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Abstract

Measuring Spatially Varying Blur and its Application in Digital Image

Restoration

by

Xiang Zhu

While digital imaging systems have been widely used for many applications includ-

ing consumer photography, microscopy, aerial photography, astronomical imaging, etc.,

their output images/videos often suffer from spatially varying blur caused by lens, trans-

mission medium, post processing algorithms, and camera/object motion. Measuring the

amount of blur globally and locally is an important issue. It can help us in removing the

spatially varying blur, and enhancing the visual quality of the imaging system outputs.

It can also provide useful information about the scene, such as saliency and depth map.

In this work, we study the blur measurement problem for different scenarios.

We first analyze the behavior of a local gradient-based sharpness metric in the pres-

ence of spatially varying blur and spatially constant noise, and develop two multiframe

restoration systems based on this metric. The first one is a focus-stacking method de-

veloped for multifocus image sequences. It selects sharp local patches from the input

sequence through the metric, and fuses them together to generate a high quality image.

Different from existing stacking methods, this one utilizes image color information to

correct fusion errors caused by inaccurate sharpness measurement. The second system

aims to restore videos distorted by air turbulence. Air turbulence produces random

blur and geometric deformation. Our system first reduces the space and time varying



deblurring problem to a shift invariant one through a registration and fusion procedure,

and then removes the blur using a blind deconvolution step. Experiments illustrate that

this approach can effectively alleviate turbulence distortions, and recover details of the

scene.

We then consider the situation where both blur and noise are spatially chang-

ing. A quality metric based on singular value decomposition of local image gradient

matrix is proposed. Compared with existing sharpness metrics that cannot distinguish

quality decay against noise, the proposed one is properly correlated with the noise level

and blurriness of a given image. Ample simulated and real data experiments illustrate

that this metric is capable of capturing the trend of quality change during the denoising

process, and can be used to automatically select the denoising filter parameters that

show excellent visual performance in balancing between noise suppression and detail

preservation.

Finally, we propose a method capable of estimating the accurate amount of

local defocus blur from a single image. This method measures the probability of local

defocus level. It also takes smoothness and color edge information into consideration

to generate a coherent map indicating the amount of blur at each pixel. Real data

experiments illustrate its good performance, and its successful applications in fore-

ground/background segmentation.
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Chapter 1

Introduction

Abstract - In this chapter we discuss various types of image blur sources and their

properties. Different degradation models are introduced to represent both constant

and spatially varying blurring process. Importance of image blur measurement and its

potential applications are explained. We also discuss limitations of most existing blur

estimation algorithms and sharpness metrics, and give a brief description about the

contributions of this thesis in the area of spatially varying blur measurement.

1.1 Blur in Imaging Systems

Digital imaging devices along with post processing algorithms are very popular

in many imaging areas, including consumer photography, microscopy, macro photogra-

phy, aerial photography, astronomical imaging, medical imaging, etc. However, all these

imaging systems suffer from two common distortions, which are blur and noise. Com-

pared with noise, which is mainly caused by the sensor and circuitry of a digital camera

and could be approximately described through some standard statistical models (e.g.
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Gaussian distribution, Poisson distribution), blur has more sources and its form can be

highly complicated. How to measure and remove various kinds of blur along with noise

is a significant problem not only in the image/video restoration area but also in many

other applications in the fields of image processing, computer vision, and computational

photography.

1.1.1 Sources of Blur

According to its sources, image blur can be generally categorized into four

groups: motion blur, lens blur, blur due to transmission medium (e.g. turbulence), and

post processing blur (see examples illustrated in Fig. 1.1).

Either camera or object movement during the exposure period would lead to

motion blur. This phenomenon is very common especially for consumer digital cam-

eras. For example, cell phone cameras often cannot be held sufficiently steady, and

thus it is easy to generate camera shaking blur. Fast exposure could reduce the blur

amount to some degree. However, because the aperture size is also relatively small for

mobile cameras, shorter exposure time would introduce more noise. This problem can

be prominent if the scene is dim, which means we have to maintain a relatively long

exposure time and sacrifice image sharpness to suppress noise level. Ideally, if the scene

is static with uniform depth and if the camera motion is 2-D translational, then the

motion blur can be viewed as spatially invariant (see Fig. 1.1 (a)), which could be

estimated and removed through a blind deconvolution procedure [7, 8, 9]. However, in

practice camera motion includes more complex motion. Objects inside the scene can

also be moving. Besides, the depth is probably spatially changing. Any of these three
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(a) (b) (c)

(d) (e) (f)

Figure 1.1: Examples for different types of blur: (a) uniform motion blur caused by camera

shaking; (b) non-uniform motion blur caused by object movement; (c) defocus blur in the

background; (d) spatially varying blur caused by atmospheric turbulence; (e) an image over-

smoothed by Bilateral filtering; (f) JPEG compression artifacts.

factors could make motion blur spatially varying (see Fig. 1.1 (b)), which makes its

estimation and removal highly difficult [10, 11].

Incorrect lens setting or limited depth of filed would produce defocus blur (see

example in Fig. 1.1 (c)), which is an important type of lens blur. Besides, even if the

scene is perfectly in focus and no matter how well the lens is corrected, in most optical

imaging systems there always exists a fundamental resolution limit due to diffraction,

which is called diffraction-limited blur [12]. On the other hand, commonly used cameras

add an anti-aliasing filter into the lens system to remove high-frequency components

beyond the Nyquist limit of the digital camera sensor. Such kind of blur can actually
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enhance the visual quality of captured images. Generally speaking, diffraction-limited

blur and anti-aliasing blur can be approximately viewed as spatially invariant, while

the spatial variance of defocus blur depends on both the depth of field of the lens and

depth of the scene [13, 14].

For long-distance imaging systems (such as ground-based astronomical imaging

systems) atmospheric turbulence, which generates variation of refractive index along the

optical transmission path and distort light wavefront, can strongly affect the image qual-

ity [15, 16, 17, 18, 19]. Turbulence of other media (e.g. water) also have similar effects

and thus can degrade the performance of related imaging systems (such as underwater

cameras) [20]. Generally speaking turbulence in the transmission medium produces two

major distortions: geometrical deformation and blur, where both are temporally and

spatially changing (see Fig. 1.1 (c)). Removing such effects is very important for many

applications and meanwhile it is quite challenging [21, 20, 22, 23, 18].

Post processing methods (denoising, deblurring, super-resolution, etc.) can

also introduce blur (see Fig. 1.1 (d)), though most of them are used to enhance im-

age/video quality. One example is denoising filter, which smoothes the input image to

reduce noise level but meanwhile produces blur as a side effect. If the filter is spatially

invariant, such as a Gaussian smoothing filter, then the blur is also uniform. However,

most of the time locally adapted denoising filters are implemented (e.g. Bilateral filter,

non-local means (NLM), BM3D) in practice since these filters more effectively suppress

noise and meanwhile maintain most of the useful image structure [24, 25, 26, 27, 28].

Blur caused by these filters is again spatially varying. Besides, compression is another

procedure which generates non-uniform blur since it kills some high-frequency compo-
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nents to reduce the file size (see the example in Fig. 1.1 (e)) [29, 30].

1.1.2 Degradation Model

Though generated by various sources, different kinds of blur can be described

by similar models. Let us first consider a shift invariant convolution model, which can

be written as:

g[x, y]=h[x, y]⊗ f [x, y] + n[x, y]

=

∫
R2

h[x− u, y − v]f [u, v]dudv + n (1.1)

where g[x, y], f [x, y] denote the observed blurry image and the latent sharp image,

respectively. h[x, y] represents the point-spread-function (PSF) of blur, ⊗ denotes 2-D

shift-invariant convolution, and n is additive noise.

This model can be used to describe spatially uniform blur, where the same

h[x, y] is applied over the whole image. For example, in the camera motion blur case as

we explained earlier that if the scene is static and if the camera motion is 2D transla-

tional, then the blur PSF can be viewed as spatially invariant (see an example in Fig.

1.2). Besides, diffraction-limited blur and anti-aliasing filter blur can also be treated as

spatially invariant.

Under some circumstances we may have multiple frames taken for the same

scene, where each frame has a unique PSF [31]. The corresponding imaging model

becomes:

gk[x, y] = hk[x, y]⊗ f [x, y] + nk, (k = 1, 2, . . . ,K) (1.2)

here K denotes the number of frames and each frame is indexed by k. In this model it

is assumed that the scene is static across the frame sequence, and the PSF is varying
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Figure 1.2: A camera motion blurred image example from [1], where trajectories of the light

spots reveal the shape of the local motion PSFs. We can see that the PSFs are basically invariant

across the image region.

between frames, but within one frame hk[x, y] is still spatially invariant. Such situation

may happen when we have a burst of images and each one is distorted by different

motion blur [32, 33, 34, 35].

If blur PSF is spatially changing, which is more common in practice, a more

general image model can be used:

g[x, y] =

∫
R2

h[x− u, y − v;u, v]f [u, v]dudv + n (1.3)

where h[x, y;u, v] represents the PSF of the point located at [u, v]. It can be seen that

this is no longer a shift-invariant convolution, and almost all the spatially changing blur

cases in Sec 1.1.1 can be represented using this model. In discrete imaging systems, this

model can also be written as:

g = Hf + n (1.4)

where g, f and n denote observed digital image, latent sharp image and noise in vector

forms, and H represents a blurring matrix determined by h[x, y;u, v]. Note that H can

also be generated from a space-invariant PSF h[x, y].
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For multi-frame cases, the above model becomes:

gk = Hkf + nk (k = 1, 2, . . . ,K) (1.5)

Again, each frame is indexed by k, and K denotes the total number of frames. Hk

represents a spatially and temporally changing blurring matrix. This formula is useful

in modeling videos and image sequences distorted by atmospheric turbulence [36].

