) are 25, 8.91, 8.65, 6.64, and 6.66, respectively.

68

(a) Spline smoother (b) Bilateral filter

(c) Wavelet [49] (d) Iterative steering kernel

Figure 5.2: Figures 5.1(c)-(f) are enlarged to give (a),(b),(c), and (d), respectively.

69

(a) Original image (b) Compressed image

(c) Spline smoother (d) Bilateral Filtering

(e) Wavelet [49] (f) Iterative steering kernel

Figure 5.3: The performance of different denoising methods are compared in this exper-
iment on a compressed image by JPEG format with the quality of 10. The RMSE of the
images (b)-(f) are 9.76, 9.05, 8.52, 8.80, and 8.48, respectively.

70

(a) Real noisy image (b) Wavelet [49]

(c) Bilateral filter (d) Iterative steering kernel
555045403530252015105

(e) Wavelet [49] (f) Bilateral filter (g) Iterative steering kernel

Figure 5.4: The performance of different denoising methods are compared in this experi-
ment on a color image with real noise. Gaussian kernel was used for all experiments.

71

(a) Downsampled Lena image (b) Spline smoother

(c) Classic kernel regression, N = 2 (d) Bilateral kernel regression, N = 0

(e) Steering kernel regression, N = 0 (f) Steering kernel regression, N = 2

Figure 5.5: Upscaling experiment. The image of Lena is downsampled by the factor of 3
in (a). The factor of 3 up-sampled images of different methods are shown in (b)-(f). The
RMSE values for images (b)-(f) are 7.92, 7.96, 8.07, 7.93, and 7.43 respectively.

72

(a) Downsampled Lena image (b) Spline smoother

(c) Classic kernel regression, N = 2 (d) Bilateral kernel regression, N = 0

(e) Steering kernel regression, N = 0 (f) Steering kernel regression, N = 2

Figure 5.6: Figures 5.5(a)-(f) are enlarged to give (a)-(f), respectively.

73

(a) Irregularly downsampled image (b) Delaunay-spline smoother

(c) Classic kernel regression, N = 2 (d) Bilateral kernel regression, N = 0

(e) Steering kernel regression, N = 0 (f) Steering kernel regression, N = 2

Figure 5.7: Irregularly sampled data interpolation experiment, where 85% of the pixels in
the Lena image are omitted in (a). The interpolated images using different methods are
shown in (b)-(f). RMSE values for (b)-(f) are 9.15, 9.69, 9.72, 8.91, and 8.21, respectively.

74

(a) Irregularly downsampled image (b) Delaunay-spline smoother

(c) Classic kernel regression, N = 2 (d) Bilateral kernel regression, N = 0

(e) Steering kernel regression, N = 0 (f) Steering kernel regression, N = 2

Figure 5.8: Figures 5.7(a)-(f) are enlarged to give (a)-(f), respectively.

75

(a) The first input frame (b) Single-frame Delaunay-spline smoother

(c) Multi-frame Delaunay-spline smoother (d) Multi-frame steering kernel regression

Figure 5.9: Image fusion (Super-Resolution) experiment of a real data set consisting of 10
compressed grayscale images. One input image is shown in (a) which is up-scaled in (b)
by the spline smoother interpolation. (c)-(d) show the multi-frame Shift-And-Add images
after interpolation by the Delaunay-spline smoother and the steering kernel methods. The
resolution enhancement factor in this experiment was 5 in each direction.

76

(a) The first input frame (b) Multi-frame Delaunay-spline smoother

(c) Multi-frame classic kernel regression (d) Multi-frame steering kernel regression

Figure 5.10: Image fusion (Super-Resolution) experiment of a real data set consisting of
10 compressed color frames. One input image is shown in (a). (b)-(d) show the multi-frame
Shift-And-Add images after interpolating by the Delaunay-spline smoother, classical kernel,
and steering kernel regression methods, respectively. The resolution enhancement factor in
this experiment was 5 in each direction.