For some types of blur (such as lens blur) their PSF can be approximated

through a parametric model (e.g. disc, Gaussian) and characterized by a single param-

eter indicating its scale (radius, standard deviation, etc.). For other situations (e.g.

motion blur, turbulence blur) the PSF can have a somewhat arbitrary form with a high

degree of freedom, which makes its measurement quite challenging.

1.2 Measuring Image Blur

Measuring blur is very important in the fields of image processing and computer

vision. For example, it can help us in recovering the latent sharp images (deblurring) or

enhancing visual quality (sharpening). In this thesis the term image blur measurement

includes two kinds of procedures: PSF estimation and sharpness measurement. The

first one tells about the accurate blur form, and the second one measures the effect of

blur.

1.2.1 Importance of Blur Measurement

The most direct way of measuring blur is to estimate its PSF. Ideally, once

the blur matrix H is estimated, we can then calculate the latent image f through a
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non-blind deconvolution1 algorithm such as:

f̂ = argmin
f
∥g −Hf∥2 + λR(f) (1.6)

where term R(f) represents a prior constraint about the latent image f . Usually a

sparsity term is employed here [37, 38].

Even without knowing the PSF matrix H, as long as the degree of blur, or

say the sharpness of local image content is available, we can still use it to improve the

image visual quality. For example, local sharpness can be used to adaptively adjust the

strength of a sharpening filter. In practice, the following unsharp-masking filter is often

used in image sharpness enhancement:

gsharp = g + λ(I−B)g (1.7)

where B is a low-pass filtering matrix, and I denotes Identity. So I −B basically rep-

resents a high-pass filter. The high-frequency components (I − B)g are scaled by a

constant factor λ and are added back to the input image. Compared with deconvolu-

tion that usually requires an accurate PSF estimate and an iteration-based optimization

procedure, unsharp-masking provides a fast way to enhance details. This method works

reasonably well with spatially invariant and mild defocus blur. However, when imple-

menting it on an image where part of it is in-focus and the rest out-of-focus, it fails. The

in-focus region would contain unwanted over-sharpening artifacts (e.g. ringing, halo).

An example is given in Fig. 1.3. In this case, if local sharpness level can be measured,

we can adjust λ accordingly so that it has small value in sharp regions (to avoid artifact)

and large value in blurry regions (to enhance sharpness).

1If both the observed blurred image and the PSF are available, the latent image restoration is referred

as “non-blind”. If only the observed image is known, then the latent image restoration is referred as

“blind”.
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(a) (b)

(c) (d)

Figure 1.3: Unsharp-masking example. (a) Input image that contains in-focus foreground and

defocused background. (b) Output of spatially invariant unsharp-masking. Image (b) shows

that sharpness of the background is enhanced, but halo artifacts also appear in the foreground

area. (c), (d) Zoomed part of (a), (b).

There are many other applications where measuring local sharpness is required

for image restoration. One example is bright-field microscopy, which usually has a

limited depth of field. Commonly, the surface profile of the object is beyond the focal

range, since in microscopy the object is placed close to the lens. Hence, in a single

shot only part of the surface within the depth of field can be sharp (see Fig. 1.4). To

extend the depth of field, a common method is to take a series of multi-focus images by

gradually moving the focal plane, so that different parts of the object can be in focus

and sharp in different images. Then, the sharpest region in each position is selected
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(a) (b) (c)

Figure 1.4: Three microscopic images taken with different camera settings. For each image,

only part of the object is in-focus.

through a local sharpness metric, and all these regions are fused together to get an

all-in-focus image [39, 40, 2].

Monitoring the amount of sharpness can also be useful in optimizing image re-

construction filters. Image reconstruction filter always contain some tuning parameters

which can strongly affect their performance, such as smoothing parameter for bilateral

filter, regularization parameter for most maximum-a-posteriori (MAP) based denois-

ing/deblurring filters. If the value of such parameter is too large we may end up with

over-smoothed images. On the other hand, if the value is too small we may get images

that are noisy and sometimes with artifacts. Ideally, the setting of these parameters

should be adapted to the image content. So, if we can efficiently measure the amount of

blur along with other artifacts (noise, ringing, etc.) then it is possible to automatically

optimizing such tuning parameters in a black-box manner for any reconstruction filter.

The degree of local blur may also reveal other useful information. For exam-

ple, defocus blur level is intimately related with depth of the scene, so local sharpness

measurement can provide an important cue for depth estimation. The computation of
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(a) (b) (c)

Figure 1.5: Defocus blur measuring experiment. (a) Input test image. (b) Measured local

blur map, where higher value represents more blurry. (c) Automatic foreground/background

segmentation based on blur map (b).

depth information typically requires two photos of the same scene taken at the same

time but from slightly different vantage points, i.e. a stereo pair [41]. However, in most

practical applications only one image is available. Measuring local sharpness allows us

to reconstruct a 3-D scene from a single photograph. Fig. 1.5 illustrates an example

using one of our proposed methods (which we will discuss in detail in Chapter 4). Such

measurement also provides information for foreground/background segmentation, which

can help a photo editor to edit the subject of interest or the background, separately.

1.2.2 Difficulties in Blur Measurement

Unfortunately, in practice given observed images only it is never trivial to

measure blur, especially in the spatially varying case.

Given only the observed image, estimating the blur PSF is an ill-posed problem

even for the spatially invariant convolution model (1.1), because the degree of unknown

dim(f) + dim(h) is larger than the degree of known dim(g). So solving this problem
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requires prior constraints on both the latent image f and the blur PSF h. Recent

research on natural image statistics has shown that sharp image gradients obey heavy-

tailed distributions that have most of their mass on small values but give significantly

more probability to large values than Gaussian distributions [7]. Based on these studies,

several sparse regularization methods have been introduced to solve the space-invariant

blind deconvolution problem [7, 37, 8], all of which share a similar formula as:

< f̂, ĥ >= argmin
f,h
∥g − h⊗ f∥2 + λ1Rf (f) + λ2Rh(h), (1.8)

where Rf and Rh are the regularization terms based on prior knowledge about the latent

sharp image f and the PSF h.

These methods have been implemented for estimating and removing uniform

camera shaking blur. However, none of them can solve the general spatially varying

blur estimation problem with imaging model (1.3), where dim(h) ≫ dim(g) indicat-

ing a highly ill-posed situation. In certain circumstances space-invariant PSF changes

smoothly over the image space, and thus it can be locally treated as spatially invariant

(such as atmospheric turbulence caused blur [15, 18, 19]). So some researchers have

applied some methods based on (1.8) locally to see if they can estimate nonuniform

PSF at each local region [11]. Unfortunately, it turns out that because blind deconvolu-

tion (1.8) relies on image statistics, it generally requires a large amount of observation,

while local estimation can hardly provide sufficient image data. That is why turbulence

distortion removal is still a challenging issue.

Similarly, sharpness measurement is not easy. Although various kinds of sharp-

ness metrics have been proposed in the past two decades, they still are not routinely

employed to achieve some of the applications mentioned in Section 1.2.1.
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One limitation for these metrics is noise. Most sharpness metrics are based on

local image energy [42, 43] or edge width [44, 45, 4]. They can hardly distinguish image

quality decay against high frequency behavior due to noise [46]. One example is the

Riemannian tensor based metric [47], whose value drops when test image becomes more

blurry. However, the value of this metric rises if the image noise variance is increased.

Such metric can not be used to monitor image quality in the case where both blur and

noise level changes (for example, the filter parameter optimization problem).

Another important limitation is about measuring relative sharpness score.

Many sharpness metrics actually estimate the energy of image structure [42, 48, 43].

They are, of course, correlated with the energy of blur PSF: if the energy of PSF drops,

which means more blurry, the metric value also changes monotonically. However, their

values are also determined by the energy of the latent image content. A blurry high

contrast edge region may have a higher sharpness score than a sharp low contrast one.

Thus, though such metrics are useful in comparing sharpness of different versions of the

same image content, they cannot be used to compare sharpness between different image

contents. In this thesis we call them absolute metrics.

On the contrary, the value of a relative metric should be irrelevant to the latent

image contrast. Ideally, such metric should be able to provide a relative sharpness score

of a given image region with respect to its latent sharp one. Applications like adaptive

sharpening and depth map estimation need local relative sharpness metrics, which are

more difficult to achieve since in practice the latent image is not available. So we must

use some assumptions about the latent image to serve as a reference. For example,

in article [44] edge profile is employed to indicate sharpness, which is based on the
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assumption that all latent edges are ideal step edges. Unfortunately, edge profile based

metrics are only valid in specific regions, and thus so far they are often used for global

sharpness measurement. How to achieve a reliable local relative sharpness metric is still

a problem.

1.3 Contributions

To break the limits of existing metrics, in this thesis we propose several al-

gorithms for measuring image sharpness. Some application systems based on these

algorithms are also introduced, which can be use to solve the real problems related with

spatially varying blur. The thesis is structured as follows:

• Chapter 2 - Measuring Local Sharpness in the Presence of Noise [49,

50, 51]

In this chapter we analyze some simple absolute sharpness metrics based on lo-

cal image activity and their performances in fusion-based image restoration al-

gorithms, including Focus-stacking in microscopy, where noise level is stable over

the image space. We also consider the atmospheric turbulence problem in long-

distance imaging systems and propose a restoration system based on these simple

absolute metrics. This system first reduces the space and time varying deblurring

problem to a shift invariant one through a registration and fusion procedure, and

then it removes the blur using a blind deconvolution step. Experiments using

real data illustrate that this approach can effectively alleviate blur and geometric

deformation, recover details of the scene and significantly improve visual quality.

• Chapter 3 - Assessing Blur and Noise in Images [52, 53, 54, 55]
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We propose a new absolute metric extended from a simple sharpness metric de-

scribed in Chapter 1. However, different from Chapter 1, both blur and noise are

considered in this chapter and the new metric responds reasonably to these two

factors. In other words, the value of this metric drops as the given image becomes

either blurry or noisy. Though it is still an absolute sharpness metric, we found

that it is highly correlated with HVS and thus could be used in optimizing de-

noising filters where we need to carefully balance between bias (blur) and variance

(noise) of the estimate.

• Chapter 4 - Estimating Local Defocus Blur [56]

In this chapter measuring relative sharpness is considered, and we propose a single

image local defocus blur level estimation method. This method is capable of mea-

suring the probability of local blur level in the continuous domain by analyzing the

localized Fourier spectrum. It also takes smoothness and color edge information

into consideration to generate a coherent blur map indicating defocus blur level at

each pixel. Simulated and real data experiments illustrate excellent performance,

and its successful applications in foreground/background segmentation.

• Chapter 5 - Conclusions and Future Works

In the final chapter we conclude the thesis and discuss possible topics for future

research.
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Chapter 2

Measuring Local Sharpness in the

Presence of Noise

Abstract - In this chapter we first analyze some simple absolute sharpness metrics based

on local image activity and their performances in comparing sharpness in the presence of

noise with fixed spatial strength. Then, we propose two restoration systems that utilize

such absolute metrics, including a focus-stacking algorithm for multi-focus image fusion

and an air turbulence removal approach for long-distance imaging systems. The focus-

stacking algorithm employs a local sharpness metric to roughly select the sharpest pixel

within observed images at each position. Different from other stacking methods, this

algorithm refines the rough selection map to correct possible errors. Experiments show

that such refinement could effectively reduce fusion artifacts and preserve boundary

regions between objects from different focal planes. The air turbulence removal approach

first reduces the space and time varying deblurring problem to a shift invariant one

through a registration and fusion procedure, and then it removes the blur using a

blind deconvolution step. Experiments using real data illustrate that this approach
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can effectively alleviate blur and geometric deformation, recover details of the scene

and significantly improve visual quality.

2.1 Local Sharpness Metrics

Although there are many sharpness metrics proposed in the past two decades,

the term sharpness is somehow vague. This is probably because the term often refers to

subjective human vision perceptual. So far we cannot find any standard mathematical

definition for image sharpness. However, we believe that visual sharpness is determined

by blur PSF. Consider the three PSF examples illustrated in Fig. 2.1. There is no doubt

that given the same latent image content, the output convolved by function (a) looks

sharper than the one blurred by function (b) or (c), since the peak of (a) is much higher

than the other two. Meanwhile, it is visually difficult to compare sharpness between the

images blurred by functions (b) and (c), though (b) and (c) have completely different

forms.

Intuitively sharpness should be correlated with the peakedness (or flatness) of

the PSF. There are several sharpness metrics defined based on this idea. One example

is the Strehl ratio, which is popular in Astronomical imaging [57, 58, 43]. Given a

measured PSF h[x, y] and a perfect diffraction-limited PSF hd[x, y] of the same optical

system, the Strehl ratio is defined as the ratio between the peak intensity of h[x, y] and

hd[x, y]:

S =
max(h[x, y])

max(hd[x, y])
. (2.1)

This metric provides a way of measuring the peakedness of h[x, y]. Strehl ratio is com-

monly used in the analysis of adaptive optics (AO) system performance. One example
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(a) (b) (c)

(d) (e) (f)

Figure 2.1: Examples of PSFs with different blur level and their corresponding blurry images.

(a)-(c): Blur PSFs. (d)-(f): Images convolved by (a)-(c).

is AO system tuning, where the Strehl ratio is measured repeatedly for the same source

while parameters of the AO system are adjusted to maximize the Strehl ratio value [58].

Actually in this case the absolute value of Strehl ratio does not matter so much as the

relative change of the metric value. In other words, just measuring S = max(h[x, y]) is

enough, since hd[x, y] can be treated as a constant.

There are other ways to measure the peakedness of PSF. For example, because

PSF is usually assumed to be normalized
∑

h[x, y] = 1, and in most cases it should be

positive h[x, y] ≥ 0, its peakedness is roughly proportional to its energy:

S =
∑
x,y

h2[x, y]. (2.2)

Note that convolution in the spatial domain is equivalent to point-wise multiplication

in the Fourier domain:

F(h⊗ f)[ω, υ] = F(h)[ω, υ] · F(f)[ω, υ], (2.3)
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and that Fourier transform preserves energy

∑
h2[x, y] =

∑
F(h)2[ω, υ]. (2.4)

So the energy of PSF measures the attenuation of the image spectrum due to blur:

S =
∑
ω,υ

F(h)2[ω, υ] (2.5)

In astronomical imaging systems, a widely used PSF energy-based sharpness metric is

called encircled energy factor (EEF), which measures the amount of energy contained

within a circle of specific radius [59]. It often serves as an index of optical system

performance [59].

One problem for these PSF based sharpness metrics is that they require a pre-

estimate of the local PSF. This requirement is reasonable for most astronomical systems,

where it is easy to find a reference star within or near the region of interest, which can

be assumed as a point source and its observation provides a direct measurement of local

PSF. Unfortunately, this is not the case for general imaging systems.

In this section, we will discuss some sharpness metrics calculated directly from

observed blurry images. These metrics are capable of indicating the change of local blur

level, and thus can be implemented in some fusion based applications.

2.1.1 Sharpness from Image Content

As we have explained in Chapter 1, estimating local PSF is highly difficult. To

avoid PSF estimation many sharpness metrics directly calculated from an input blurry

image g[x, y] have been proposed [44, 45, 4]. One simple example is the variance metric
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[60, 61, 62, 63, 42, 43]:

Svar =
1

N − 1

∑
x,y

(g[x, y]− ḡ)2 (2.6)

where ḡ represents the mean value of the image (or image region) g, and N denotes

the number of pixels within g. Svar provides an unbiased estimation of the variance

of g. Intuitively, as the blur level increases, image contents (e.g. edges, textures) are

smoothed making the transitions between image intensities reduced, and the value of

image variance drops [4].

Ignoring the normalization factor 1
N−1 , we can see that the variance metric

basically calculates the total energy of the image region except its DC component ḡ. In

the Fourier domain metric Svar can be written as

Svar=
1

N − 1

∑
ω,υ ̸=0

F(g)2[ω, υ]

=
1

N − 1

∑
ω,υ ̸=0

F(f)2[ω, υ] · F(h)2[ω, υ]. (2.7)

Compared with (2.5), the above metric provides a weighted sum of the PSF energy,

where the weights are determined by the latent image content F(f)2[ω, υ], and thus it

cannot be used as a relative sharpness metric. However, if we just need to compare

sharpness between different blurred versions of a same piece of image content, (for

example, compare sharpness among images (d)-(f) in Fig. 2.1,) then this simple variance

metric should be enough for such comparison [22, 64, 43]. In [43] it was shown that

this variance metric has a unique relationship with the Strehl ratio and can be used for

applications such as sharpest patch selection.

There are some other ways to measure image sharpness. A summary of existing

no-reference sharpness metrics can be found in [4]. Besides variance, these methods
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can generally be categorized as gradient based metrics [48], spectrum kurtosis metrics

[60, 61], histogram based metrics [62, 63], and edge width based metrics [44, 45, 4].

Most of them are absolute sharpness metrics, which can be used to compare sharpness

among different blurred versions of the same image. A few of them are relative sharpness

metrics (e.g. edge width based metrics), which are able to compare sharpness between

two different images.

In this chapter the issues we focus on are fusion-based restoration systems.

Specifically, we assume that a given imaging system can generate a sequence of images

of the same scene, and each image has different regions of the scene in high quality.

The goal is to detect all the high quality regions and fuse them together to get a

single restored image. For this specific scenario, we do not care about relative sharpness

measurement, since we just need to compare sharpness among various copies of the same

image region. However, the required sharpness metric should be valid locally. In other

words, it should not rely on a large amount of image samples to get the sharpness score.

Due to this reason, metrics based on histogram or spectrum statistics (like spectrum

kurtosis) cannot be employed. Also, the metric should be valid for general types of

image content, which means edge width based metrics can not be implemented. In the

following subsection, we will analyze the performance of a gradient-based metric, which

is more sensitive to blur compared with the variance metric.

2.1.2 A Gradient-based Metric

A simple gradient-based metric is defined as:

Sgrad =
1

N

∑
x,y

g2x[x, y] + g2y [x, y] (2.8)
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where gx[x, y] and gy[x, y] denote the horizontal and vertical derivatives, respectively.

The two derivatives can be calculated by applying, for example, the following high-pass

filters:

1
2 ×


0 0 0

−1 0 1

0 0 0

 , 1
2 ×


0 −1 0

0 0 0

0 1 0

 , (2.9)

Comparing the gradient-based metric Sgrad and the variance metric Svar we

can see that both represent (normalized) energies of the test image region g, while Sgrad

concentrates more on its high-frequency components. This is consistent with human

visual system (HVS), whose blur sensitivity is higher in high frequency components

compared with low frequency ones [65].

To illustrate the performances of the two metrics, a simulated experiment is

carried out. In this experiment, 4 test patches (of size 11×11) are generated representing

some typical local image contents, including linear slope, quadratic, edge and square (see

Fig. 2.2 (a)-(d)). Then, we apply a Gaussian blur kernel (of size 5× 5) with a steadily

growing standard deviation σb to the these patches (and output examples are given in

Fig. 2.2 (e)-(p)). In this step, noise is not considered. We can see that though convolved

by the same set of blur kernels, changes of sharpness in the structured patches (edge

patch and square patch) can be easily observed, while in the smooth patches (linear

slope patch and quadratic patch), which lacks high-frequency components, it is visually

hard to tell changes of the blur level.