77

Chapter 6

Super Resolution Toolbox

6.1 Introduction

This chapter explains the usage of the super resolution toolbox, which is the im-

plementation of the kernel regression technique described in this thesis. As we have seen

in Chapter 5, the technique can be applied for a wide class problems. Here, we explain

functions, which deal with denoising, interpolation, and fusion. Note that the function will

properly operate on MATLAB (version 6.5).

6.2 Installation

1. Extract the archive file “SuperResolutionToolBox.zip”, and copy the folder “Super-

ResolutionToolBox” to a folder (e.g. “C:/MATLAB6p5/work/”).

2. Start MATLAB, and set the path to the folder of “SuperResolutionToolBox” with

subfolders. As shown in Figure 6.1, first, pull down the file menu and click the “Set

Path...” illustrated in Figure 6.1(a). Second, following the circled number, set the

78

(a)
(b)

Figure 6.1: Setting path.

path as illustrated in Figure 6.1(b).

6.3 The Kernel Regression Function

This section explains the function “KernelReg”. In the command line of MATLAB,

we run the function as follows:

[z, zx, zy] = KernelReg(frames, r, mvs, ref, Q, h, ktype, kfunc, ksize, it, wsize);

where z, zx, and zy are the output values: estimated images, estimated vertical gradient

images, and estimated horizontal gradient images, respectively. Table 6.1 explains the

parameters of the function. With this function, we can do denoising, interpolation, and

fusion. If the frames contain the color data in RGB, we must use the “KernelReg color”

function instead of calling the “KernelReg” function. Example usages are introduced in the

next section.

79

Params Descriptions Dimensions
frames Input frames (low resolution and noisy images) L×M×N

r Resolution enhancement factor scalar
mvs Motion vectors (translational) 2×(N−1)

Please set mvs = [0, 0]T , when the number of frames is 1.
ref The reference frame number scalar
Q Regression order: 0 = constant, 1 = linear, or 2 = quadratic scalar
h Global smoothing parameter

Classic kernel case, h scalar
Bilateral kernel case, h = [hs, hr]T 2 × 1
Steering kernel case, h scalar

ktype Kernel type: ’ga’ = Gaussian, or ’exp’ = exponential (Laplacian) string
kfunc Kernel function: ’classic’, ’bilateral’, or ’steering’ string
ksize Kernel window size (The window will be ksize× ksize.) scalar

it The number of iteration for iterative steering kernel regression scalar
wsize The size of image analysis window for steering kernel regression scalar

Table 6.1: The parameter descriptions of “KernelReg” function.

6.4 Examples

There are several sample codes using the “KernelReg” function, which are located

in the folder named “examples”, under the folder of “SuperResolutionToolBox”. The codes

demonstrate the function with practical image processing examples. The details of the

example codes are written in the m-files, which are listed below.

• Gaussian noise removal (“Lena denoise.m”)

This example demonstrates Gaussian noise removal with the kernel regression tech-

niques discussed in this thesis: classic, bilateral and iterative steering kernel regression.

This produces the denoising results in Figure 5.1

• Compression artifact reduction (“Pepper deblock.m”)

This example demonstrates the compression artifact reduction. This program reads

an image and adds compression artifacts by saving the image in the JPEG format,

and reduces the artifacts using kernel regression. This produces the deblocking results

80

in Figure 5.3

• Film grain removal (“JFK denoise.m”)

This example demonstrates the denoising effect on a real noisy image (film grain noise).

Besides, the image is a color image so that this tells how to use the “KernelReg color”

function. This produces the denoising results shown in Figure 5.4

• Image upscale (“Lena upscale.m”)

This example demonstrates the image upscale on the Lena image in Figure 5.1(a).

The program first downsamples the Lena image with a downsampling factor, and then

upscales the given image with the same factor. This produces the upscaling results

shown in Figure 5.5.

• Image fusion (“tank8 fusion.m”)

This example demonstrates the simple image fusion and super-reslution on the tank

sequence in Figure 1.4. This produces the image fusion results shown in Fiture 2.7.

• Color super-resolution (“ady10 superresolution.m”)

This example demonstrates color super-resolution on a real noisy and severely com-

pressed vide sequence. This produces the color super-resolution results shown in Figure

5.10.