The corresponding metric values are recorded and plotted in Fig. 2.3. Because

the ranges of the two metrics are quite different, all the metric curves are normalized

by their first (also largest) values so that we can easily compare their behaviors. Both
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 2.2: Patches used in the simulated blurring experiment and some selected blurred

outputs. Gray levels are normalized to the range [0,1]. Columns from left to right: linear patch,

quadratic patch, edge patch, square patch. Rows from top to bottom: original patches, patches

blurred with kernel σb = 0.5, σb = 1.0, σb = 5.0

Sgrad and Svar monotonically drops as all the patches get more and more blurry as

expected. For all the patches Sgrad has a sharp top, and the general slope of its curves

is steeper than Svar indicating its higher sensitivity to blur. This is because most of the

attenuation due to blur happens in high-frequency channels, and the high-pass filtering

in Sgrad magnifies such attenuation effect. That explains why Sgrad is favored in many

fusion based applications [22, 23, 21, 19].

Although in this chapter we concentrate on the scenarios where noise level

is assumed to be constant everywhere, noise effect is still a problem because it brings

additional variation to the local sharpness metric. Ideally, the value of Sgrad monoton-
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Figure 2.3: Plots of Svar and Sgrad in blurring process for different patches. The blur kernel

is Gaussian shaped, and the value of its standard deviation σb is raised steadily to make each

patch more and more blurry. (a) Linear patch; (b) quadratic patch; (c) edge patch; (d) square

patch.

ically drops as a test image region gets more and more blurry. In practice, however, its

monotonicity can be affected by noise.

Let us now consider a degradation model similar to (1.1), which is rewritten

here in a vector form:

g = Hf + n = g∗ + n (2.10)

where the N × 1 vector g∗ denotes the noise-free blurry observation. When calculating

the horizontal and vertical derivatives of g through the filters in (2.9), the filtering
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process can also be represented by two N ×N matrices Dx and Dy:

gx = Dxg = g∗
x + nx, gy = Dyg = g∗

y + ny (2.11)

where, g∗
x and g∗

y denote noise-free horizontal and vertical derivative vectors, respec-

tively. The derivative noise vectors nx = Dxn, ny = Dyn are horizontal and vertical

components of the noise n that is usually assumed as zero-mean independent and iden-

tically distributed (IID) .

Strictly speaking, Neither nx nor ny is IID. Take the horizontal derivative

vector nx for example. Suppose the variance of n is σ2, then the expected vector

E(nx) = 0, and the covariance matrix of nx is

cov(nx)=E
(
(nx − E(nx)) (nx − E(nx))

T
)

=E
(
Dxnn

TDT
x

)
=DxE

(
nnT

)
DT

x

=σ2DxD
T
x . (2.12)

DxD
T
x is clearly not an identity matrix I. Suppose we use the filter in (2.9) to make

the derivative matrix Dx, and define D = DxD
T
x , then in the i-th row of D we have

Di,i =
1
2 , and there are another two entries with the value of −1

4 , and the rest are zeros.

In other words, given any row of D we have

|Di,i| =
∑
i̸=j

|Di,j |, (2.13)

and the same situation happens in each column ofD. Such matrix is diagonally dominant

[66], and it is close to an identity. For simplicity, in the rest of this section both nx and

ny are approximated as IID noise vectors with covariance matrices cov(nx) = cov(ny) =

1
2σ

2I. We also treat nx and ny to be uncorrelated with each other.
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According to equation (2.8) the gradient sharpness metric Sgrad can be written

as

Sgrad =
1

N

(
gT
x gx + gT

y gy
)

(2.14)

and hence the variance var(Sgrad) = 1
N2 var(g

T
x gx) +

1
N2 var(g

T
y gy). The form of

var(Sgrad) depends on the distribution model of noise nx and ny. For example, if

they are Gaussian distributed, then the gradient energy gT
x gx follows a noncentral chi-

squared distribution with N degrees of freedom. It can be derived that

var(gT
x gx) =

1

2
Nσ4 + 2σ2g∗T

x g∗
x. (2.15)

So the variance of Sgrad becomes

var(Sgrad) =
σ4

N
+

2σ2

N2

(
g∗T
x g∗

x + g∗T
y g∗

y

)
(2.16)

Such variation caused by noise could affect the performance of sharpness metric Sgrad.

An example is given in Fig. 2.4, where we use the edge patch in Fig. 2.2 to do the

blurring simulation similar to Fig. 2.3. White Gaussian noise is also added into the

blurry patch sequence. The intensity difference between the two sides of the edge is

0.5, and the noise standard deviation σ = 0.05. Patch size N = 121, and the patch

SNR = 21dB. It can be seen that noise distorts the monotonicity of the curve in certain

degree (though it did not change the priority of the sharpest patch in this specific

example). One way to reduce noise effect is by increasing the patch size N . However,

this would involve more surrounding pixels, which may have completely different blur

level. This issue could affect the performance of fusion based restoration algorithms.

One example is the classic focus-stacking methods discussed in the next section, where

we will propose a new image fusion framework to alleviate this problem.
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Figure 2.4: Plots of normalized Sgrad for the edge patch (in Fig. 2.2 (c)) in a blurring process

with/without noise. The blur kernel is Gaussian modeled, and the value of its standard deviation

σb is raised steadily to make each patch more and more blurry. The dashed magenta curve is the

plot of noise-free Sgrad, and the solid blue curve represents the sharpness scores contaminated

by a Gaussian noise realization (SNR = 21dB).

2.2 Application I: Focus-Stacking

Focus-stacking has been widely used to extend the depth-of-field of a con-

ventional imaging system [76, 75]. For example, in bright field microscopy and macro

photography it is very common that surface profile of the observed object is beyond

the focal range since the object is placed very close to the lens. So in a single shot

only part of the surface within the depth of field can be sharp, while the rest areas are

blurred. To overcome this problem, one usually takes a series of multi-focus images by

gradually moving the focal plane, so that different parts of the object can be in focus

from different images. Then, all the in-focus regions are merged together through a

process called focus-stacking to generate an all-in-focus image [67, 40, 2].

Because such imaging process are usually carried out under a controlled cir-

cumstance, where both the target object and the camera are static, there is almost no

motion among the observed images. So image alignment is not a problem in this case.

27



Though various focus-stacking methods have been proposed, given a multi-

focus image set {gk} most of them follow a general and common scheme, which contains

three major steps [2]:

1. Sharpness measurement. For each pixel gk[x, y] the local sharpness s[x, y, k] is

measured through a specific metric (e.g. Sgrad). The metric is usually calculated

based on a small window (with a fixed size) centered at each given pixel. Some-

times a Gaussian smoothing procedure is also applied to the calculated sharpness

map to suppress noise effect [2].

2. Decision map estimation. Most focus-stacking methods follow the maximum

selection rule [68, 2], which only selects the sharpest pixel from all the observations

at each position. The decision map I[x, y] stores the index of the selected image

for each position: I[x, y] = argmaxk s[x, y, k].

3. Image Fusion. Finally, the fused image f̂ is calculated pixel-by-pixel as follows:

f̂ [x, y] = gk∗ [x, y], where k∗ = I[x, y]. (2.17)

A significant problem of the above scheme is that in practice we always need to

carefully adjust the window size of the sharpness metric to balance between the stability

and accuracy of the algorithm. Sharpness can not in practice be measured only based

on a single pixel value; it always needs a piece of local region with unique blur level

to calculate a reliable sharpness score. The larger the window is, the more reliable the

sharpness score will be, with less noise effect (as explained in (2.16)). However, with a

large window it is highly likely that neighboring objects with different blur level could be
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included into the sharpness analysis window, which could strongly affect the sharpness

score.

Such problems frequently appear in the boundary regions between two objects

of different focus level. For example, we have two observed images in Fig. 2.5, where

input image (a) has the foreground CD case in focus, while image (B) has the background

in focus. Panel (c) shows a decision map based on the gradient metric Sgrad. This map

is not consistent with the depth of the scene. The boundary area between foreground

and background does not match the outline of the CD case. Specifically, in image (a)

defocused background regions close to the CD case may have a higher sharpness score

than the corresponding (in-focus) regions in image (b), since the sharp edge of the case

in (a) could increase their local sharpness scores. As a result, we can see several fusion

artifacts in the output image (d). For instance, some sharp details on the background,

which are close to the case, are excluded from the fused output. Meanwhile, there also

exist edges of the case that are blurred due to their neighboring strong background

structures.

To alleviate this problem, we introduce a decision map refinement step into the

focus-stacking scheme. This step incorporates sharpness information and image color

information together to correct errors around the boundaries on the decision map, mak-

ing the map consistent with the observed images. Experiments show that this method

could effectively reduce fusion artifacts and generate high quality stacked images.
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Figure 2.5: Multi-focus image pair example. (a) and (b) are the input image pair. (c) is a

roughly calculated decision map based on local sharpness measurement. (d) is the corresponding

fused image.

2.2.1 Focus Stacking Framework

Diagram of the proposed method is given in Fig. 2.6. Given observed im-

ages, we first calculate local sharpness using Sgrad with a relatively larger window (to

stabilize the map). Then, a rough decision map is generated by maximizing each local

sharpness. After that, given the rough map and the observed images, a refinement step
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Figure 2.6: Diagram of the proposed focus-stacking algorithm.

is implemented to correct the decision map. Finally the fused output is produced using

the refined decision map.

Most steps of this framework are the same as the common focus-stacking

scheme. The only difference, which is also the key step of the method, is the addi-

tional decision map refinement. In our method, an α matting algorithm is implemented

to refine the decision map [69, 70].

Let us first consider a simple two frame case, where we have a foreground

in-focus image A and a background in-focus image B (such as Fig. 2.5 (a) and (b)).