6.5 Troubleshooting

In the interpolation case, a reconstructed image with the function might have

some missing pixels. The problem can be solved by choosing appropriate parameter values.

Typically, the problem is caused by wrong choices of the resolution enhancement factor and

81

the global smoothing parameter. Either a smaller resolution enhancement factor or a larger

global smoothing parameter can overcome the trouble.

6.6 Summary

This chapter explained how to use the “KernelReg” function, and it is a conve-

nient tool for image processing and reconstruction. Only one function can do many things:

denoising, deblocking, upscaling, super-resolution, and so on.

82

Chapter 7

Future Work

7.1 Robust Kernel Regression

The classic kernel regression framework can be regarded as a weighted least square

estimator (q.v. Chapter 2). However, in the case that there are some outliers in a measured

data set, the estimator will strongly stick to those outliers due to the square error norm. In

order to overcome this problem, it is possible for us to modify the framework with the idea

of robust estimation. A more general, the robust framework for kernel regression may be

expressed as

min
{βn}N

n=0

P∑
i=1

Ω

(
yi − β0 −βT

1 (xi −x)−βT
2 vech

{
(xi −x)(xi −x)T

})
K(xi −x, yi − y), (7.1)

where Ω(·) is the error norm function. The common selections of the function are illustrated

in Table 7.1. As an example of the usefulness of this more general framework, salt & pepper

noise reduction is illustrated in Figure 7.1. In this example, we added 20% salt and pepper

noise (outliers) to the original image of Figure 7.1(a), resulting in the noisy image of Figure

7.1(b). The denoised image using a 3 × 3 median filter, wavelet method of [49], l2 classic

83

(a) Original (b) Noisy (c) Median (d) Wavelet [49]

(e) l2 Classic (f) l2 Steering (g) l1 Classic (h) l1 Steering

Figure 7.1: An example of the salt & pepper noise reduction. Corresponding RMSE for
(b)-(h) are 63.84, 11.05, 22.47, 21.81, 21.06, 7.65, and 7.14.

kernel regression (N = 2 and h = 2.46), l2 iterative steering kernel regression (N = 2,

h = 2.25 and 20 iterations), l1 classic kernel regression (N = 2 and h = 0.65), and l1

iterative steering kernel regression (N = 2, h = 2.25, and no iterations) are shown in

Figures 7.1(b)-(h), respectively. The performance difference is quite clear. By using the

l1 norm instead of the l2 norm, the kernel regression now successfully reduced the salt &

pepper noise. Besides, with the steering kernel, we have an even better estimated image.

84

Absolute (l1 Norm)
Ω(x) = |x| Ω′(x) = sign(x)

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Quadratic (l2 Norm)
Ω(x) = x2 Ω′(x) = 2x

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

−10 −8 −6 −4 −2 0 2 4 6 8 10
−20

−15

−10

−5

0

5

10

15

20

Truncated Quadratic

Ω(x, α, λ) =
{

λx2 |x| <
√

α
λ

α else
Ω′(x, α, λ) =

{
2λx |x| <

√
α
λ

0 else

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

Geman & McClure
Ω(x, α) = x2

x2+α Ω′(x, α) = 2xα
(x2+α)2

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Lorentzian

Ω(x, α) = log
{

1 + 1
2

(
x
α

)2} Ω′(x, α) = 2x
x2+2α2

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Table 7.1: Error norm functions and their derivatives [1].

85

7.2 Segment Motion Estimation

7.2.1 Motivation

Motion estimation enables us to fuse images so that we can reconstruct a high

resolution image by using the kernel regression technique. However the larger the images

to fuse, the more difficult to estimate motions with a simple motion model. In this thesis,

we dealt with the simplest motion model, translational motion. It is obviously impossible

for this model to be assumed always valid. Even using the parametric (e.g. affine motion

model), camera lens distortion on the images depart from this simple model. Moreover, it

is definitely necessary for us to consider the motion flow occlusions. In this section, an idea

of the motion estimation for large images which may have occlusions will be discussed.

7.2.2 Image Segmentation

Since the motion estimation on large images is difficult, the intuitive way to over-

come this difficulty is to segment the images into small pieces, and then estimate motions

for each piece. There are several types of segmentation methods we must consider. The list

below is a sampling of these methods.

1. Fixed block base

This is the simplest segmentation method. With this method, we blindly segment

two images (reference and target images) into a collection of fixed-size blocks in the

same way, and estimate motions between every pair of corresponding blocks of the

reference image and the target image. Theoretically, the smaller the block size, the

more accurate the overall motion will be estimated; however, the local estimation

becomes more difficult and unstable.

86

2. Object or texture base

Motion flow occlusions often happen around the border areas of objects or textures.

Hence it is a good way for us to segment the images based on objects or textures, and

estimate the corresponding segments between the reference and the target image.

3. Motion base

The motion flow occlusions do not happen at all the objects’ borders. As we know

already, the larger the segment, the more stable the motion estimate will be. The

motion based segmentation method detects the occlusions and segment the image

accordingly. Although this is the most difficult method, once we implement and have

the motions, the reconstructed images will give superior results.

7.2.3 Motion Models

Motion models are also significantly important for successful motion estimation.

Since the translational model is often not flexible enough to fit unknown motions, with this

model, the only thing we can do to have a better parametric fit is to reduce the size of

the segment. However, again, the estimation becomes unstable due to the small number of

optical flow equations. Another way to proceed is to use more general parametric motion

models: affine, projective linear, and so on. Most likely, with a proper image segmentation

algorithm, the affine motion model is the most appropriate one. In the next section, one

simple demonstration is shown.

87

7.3 Example

In this section, we present a simple example of the image reconstruction from large

size frames. Figure 7.2 shows the three frames from a video sequence. The size of all the

frames is 350 × 600. Using the classic kernel regression (order N = 2, global smoothing

parameter h = 1.0, and resolution enhancement factor r = 2), we try to reconstruct a high

quality image from them. First, we reconstruct an image under the assumption that all the

pixels have the same linear motion (i.e. translational motion model). The result is given in

Figure 7.3. Since the global motion model is inaccurate, the upper and bottom part of the

reconstruction look blurry. Alternatively, we segment all the frames into fixed-size blocks

(50 × 50) and estimate motions for these blocks. The result is illustrated in Figure 7.4.

While this result too is not perfect, the quality is much better (sharper) than Figure 7.3.

7.4 Summary

This chapter showed another possibility of the kernel regression technique. In the

future, it is obvious that video to video super-resolution and dynamic super-resolution will

be focused.

88

(a) The first frame

(b) The second frame

(c) The thrid frame

Figure 7.2: Three large frames from a video sequence. The size of each frame is 350× 600.

89

Figure 7.3: The reconstructed image using the translational motion model.

90

Figure 7.4: The reconstructed image using the translational motion model with the block
segmentation.

91

Appendix A

Image Deblurring

Image deblurring is the last phase of super-resolution, and it is necessary to recover

some high frequency components of fused images in most cases, since the images are usually

blurred by atmosphere and camera. Moreover, unfortunately, kernel regression1 also gives

some blurring effects to the images, particularly when we choose a wrong parameter (e.g.

unnecessarily large smoothness). Therefore image deblurring is necessary, and, in this sec-

tion, a simple deblurring method in the spatial domain is introduced. We leave the method

to remove spatial invariant blurring effects by adapted kernel regression as a future work.

Suppose we have a blurred image Z, which is given by a blurred version of a real

scene X, is expressed as

Z = BX + ε, (A.1)

where the matrix (image) with an underline is the column-stack vector of the matrix, B

is the blur operator, and ε is noise. Note that the estimated blurred image by kernel

regression has already removed much of the noise. Regularized least-squares estimator is a
1Data-adapted kernel regression will give spatially variant blurring effects to estimated images

92

Tikhonov Total variation Bilateral total variation [6]

Υ(X) ‖ΓX‖2
2 ‖ΓX‖1

qX
l=−q

qX
m=−q

α|l|+|m|
‚‚‚X − Sl

x1S
m
x2X

‚‚‚
1

Υ′(X) 2ΓT ΓX ΓT sign(ΓX)

qX
l=−q

qX
m=−q

α|l|+|m|
“
I − S−l

x1S
−m
x2

”
sign

“
X − Sl

x1S
m
x2X

”