Because sharp boundaries are preserved in A, we choose A as the “reference” for the

refinement. Suppose image A is synthesized by an ideal all-in-focus image C and an

all-defocused image D through the following combination

Ai = αiCi + (1− αi)Di (2.18)

where Ai denotes the i-th pixel located at position [x, y], and αi represents the contri-

bution of Ci. The α map is very similar to a decision map except that α ranges in [0, 1]

while the decision map is binary.

Suppose we already have a rough decision map Ĩ and convert it into a binary

alpha map α̃. Given Ĩ along with the observed image A we can estimate a refined α
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map vector by minimizing the following cost function proposed by Levin [69]:

E(α) = αTLα+ λ(α− α̃)T (α− α̃) (2.19)

where the first term on the right hand side is a smoothness term and the second one

is a data term. λ is a regularization parameter and L denotes the Matting Laplacian

matrix with its (i, j) element defined as [69]

Li,j =
∑

m|(i,j)∈wm

(
δi,j −

1

|wm|

(
1 + (Ai − µm)T (Σm +

ϵ

|wm|
I3)

−1(Aj − µm)

))
.

(2.20)

Ai and Aj represent RGB color vectors of image A at the i-th and j-th pixels. δi,j is

the Kronecker delta. µm and Σm are the mean and covariance matrix of the colors in

window wm. I3 denotes a 3 × 3 identity matrix. ϵ is a regularization parameter, and

|wm| represents the number of pixels inside a local window wm [69]. Once the refined

α map is calculated, we can easily convert it to a decision map by a hard thresholding,

where the threshold is set as 0.5.

This dual-image decision map refinement method can also be extended to the

multi-image case. Given a multi-image sequence, (which are ordered according to the

shift of focal plane,) we first estimate a rough decision map and do the α matting

refinement for each neighboring image pair, and then stack all the dual-image refined

maps together to get a multi-image decision map.

2.2.2 Experimental Results for Image Fusion

Real data experiments are carried out to test the performance of our algorithm.

For all the tests, we fixed the window size of local sharpness measurement to be 11×11.
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For the α matting Laplacian we set the analysis window wm of size 3 × 3, and the

regularization parameter ϵ = 0.0001.

We first test the proposed algorithm on the real image example given in Fig.

2.5. The corresponding results are illustrated in Fig. 2.7. Starting from a rough

decision map (Fig. 2.7 (a)) and observed input images, the estimated α map (b)

successfully removed almost all the decision errors and made the boundary exactly match

the observed object outline. However, because the range of α is [0, 1] and its value is

affected by activity of local image content, this map still contains mild variation in the

regions where there is no foreground-to-background transition (see (b)). Such variations

are removed after thresholding and the refined binary decision map, which accurately

depicts the outline of the foreground CD case, is shown in (d). By using the refined

decision map, we can see that fusion artifacts caused by the previous map (a) have been

effectively suppressed (see (d)-(m)). Sharp edges of the CD case are preserved, and

meanwhile high-frequency details on the background, which are close to the CD case,

are also kept in the output. These improvements make the foreground-to-background

transition look quite natural.

To quantitatively test the accuracy of the refined decision map and to compare

it with other advanced focus-stacking methods, we tried another image pair given in Fig.

2.8 (a) and (b). These two gray-scale images are from paper [2] proposed by Redondo

et al., where a ground truth decision map (see image (c)) is also provided1. Both the

map generated by algorithm [2] through careful window size adjustment and proposed

one are given in (d) and (e), respectively. It can be seen that, though very clean, the

1The ground truth decision map is constructed by occluding the background with a piece of black

felt and subsequent thresholding [2].
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outline in (d) is still bigger than the real foreground object. Because the input images

are gray scale, where we don’t have strong color information to distinguish objects,

it somewhat limits the performance of α matting. However, we can still see that the

proposed decision map (e) is more closer to the ground truth (c) compared with (d) as

it shows detail of the outline of foreground object. The mean-squared-error (MSE) of

(e), the proposed method, with respect to (c) is 0.0087, while the one of (d) is 0.0163,

or about twice as large.

From the experiments we can conclude that by applying the α matting based

refinement step, accuracy of the decision map could be improved. This refinement alle-

viates the algorithm’s sensitivity to the window size, and meanwhile effectively deduces

the amount of fusion artifacts.
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Figure 2.7: Multi-focus image fusion example. Input image pair are given in Fig. 2.5 (a)

and (b). (a) Roughly calculated decision map. (b) Refined α map. (c) Refined decision map

converted from (b). (d) Output based on (a). (e) Output based on (c). (f)-(i) Zoomed parts of

(d). (j)-(m) Zoomed parts of (e).
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 2.8: Multi-focus image pair example. (a)-(b) Input images. (c) Ground truth decision

map. (d) Decision map of method [2]. (e) Proposed decision map. (f)-(h) Corresponding outputs

of (c)-(e).

2.3 Application II: A Turbulence Removal System

In this section, we will discuss another important issue related with measuring

spatially varying blur, which is about removing image distortions caused by atmospheric

turbulence. A long-distance imaging system can be strongly affected by atmospheric
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turbulence, which randomly changes the refractive index along the optical transmission

path. Compared with the multi-focus imaging scenarios in Section 2.2 situations here

are much more complicated. Air turbulence can generate different kinds of distortions

simultaneously including geometric deformation (motion), space and time varying blur,

and sometimes even motion blur if the exposure time is not sufficiently short [15, 16, 17,

18, 19]. Besides, generally speaking noise level in long-distance imaging systems is also

higher than the multi-focus imaging cases (e.g. macro photography) that are usually

carried out under controlled circumstances with good lightening conditions.

Aside from hardware-based adaptive optics approaches [71], several signal pro-

cessing approaches have been proposed to solve the atmospheric turbulence caused imag-

ing problem [72, 21, 18, 19, 51, 36]. These approaches attempt to restore a single high-

quality image from an observed frame sequence distorted by air turbulence. As with

these other works based on videos or image sequences, we work under the assumption

that the scene and the image sensor are both static, and that observed motions are due

to the air turbulence alone. The imaging process can be modeled as [73, 36]:

Gk[x] = (F ⊗ hk,x ⊗ h)[x] +Nk[x] (2.21)

where ⊗ represents a 2-D convolution operator. F , Gk and Nk denote the ideal image,

the k-th observed frame and sensor noise, respectively. Because in this section we need

to analyze both global and local imaging models frequently, to easily distinguish the

two situations we use capital letters (e.g. F , G, N) to denote image-wise models, and

lowercases (e.g. f , g, n) to represent patch-wise local models. The vector x = [x, y]

denotes a 2-D spatial location. hk,x represents the space-varying (air turbulence-caused)

point spread function (PSF) for the position x in the k-th frame, which includes both
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blur and motion effects [36]. h denotes lens PSF, which is mainly composed of space-

invariant diffraction-limited PSF.

Because the unknown hk,x is spatially and temporally changing in (2.21), restor-

ing the high-quality image F is not trivial. Some multi-frame reconstruction approaches

[18, 51] first employ a non-rigid image registration technique to register each observed

frame with respect to a fixed reference grid, and use the registration parameters to

estimate the corresponding motion field for each frame. Then, a sharp image is formed

through a Bayesian reconstruction method. The main problem for such algorithms is

that they do not estimate the actual PSF hk,x. Both [18] and [51] employ a fixed

Gaussian model to approximate the PSF, which strongly limits their performance.

Recently a method called Efficient Filter Flow (EFF) was introduced by Hirsch

et al. for space-varying blind deconvolution and has been applied for astronomical

imaging to alleviate turbulence distortion, and also for magnetic resonance imaging

(MRI) to reduce blur caused by object motion [36]. This method first divides each

frame into overlapping patches. Because the size of these patches are small, they can

be viewed as isoplanatic regions – small regions containing space-invariant blur [71, 19],

and thus can be processed through a multi-frame blind deconvolution algorithm [31].

Given an isoplanatic patch sequence of a local region extracted from the input video,

the blind deconvolution algorithm estimates the PSF separately for each patch. Final

output is then generated by a non-blind image estimation step. Though capable of

suppressing turbulence effects, the EFF method cannot remove diffraction-limited blur

since the blind deconvolution step does not utilize much prior knowledge of the ideal

sharp image except for a non-negativity constraint and a simple Tikhonov regularizer.
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Besides, due to the limited accuracy of the local PSF estimation, and probably also due

to the sensor noise effect, the results can contain strong deblurring artifacts, such as

ringing [31].

Another class of approaches called “lucky imaging” employ image selection

and fusion methods to reduce the blurring effects caused by turbulence [22, 23, 21,

19]. These approaches are very similar to the focus-stacking methods mentioned in

Section 2.2. The image selection technique attempts to find frames of the best quality

(lucky frames) from a short-exposure video stream by a local sharpness measurement,

which is similar to the method used in Section 2.2. The output image is produced by

fusing these lucky frames together [22, 23]. This method is based on the observation

that for short-exposure images, turbulence creates “mutations” in image quality, and

randomly makes some images sufficiently sharp (see examples in Fig. 2.9) [23, 74, 75,

76]. This strategy is favored in many astronomical imaging applications where the image

of the object of interest (e.g. a star) is usually taken inside an isoplanatic angle. In

[76] Vorontsov et al. proposed a ”lucky region” restoration approach for anisoplanatic

scenarios. Small lucky (isoplanatic) regions (which can be viewed as being blurred

only by the diffraction-limited PSF,) are detected by a local sharpness metric (similar

to Sgrad) and are fused to produce a large high quality image. In another similar

method developed by Joshi et al. [77] a local block-based image alignment is first carried

out to reduce geometric distortion caused by turbulence; then a lucky-imaging-based

weighting scheme is employed to generate a single image that is sharp everywhere.