Table A.1: Regularization functions and their first derivatives.

typical choice for the real scene X, which takes the form

X̂RLS = arg min
X

[∥∥∥BX − Z
∥∥∥2

2
+ λΥ (X)

]
= arg min

X
C (X) , λ ≥ 0, (A.2)

where Υ (X) is a regularization function. We minimize the cost function C (X) to find X

by the steepest descent method,

X̂
(n+1)

= X̂
(n) − µ

[
BT

(
BX̂

(n) − Z
)

+ λΥ′
(
X̂

(n)
)]

. (A.3)

The choices of Υ (X) and their derivatives are listed up in Table A.1, in which Γ is a highpass

filter, (e.g. Laplacian), and S is the shift operator, and α is a parameter controlling the

decay of weights.

93

Appendix B

Local Gradient Estimation

As we mentioned several times, the higher order (N > 0) kernel regression used

for gradient estimation, which is very useful for image processing and reconstruction. As

we know already, gradient estimates can be used for orientation estimation and motion

estimation. In this section, local gradient estimators with the order of N = 1 and 2 are

derived. In the optimization problem (2.24), the term we wish to estimate is β1. Hence,

the gradient estimator is

∇ẑ(x) = β̂1 =

⎡⎢⎢⎣ eT
2

eT
3

⎤⎥⎥⎦(XT
xWxXx

)−1
XT

xWxY, (B.1)

where e2 and e3 are column vectors (the same size of b in (2.25)) whose second and third

elements are 1 respectively, and the rest are zero. Following the notation of (2.29), the local

linear (N = 1) and local quadratic (N = 2) gradient estimators are given by

∇ẑ(x) =
P∑

i=1

[
s22 − s21s

−1
11 s12

]−1 [−s21s
−1
11 + (xi − x)

]
KH(xi − x)yi (B.2)

∇ẑ(x) =
P∑

i=1

S−1
[−S21S

−1
11 + (xi − x) − S23S

−1
33 vech

{
(xi − x)(xi − x)T

}]
KH(xi − x)yi,

(B.3)

94

respectively, where

S11 = s11 − s13s−1
33 s31, S21 = s21 − s23s−1

33 s31

S23 = s23 − s21s
−1
11 s13, S33 = s33 − s31s

−1
11 s13, (B.4)

S = s22 − S21S
−1
11 s12 − S23S

−1
33 s32. (B.5)

Of course it is absolutely possible for us to use adapted kernels (bilateral and steering kernels)

for the gradient estimators as well. Amazingly, this estimator also has great denoising

effect and can interpolate gradient images, consequently image warping is also possible

with it, therefore it is a suitable tool for motion estimation, too. For the super-resolution

experiments in Chapter 5, these estimators are used for motion estimation.

95

Bibliography

[1] M. J. Black and P. Anandan, “The robust estimation of multiple motions: Parametric

and piecewise-smooth flow fileds,” Computer Vision and Image Understanding, vol. 63,

no. 1, pp. 75–104, January 1996.

[2] H. Takeda, S. Farsiu, and P. Milanfar, “Image denoising by adaptive kernel regression,”

Proceedings of the 39th Asilomar Conference on Signals, Systems, and Computers,

Pacific Grove, CA, pp. 1660–1665, November 2005.

[3] ——, “Kernel regression for image processing and reconstruction,” submitted to IEEE

Transactions on Image Processing.

[4] ——, “Robust kernel regression for restoration and reconstruction of images from sparse

noisy data,” Invited paper, 2006 International Conference on Image Processing, At-

lanta, GA.

[5] T. F. Chan, “Nontexture inpainting by curvature-driven diffusions,” Journal of Visual

Communication and Image Representation, vol. 12, no. 10, pp. 436–449, May 2001.

[6] S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multi-frame super-

resolution,” IEEE Transactions on Image Processing, vol. 13, no. 10, pp. 1327–1344,

October 2004.

96

[7] C. Stiller and J. Konrad, “Estimating motion in image sequences - a tutorial on mod-

eling and computation of 2d motion,” IEEE Signal Processing Magazine, vol. 16, no. 4,

pp. 70–91, July 1999.

[8] J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani, “Hierarchical model-based

motion estimation,” Proceedings of the European Conf. on Computer Vision, pp. 237–

252, May 1992.

[9] S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Robust shift-and-add approach

to super-resolution,” Proceeding of the SPIE Annual Meeting, San Diego, CA, vol. 5203,

August 2003.

[10] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Upper Saddle River, N.J.:

Prentice Hall, 2002.

[11] M. Unser, “Splines: A perfect fit for signal and image processing,” IEEE Signal Pro-

cessing Magazine, vol. 16, no. 6, pp. 22–38, November 1999.

[12] C. de Boor, A Practical Guide to Splines. New York: Springer-Verlag, 1978.

[13] E. A. Nadaraya, “On estimating regression,” Theory of Probability and its Applications,

vol. 9, pp. 141–142, September 1964.

[14] M. Elad and Y. Hel-Or, “A fast super-resolution reconstruction algorithm for pure

translational motion and common space-invariant blur,” IEEE Transactions on Image

Processing, vol. 10, no. 8, pp. 1187–1193, August 2001.

[15] A. Zomet, A. Rav-Acha, and S. Peleg, “Robust super-resolution,” Proceedings of the

International Conference on Computer Vision and Pattern Recognition (CVPR), 2001,

Hawaii.

97

[16] S. M. Kay, Fundamentals of Statistical Signal Processing - Estimation Theory -, ser.

Signal Processing Series. Englewood Cliffs, N.J.: PTR Prentice-Hall, 1993.

[17] M. P. Wand and M. C. Jones, Kernel Smoothing, ser. Monographs on Statistics and

Applied Probability. London; New York: Chapman and Hall, 1995.

[18] S. V. Huffel and J. Vandewalle, The Total Least Squares Problem: Computational As-

pects and Analysis, ser. Frontiers in applied mathematics. Philadelphia: Society for

Industrial and Applied Mathematics, 1991, vol. 9.

[19] P. Yee and S. Haykin, “Pattern classification as an ill-posed, inverse problem: a reglar-

ization approach,” Proceeding of the IEEE International Conference on Acoustics,

Speech, and Signal Processing, ICASSP, vol. 1, pp. 597–600, April 1993.

[20] V. N. Vapnik, Statistical Learning Theory, ser. Adaptive and learning systems for signal

processing, communications, and control. New York: Wiley, 1998.

[21] H. Knutsson and C.-F. Westin, “Normalized and differential convolution: Methods

for interpolation and filtering of incomplete and uncertain data,” Proceedings of IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, pp. 515–

523, June 16-19 1993.

[22] T. Q. Pham, L. J. van Vliet, and K. Schutte, “Robust fusion of irregularly sampled

data using adaptive normalized convolution,” EURASIP Journal on Applied Signal

Processing, 2005.

[23] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” Proceeding

of the 1998 IEEE International Conference of Compute Vision, Bombay, India, pp.

836–846, January 1998.

98

[24] M. Elad, “On the origin of the bilateral filter and ways to improve it,” IEEE Transac-

tions on Image Processing, vol. 11, no. 10, pp. 1141–1150, October 2002.

[25] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward feature space

analysis,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24,

no. 5, pp. 603–619, May 2002.

[26] X. Li and M. T. Orchard, “New edge-directed interpolation,” IEEE Transactions on

Image Processing, vol. 10, no. 10, pp. 1521–1527, October 2001.

[27] N. K. Bose and N. Ahuja, “Superresolution and noise filtering using moving least

squares,” submitted to IEEE Transactions on Image Processing, 2005.

[28] B. W. Silverman, Density Estimation for Statistics and Data Analysis, ser. Monographs

on Statistics and Applied Probability. London; New York: Chapman and Hall, 1986.

[29] W. Hardle, Applied Nonparametric Regression. Cambridge [England] ; New York:

Cambride University Press, 1990.