The weighting scheme is carefully designed to balance between noise reduction and

sharpness preservation. A dehazing process is finally used to enhance the visual quality.
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(a) frame 1 (b) frame 4 (c) frame 11 (d) frame 23

Figure 2.9: Isoplanatic patches from short exposure image sequence Building taken through

hot air, where a variation of blur can be observed. (d) illustrates a lucky frame example, which

is much sharper than the others.

One difficulty with such method is that even though turbulence caused blur is strongly

alleviated through the lucky imaging process, the output still suffers from the blur

caused by the diffraction-limited PSF [19, 73]. Besides, the blur in lucky regions would

inevitably be increased once temporal averaging is used for noise suppression [77].

Due to the isoplanatism of turbulence effects (including both blurring and geo-

metric deformation) in small local regions, Lucky imaging focuses on patch-wise restora-

tion. However, limited patch size also limits the restoration performance. As Levin et

al. pointed out in [38], PSF estimation can be much improved as the size of the ob-

served patch increases. In other words, if PSF can be estimated from a large region (e.g.

the whole image), then we may be able to achieve better deconvolution performance.

However, to achieve this goal the PSF spatial variation needs to be reduced.

Another important factor that may affect restoration is sensor noise. High

shutter speed is favored in long-distance imaging systems in general to avoid motion

blur caused by turbulence, and this would inevitably increase the noise level. Noise can

strongly affect the performance of deblurring, as it distorts image details and produces

ringing artifacts [8]. Fortunately, the frames within a sequence are highly correlated

with each other, and such correlation can be used to advantage for denoising in the
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temporal domain.

In this section, a framework is proposed for restoring a single image from an

image sequence acquired in the general anisoplanatic scenarios. The 3-D physical scene is

assumed to be static, as is the imaging sensor, while the air between the scene and sensor

is affected by atmospheric turbulence. Our approach is designed to reduce the spatial

variation of PSFs over the whole image space, so that the blur can be approximately

treated as spatially invariant, and the latent image content can be estimated globally

instead by local deconvolution. By doing this, we can improve the estimation accuracy;

and more importantly, natural image statistics can be invoked so that diffraction-limited

blur can be effectively removed. An image with reduced PSF variation (which we call

the near-diffraction-limited image,) is generated through a fusion process. Similar to

the focus-stacking method proposed in Section 2.2 we use the local sharpness metrics

discussed in Section 2.1 to select sharp patches for each position. To avoid noise effects

in the subsequent deconvolution, temporal kernel regression is employed in the fusion

process for denoising, and this is different from the maximum selection rule used in

focus-stacking methods.

2.3.1 Restoration Framework

The proposed restoration framework contains three main steps (see the dia-

gram in Fig. 2.10):

A. Non-rigid image registration;

B. Near-diffraction-limited image reconstruction;

C. Single image blind deconvolution.
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Figure 2.10: Block diagram for the proposed restoration framework.

Given an observed sequence {Gk}, the step A of our proposed approach reg-

isters each frame onto a fixed reference grid, generating a new sequence {Rk} without

geometric deformation. This process makes sure that for a given pixel located at a posi-

tion say x, the most correlated pixels in each frame across time are aligned at this same

position. This step improves the performance of the subsequent temporal filtering.

Step B restores a single image Z from the registered {Rk}. For each local

region, the sharpest patch (convolved by a diffraction-limited PSF) can be detected

from the patch sequence using the gradient-based metric introduced in Section 2.1.2.

Next, patch-wise temporal kernel regression is carried out to reduce the noise level.

An image Z is then generated by fusing all the denoised sharp patches together. This

image is still blurred by a diffraction-limited PSF, which can be approximately viewed

as spatially invariant.

Finally, a single image blind deconvolution algorithm based on natural image

statistics is implemented on Z to further remove the diffraction-limited blur and to

enhance image quality. Details of each step are given in the following subsections.
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Figure 2.11: Shift of a control point and its influential area.

2.3.2 Non-Rigid Image Registration

In [51] we introduced a B-spline based registration algorithm to estimate the

motion field in each observed frame. This method can be implemented in the proposed

framework to remove geometric deformation. In this subsection we give a review of this

registration algorithm. Assume G represents a given observed distorted image, and R

denotes a reference image without turbulent deformation (which can be obtained by

averaging the frame sequence [18]). A non-rigid deformation model can be employed

to describe the geometric distortion between these two images. In this model, the

complex motion is represented by the movement of m control points, whose initial

positions x̂0i = (x̂0i, ŷ0i)
T , i = 1, · · · ,m are equally spaced on the reference image

R. The displacement of all the control points on the given image G is denoted as

the deformation vector: −→p = [∆x̂1, . . . ,∆x̂m,∆ŷ1, . . . ,∆ŷm]T , where ∆x̂ and ∆ŷ (also

called deformation parameters) are the horizontal and vertical displacement from the

initial position [78, 18]. The deformed position of any given pixel located at x = [x, y]T

from image R can then be described as:

W(x;−→p ) = x+A(x)−→p , (2.22)
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Figure 2.12: Spline function.

where A(x) denotes the basis function matrix for x:

A(x) =

 c1 . . . cm 0 . . . 0

0 . . . 0 c1 . . . cm

 , (2.23)

and A(x)−→p is the motion vector, which is a linear combination of the movements of all

control points. The weight (or spline basis) ci is determined by the distance between x

and x̂0i using B-spline functions (see Fig. 2.12):

ci = β

(
x− x̂0i

ϵx

)
β

(
y − ŷ0i

ϵy

)
. (2.24)

β(κ) =



2/3− (1− |κ|/2)κ2 , if 0 ≤ |κ| ≤ 1

(2− |κ|)3/6 , if 1 < |κ| < 2

0 , otherwise

(2.25)

where ϵx and ϵy are the horizontal and vertical intervals between neighboring control

points. This model guarantees local smoothness of the turbulence-caused motion field.

In the classic B-spline based registration approach, the deformation vector is
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Figure 2.13: Symmetry constraint, where forward motion vector and backward motion vector

are the inverse of each other.

estimated by minimizing the following cost function [78]:

C(−→p ) =
∑
x

∣∣G(W(x;−→p ))−R(x)
∣∣2 (2.26)

However, because the above formulation lacks prior constraint, the resulting estimate is

unstable and gets easily stuck in local minima. To improve this method, a stabilization

constraint is proposed in [18], which makes the estimated deformation parameters re-

main small in the regions that have less texture (low image gradient). However, in the

present application, we know that the deformation caused by atmospheric turbulence

is independent from image content. In other words, such stabilization constraint would

bring unnecessary bias into the estimation.

Instead, to accurately estimate the deformation (motion) vectors from image

grid R to G, we introduce a more natural symmetry constraint [79, 80] into the B-

spline registration algorithm. This constraint is based on the important property that

the registration should be symmetric or inverse consistent [79]. Let −→p denote the

deformation vector that transforms reference grid R into G (forward deformation), and

let←−p denote the inverse vector that transforms G into R (backward deformation). Then

approximately2 we should have: −→p = −←−p (see Fig. 2.13). Combining the two vectors

2The forward and backward motion vectors for each point in the physical world should be the exact
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into one: pT = [−→p T ,←−p T ], the proposed cost function to minimize becomes:

C(p) =
∑
x

∣∣G(W(x;−→p ))−R(x)
∣∣2 +∑

x

∣∣R(W(x;←−p ))

−G(x)|2 + γ(−→p +←−p )T (−→p +←−p ) (2.27)

where scalar γ controls the effect of the soft symmetry constraint.

The Gauss-Newton method is used to minimize C(p), and the update of the

parameter set p can be derived as follows:

pl+1 = pl −E−1b, (2.28)

where

E =


−→
E + γI γI

γI
←−
E + γI


−→
E =

∑
x

−→
d (x)

−→
d (x)T ,

←−
E =

∑
x

←−
d (x)

←−
d (x)T

−→
d (x)T =

∂G(W(x;−→p l))

∂W
A(x)

←−
d (x)T =

∂R(W(x;←−p l))

∂W
A(x)

and

bT =
[
(
−→
b +−→p l +←−p l)T , (

←−
b +−→p l +←−p l)T

]
−→
b =

∑
x

−→
d (x)[G(W(x;−→p l))−R(x)]

←−
b =

∑
x

←−
d (x)[R(W(x;←−p l))−G(x)].

In the above algorithm, the computational cost for calculating the matrices
−→
E and

←−
E

is tremendous if it is implemented directly. Instead, we designed a fast implementation

opposite of each other. However, in the registration model the motion field is indexed by pixel locations

instead of physical points. Thus, the motion vectors for the same position in the reference and the

target image are not exactly the opposite of each other since they belong to slightly different points. So

do the deformation vectors.
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Figure 2.14: Block diagram for the near-diffraction-limited image reconstruction step.

method to alleviate this problem. Details can be found in [51]. Once the deformation

vector p is estimated for each frame, a registered sequence {Rk} is generated through

bilinear interpolation.

2.3.3 Near-Diffraction-Limited Image Reconstruction

In this subsection, we estimate a diffraction-limited image Z from {Rk}, which

can be globally deconvolved. A concise description of the reconstruction procedure is

provided in Algorithm 1 (see diagram in Fig. 2.14):

To better understand the procedure in Algorithm 1, let us consider a patch-wise

imaging model under the isoplanatic scenario (see Fig. 2.14):

gk=f ⊗ hk ⊗ h+ nk

=f ⊗ h⊗ hk + nk

=z ⊗ hk + nk (2.29)

where gk can denote any local patch of size L × L extracted from frame Gk, and its

corresponding latent patch is denoted by f . Different from (2.21), turbulence-caused
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Algorithm 1 Procedure for Restoring A Near-Diffraction-Limited Image from Regis-

tered Frames
1. Given a registered sequence {Rk}, divide each frame into L×L overlapping patches

centered at each pixel, and calculate the intensity variance of each patch as a local

sharpness measure.