[30] W. Hardle, M. Muller, S. Sperlich, and A. Werwatz, Nonparametric and Semiparametric

Models, ser. Springer Series in Statistics. Berlin ; New York: Springer, 2004.

[31] W. Hardle, Smooting Technique with Implementation in S, ser. Springer Series in Statis-

tics. New York: Springer-Verlag, 1991.

[32] D. Ruppert and M. P. Wand, “Multivariate locally weighted least squares regression,”

The Annals of Statistics, vol. 22, no. 3, pp. 1346–1370, September 1994.

[33] M. G. Schimek, Smooting and Regression -Approaches, Computation, and Application-,

ser. Wiley Series in Probability and Statistics. New York: Wiley-Interscience, 2000.

99

[34] J. E. Gentle, W. Hardle, and Y. Mori, Handbook of Computational Statistics: Concepts

and Methods. Berlin ; New York: Springer, 2004, pp. 539–564 (Smoothing: Local

Regression Techniques).

[35] R. L. Eubank, Nonparametric Regression and Spline Smoothing, ser. Statistics, text-

books and monographs. New York: Marcel Dekker, 1999, vol. 157.

[36] L. Piegl and W. Tiller, The NURBS Book. New York: Springer, 1995.

[37] M. Arigovindan, M. Suhling, P. Hunziker, and M. Unser, “Variational image recon-

struction from arbitrarily spaced samples: A fast multiresolution spline solution,” IEEE

Transactions on Image Processing, vol. 14, no. 4, pp. 450–460, April 2005.

[38] B. W. Silverman, “Spline smoothing: The equivalent variable kernel method,” The

Annals of Statistics, vol. 12, no. 3, pp. 898–916, September 1984.

[39] J. A. Nelder and R. Mead, “A simplex method for function minimization,” Computer

Journal, vol. 7, no. 4, pp. 308–313, 1965.

[40] I. S. Abramson, “On bandwidth variation in kernel estimates - a square root law,” The

Annals of Statistics, vol. 10, no. 4, pp. 1217–1223, December 1982.

[41] A. Buades, B. Coll, and J. M. Morel, “On image denoising methods,” Technical Note,

CMLA (Centre de Mathematiques et de Leurs Applications), no. 5, 2004.

[42] K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd ed., ser. Computer

Science and Scientific Computing. Boston: Academic Press, 1990.

[43] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. New York:

Wiley-Interscience, 2001.

100

[44] X. Feng and P. Milanfar, “Multiscale principal components analysis for image local ori-

entation estimation,” Proceedings of the 36th Asilomar Conference on Signals, Systems

and Computers, Pacific Grove, CA, November 2002.

[45] K. V. Mardia, J. T. Kent, and J. M. Bibby, Multivariate Analysis. London ; New

York: Academic Press, 1979.

[46] A. Edelman, “Eigenvalues and condition numbers of random matrices,” SIAM Journal

on Matrix Analysis and Aplications, vol. 9, pp. 543–560, 1988.

[47] S. Ando, “Consistent gradient operators,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 22, no. 3, pp. 252–265, March 2000.

[48] Y. Wang, J. Ostermann, and Y. Zhang, Video Processing and Communications. Upper

Saddle River, NJ: Prentice Hall, 2002.

[49] J. Portilla, V. Strela, M. Wainwright, and E. P. Simoncelli, “Image denoising using scale

mixtures of Gaussians in the wavelet domain,” IEEE Transactions on Image Processing,

vol. 12, no. 11, pp. 1338–1351, November 2003.

[50] S. Farsiu, M. Elad, and P. Milanfar, “Multiframe demosaicing and super-resolution of

color images,” IEEE Transactions on Image Processing, vol. 15, no. 1, pp. 141–159,

January 2006.

[51] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal

algorithms,” Physica D, vol. 60, pp. 259–268, November 1992.

[52] T. F. Chan, S. Osher, and J. Shen, “The digital TV filter and nonlinear denoising,”

IEEE Transactions on Image Processing, vol. 10, no. 2, pp. 231–241, February 2001.

101

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