2. For a patch sequence {rk} centered at location x, detect the sharpest one rǩ by

maximizing local sharpness measure (outliers need to be detected and excluded).

3. Set rǩ as a reference patch, and restore its center pixel value using temporal kernel

regression. Assign this value to the pixel Z[x].

4. Go to the next pixel and return to step 2.

PSF hk is now patch-wise constant and temporally changing. We call z = f ⊗ h the

diffraction-limited patch, which is convolved by the space and time invariant h, and

thus can be accurately deconvolved in a larger scene [38] (such as the whole image). nk

represents local noise, which is assumed to be zero-mean and IID.

The motion field estimated from the non-rigid image registration in Section

2.3.2 is smooth, and the registration process can be viewed approximately as patch-

wise constant translational movement (see an example given in Fig. 2.15). So the

relationship between an observed local patch gk and the corresponding registered one

rk extracted from Rk can be described as:

rk = gk ⊗ δ∆x (2.30)

where δ∆x represents a 2-D Kronecker Delta function shifted by the local registration
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Figure 2.15: PSF distortion after the registration step. (a) Magnitude of a motion field

estimated from a real frame distorted by air turbulence (video Moon Surface in Fig. 2.22)

using the proposed registration method. (b) a Gaussian shaped diffraction-limited PSF before

alignment. (c)-(e) illustrate PSFs after the alignment using the local motion fields given in

the squares A, B and C respectively from (a), where it can be observed that since the local

movement could be treated as translational, the shapes of the PSFs are preserved.

vector ∆x. Hence, (2.29) and (2.30) can be combined as follows:

rk=z ⊗ hk ⊗ δ∆x + nk ⊗ δ∆x

=z ⊗ h̃k + ñk

=r∗k + ñk (2.31)

The PSF h̃k = hk ⊗ δ∆x is simply a shifted version of hk, which means the registration

process preserves the shape (and spectrum) of local PSFs. Similarly, the shifted noise

patch ñk also has the same statistical properties as nk. As mentioned before, the

registration process increases the correlation among the pixels in the same position

from different patches across time. Such correlation can be utilized for estimating the

noise-free sequence {r∗k}, as we will describe in Section 2.3.3.2.
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2.3.3.1 Diffraction-Limited Patch Detection

As mentioned in earlier, once sufficient observations are collected, relatively

sharp image patches that occasionally appear due to the turbulence variation can be

found. Suppose a ǩ-th patch is a diffraction-limited one: rǩ ≈ z + ñǩ, then simply

denoising rǩ provides a good estimation of the patch z.

In practice, diffraction-limited patches can be detected through local sharpness

metrics. Here we simply implement the gradient-based metric Sgrad defined in Section

2.1.2. One problem is that sharp patch selection by maximizing this metric can be

sensitive to outliers, such as those caused by objects incorrectly registered, or moving

objects occasionally appearing in the scene (e.g. a bird flying through the field of view).

Examples are illustrated in Fig. 2.16 (a), where some artifacts can be observed in

flat regions (see patch A). These artifacts are caused by registration error, and can be

strongly magnified (see (c)) after the consequential deblurring process (Section 2.3.4).

In (e) we can observe extremely high values among the sharpness measures for patch A.

Patch B gives another example (see (f)) where no outlier exists3. Histograms of these

two patches are given in (g) and (h), where the sharpness values for the outlier-free

patch have a roughly symmetric distribution, while outlier-contaminated distributions

contain a long tail corresponding to high values.

To alleviate the outlier problem, Hampel’s outlier identification method is

employed [81]. We use a Gaussian model N (η, σ) to approximate the distribution of

outlier-free samples (which are sharpness measurements in our case). A given sample

3Patch B contains strong structure (high SNR), and thus its sharpness measures have values much

higher than patch A (see Fig. 2.16 (e) and (f)). This also explains why the registration accuracy is

lower in patch A compared with patch B.
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Figure 2.16: Outlier identification example. (a) A fused image without outlier removal, where

patch A contains outlier pixels and patch B does not contain any outlier; (b) zoomed patch A

from (a); (c) patch A after deblurring, where outlier effect is magnified; (d) deblurred patch

A with outlier removal process; (e) intensity variance of patch A over 100 frames; (f) intensity

variance of patch B over 100 frames; (g) histogram of (e); (h) histogram of (f).
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sk is identified as an outlier if

|sk − η| > ϱ1−α/2σ (2.32)

where ϱx is the x quantile of the N (0, 1) distribution, and α denotes the confidence level.

Hampel suggested using the median and median absolute deviation (MAD) method [82]

to robustly estimate the data mean η and the standard deviation σ respectively [82]. In

our experiment, we set ϱ1−α/2 = 6 to strongly suppress the type I error. Any sample

sk that is above the threshold τ = 6σ̂ is detected as outlier and would be ignored

when maximizing the local sharpness metric to select the diffraction-limited patch. In

Fig. 2.16 (d) we can see that with outlier removal the artifacts caused by incorrect

registration are successfully eliminated from the fused image.

2.3.3.2 Patch-wise Temporal Kernel Regression

To avoid possible artifacts that may appear in the subsequent deconvolution

step, noise in the selected diffraction-limited patches needs to be suppressed. We for-

mulate this denoising problem under a general temporal regression framework, where

the imaging model is:

rk = r∗k + ñk (2.33)

The value of a pixel at x in the l-th frame (r∗l [x]) can be estimated through zero-th

order kernel regression [83, 84]:

r̂∗l [x] = argmin
r∗l [x]

∑
k

(rk[x]− r∗l [x])
2U(x; k, l), (2.34)

where the weight U(x; k, l) is a positive function measuring the “similarity” between

r∗l [x] and r∗k[x]. One simple but effective way of defining U(·) is based on patch-wise
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photometric distance and a Gaussian kernel function:

U(x; k, l) = exp

(
−∥r∗k − r∗l ∥2

L2µ2

)
(2.35)

Here L2 is the total number of pixels in the patch, and the scalar µ is called the

smoothing parameter [83]. The noise-free photometric distance 1
L2 ∥r∗k − r∗l ∥2 can be

unbiasedly estimated using the following function [85]:

∥r∗k − r∗l ∥2

L2
≈ ∥rk − rl∥2

L2
− 2σ2

n (2.36)

where the noise variance σ2
n can be estimated using, for example, the MAD method [82].

The solution to (2.34) is:

r̂∗l [x] =

∑
k U(x; k, l)rk[x]∑

k U(x; k, l)
(2.37)

which is nothing but a filter generated by normalizing the kernel U(·). According to

(2.35) the kernel value within a patch is independent of the pixel position and space-

invariant, which means the spatial constancy of the PSF in the estimated patch r̂∗l is

preserved after the regression.

Of course, in this step we only estimate the center pixel in the selected ǩ-th

patch, which will be assigned to the output image Z according to the reconstruction

procedure given in Algorithm 1. One important issue is that in the proposed regression,

all the weights are positive, which means that when restoring the diffraction-limited

value, the output is always more blurry than the observed rǩ[x]. That is why we call

the restored image near-diffraction-limited.
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2.3.4 Blind Deconvolution

Finally, a single image deblurring algorithm is required as a post-process to

deconvolve the near-diffraction-limited image Z. The degradation model is:

Z = F ⊗ h+ ε (2.38)

where ε represents error caused by the process generating the estimate of Z. Such blind

deconvolution algorithm can be described generally using the following:

< F̂ , ĥ >= argmin
F,h
∥Z − h⊗ F∥2 + λ1Rf (F ) + λ2Rh(h), (2.39)

where Rf and Rh are the regularization terms based on prior knowledge about the

latent sharp image F and the PSF h. Recent research on natural image statistics has

shown that image gradients obey heavy-tailed distributions that have most of their mass

on small values but give significantly more probability to large values than Gaussian

distributions [7]. Based on these studies, several sparse regularization methods have

been introduced and have achieved great success in solving the blind deconvolution

problem [7, 37, 8]. One example is the method proposed by Shan et al. [8], which is

directly implemented in this step to calculate a final output. This method uses basically

the same estimation form as (2.39) with the following sparse regularization term:

Rf (F ) = ∥ρ(Fx) + ρ(Fy)∥1 (2.40)

where Fx and Fy denote the derivatives of F in horizontal and vertical directions re-

spectively, and

ρ(κ) =


−θ1|κ| κ ≤ lt

−(θ2κ2 + θ3) κ > lt

(2.41)
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Here lt, θ1, θ2 and θ3 are all fixed parameters [8]. Sparsity is also utilized in regularizing

h [8]:

Rh(h) = ∥h∥1 (2.42)

The cost function (2.39) is optimized by alternating the estimation of f and h

[37, 8].

In what follows, we used the default parameter settings as described in the

authors’ project page4 for [8] except the noise level parameter ’noiseStr’, which is chosen

in the range [0.01, 0.05] according to the actual noise level observed in the given data.

We refer interested readers to [8] for details.

2.3.5 Experimental Results

In this subsection we will illustrate the performance of the proposed approach

using both simulated and real image sequences. Throughout all the experiments, the

intervals of the control points in the registration step are set as ϵx = ϵy = 16 pixels, and

the symmetry constraint parameter: γ = 5000. In implementing the restoration step in

Section 2.3.3, we set the patch size L = 9. Results of the lucky-region algorithm from

[76], the multi-frame reconstruction approach from [51], and the EFF approach from

[36] are also shown for comparison5.

4http://www.cse.cuhk.edu.hk/~leojia/projects/motion_deblurring/index.html.
5In this section, the outputs of method [51] are generated using the original code. The EFF out-

puts are directly from the authors of [36]. The outputs of method [76] are produced by our own

implementation.
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2.3.5.1 Simulated Experiments

To quantitatively evaluate the algorithm performance, a set of image sequences

with different degrees of turbulence and noise are generated. The latent sharp image6

(300×300) is shown in Fig. 2.17. The sequences are produced using the imaging model

described in (2.21) and (2.29), where motion fields, spatially variant PSFs and spatially

invariant diffraction-limited PSF are required. To produce the motion fields, we first

randomly generate a set of deformation vectors through a Gaussian distribution, and

then calculate a motion field for each frame through the B-spline model (2.22)-(2.25).

The turbulence strength is determined by the variance of the Gaussian distribution.

The spatially variant PSFs are simulated also using a Gaussian function, where the

variance of a local PSF is proportional to the magnitude of the corresponding local

motion vector. The diffraction-limited PSF is generated using a disc function. Three

degrees (weak, medium and strong) of turbulence are produced (see Fig. 2.18 (a)-(c)).

Also different levels of white Gaussian noise (with variance σ2
n = 1, 9, 25) are added into

the sequences. Each sequence contains 100 frames.

Due to the space limit, we only provide results of three sets of sequences with

noise variance σ2
n = 1 in Fig. 2.18. It is clear that the proposed approach significantly

improved the visual quality, and recovered many high frequency details of the image

content.

Table 2.1 gives the Peak Signal-to-Noise Ratio (PSNR) values for all the out-

puts with 4 different restoration algorithms and the averaged PSNR values of each input

sequence. It can be seen that the proposed approach outperforms in all test sequences in

6The pixel intensity range here is [0, 255].
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Figure 2.17: Latent sharp image used for simulation.

Table 2.1: Performance of the restoration approaches evaluated in PSNR values (dB).

σ2
n = 1 σ2

n = 9 σ2
n = 25

Method weak / medium / strong weak / medium / strong weak / medium / strong

Proposed 23.52 / 23.17 / 22.79 23.47 / 23.11 / 22.77 23.35 / 23.10 / 22.60

Proposed NDL 22.22 / 21.67 / 21.64 22.24 / 21.70 / 21.63 22.29 / 21.74 / 21.62

Lucky Region [76] 22.44 / 21.32 / 21.28 22.40 / 21.29 / 21.27 22.33 / 21.23 / 21.21

Method [51] 21.80 / 20.67 / 18.81 21.77 / 20.59 / 18.80 21.67 / 20.52 / 18.77

EFF [36] 21.29 / 20.15 / 18.89 21.85 / 20.23 / 18.86 21.71 / 20.24 / 18.85

Averaged Input 20.67 / 19.33 / 18.06 20.61 / 19.28 / 18.03 20.49 / 19.19 / 17.96

terms of PSNR. Results of the near-diffraction-limited (NDL) images are also provided

in this table, from which we can tell that the final blind-deconvolution step generally

increases the PSNR by 1 ∼ 1.5 dB.

2.3.5.2 Real Video Experiments

Several real videos are tested to illustrate the performance of the proposed

restoration framework in practical situations7. We first show results on data taken

7Videos and experimental results are given on the web page:

http://users.soe.ucsc.edu/~xzhu/doc/turbulence.html.
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(a) A simulated frame (weak) (b) A simulated frame (medium) (c) A simulated frame (strong)

(d) Near-diffraction-limited (weak) (e) Near-diffraction-limited (medium) (f) Near-diffraction-limited (strong)

(g) Proposed output (weak) (h) Proposed output (medium) (i) Proposed output (strong)

Figure 2.18: Simulated experiments. (a)-(c) Simulated frames with three turbulence levels

(weak, medium, strong). (d)-(f) Near-diffraction-limited images from the three test sequences

with noise variance σ2
n = 1 and turbulence level weak, medium and strong, respectively. (g)-(i)

Final outputs deblurred from (d)-(f).
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under controlled but real conditions. The two sets of videos (see Chimney and Building

in Fig. 2.19-2.21) of size 237 × 237 were captured through hot air exhausted by a

building’s vent, which could be closed to take ”ideal” images of the same scene [36].

Each sequence consists of 100 frames degraded by strong turbulence effects (see Fig.

2.19 (a)-(c) and Fig. 2.21 (b)). In the Chimney experiment, some registration results

are also given in Fig. 2.19 (d)-(f), where we can see geometric deformation with respect

to the averaged image Fig. 2.20 (a) has been effectively removed. From the output

images in Fig. 2.20 (c), (d), (f) we can observe that EFF (c) and the proposed method

(f) provide the best restoration results and faithfully recover details of the object. The

proposed result (f) looks even sharper, while the EFF output (c) contains some halo

artifacts in the edge regions. Similar restoration results can be observed in the Building

experiment shown in Fig. 2.21. The near-diffraction-limited image generated from the

Chimney sequence is also provided in Fig. 2.20 (e).

Additional sets of video data taken from long-distance imaging systems are

processed next. The first set of images (410× 380× 80) show the moon’s surface taken

from a ground-based telescope (see Fig. 2.22 (a)). From (b) we can see that though

the output image of [76] looks slightly sharper than one of the observed frames, it is

still quite blurry probably due to the diffraction-limited blur and the limited number of

frames. The method in [51] provides a better result but with some details (like small

craters) vanished (Fig. 2.22 (c)). The proposed method gives a significant improvement

in visual quality (Fig. 2.22 (d)). It successfully removed blur and meanwhile recovered

many small craters on the surface (Fig. 2.22 (h)) that can hardly be seen from either

original frame (Fig. 2.22 (e)), or the outputs of the other two methods (Fig. 2.22 (f),
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(a) Observed frame 1 (b) Observed frame 2 (c) Observed frame 3

(d) Registered frame 1 (e) Registered frame 2 (f) Registered frame 3

Figure 2.19: Image registration results using 100 frames taken from the video Chimney dis-

torted by real atmospheric turbulence.

(g)).

The scene of the next video stream consists of a water tower located above the

ground, imaged at a (horizontal) distance of 2.4 kilometers. The (300 × 220) video is

quite noisy and highly blurred (due to long exposure time). 80 frames were taken from

the video to produce the result shown in Fig.2.23. Again, the lucky region method

did not provide much improvement in the result and slightly changed the object shape

(Fig. 2.23 (b)). The reconstruction method in [51] slightly increased the sharpness

(Fig. 2.23 (c)). The output of the proposed method looks much sharper and clean,

with many details well restored (Fig. 2.23 (d)).
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(a) Averaged image (b) Ground truth (c) [10]

(d) [9] (e) Near-diffraction-limited (f) Proposed approach

(g) Zoomed (b) (h) Zoomed (c) (i) Zoomed (d) (j) Zoomed (f)

Figure 2.20: Image reconstruction results using 100 frames taken from the video Chimney distorted

by real atmospheric turbulence.
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(a) Ground truth (b) One observed frame (c) [10]

(d) [9] (e) Proposed approach

(f) Zoomed (a) (g) Zoomed (c) (h) Zoomed (d) (i) Zoomed (e)

Figure 2.21: Image reconstruction results using 100 frames taken from the video Building

distorted by real atmospheric turbulence.
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(a) One observed frame (b) [17]

(c) [9] (d) Proposed approach

(e) Zoomed part of (a) (f) Zoomed part of (b) (g) Zoomed part of (c) (h) Zoomed part of (d)

(i) Zoomed part of (a) (j) Zoomed part of (b) (k) Zoomed part of (c) (l) Zoomed part of (d)

Figure 2.22: Image reconstruction result using 80 frames taken from the video Moon Surface

distorted by real atmospheric turbulence.

63



(a) One observed frame (b) [17]

(c) [9] (d) Proposed approach

(e) Zoomed part of (a) (f) Zoomed part of (b) (g) Zoomed part of (c) (h) Zoomed part of (d)

Figure 2.23: Image reconstruction result using 80 frames taken from the video Water Tower

distorted by real atmospheric turbulence.
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2.3.6 Discussions

In this section we proposed a approach for restoring a single high-quality im-

age from an image sequence distorted by air turbulence. The proposed algorithm first

registers the frames to suppress geometric deformation using B-spline based non-rigid

image registration, which incorporates a symmetry constraint to effectively improve

the estimation accuracy. Next, a regression-based process is carried out to produce

an image convolved with a near-diffraction-limited PSF, which can be viewed as spa-

tially invariant. Finally, a blind deconvolution algorithm is implemented to remove

diffraction-limited blur from the fused image to generate the final output. Experiments

using controlled and real data illustrate that this approach is capable of alleviating

geometric deformation and space-time varying blur caused by turbulence, recovering

unprecedented details of the scene and significantly improving visual quality.

Another technique which may be related to the present work is seeing through

water [3, 20]. Compared with air turbulence, in most cases the geometric warping ef-

fect induced by water is much stronger, but the blur effect is relatively milder. In the

following experiments, we replace the image registration step in Section 2.3.2 with a

robust iterative registration algorithm from a seeing through water approach [3]. The

sequence Chimney with severe turbulence motion is tested. Results are given in Fig.

2.24, where (a) shows the direct output of method [3], which is highly blurry since

it is just the temporal mean of the registered sequence. We then take the registered

sequence to generate a near-diffraction-limited image (b) using the temporal regression

step described in Section 2.3.3, this intermediate result is much sharper than (a). The

final deblurred output is given in (c), which is visually very close to the proposed result
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(a) (b) (c)

(d) (e) (f)

Figure 2.24: Experiments using seeing through water method [3]. Video Chimney distorted

by real atmospheric turbulence is tested. (a) Output of method [3]. (b) Near-diffraction-limited

image generated using the sequence registered by [3]. (c) Image deblurred from (b). (d) Zoomed

ground truth. (e) Zoomed proposed result (same as Fig. 2.20 (j)). (f) Zoomed (c).

given in Fig. 2.20 (f) except for a mild shape change at the top part of the Chimney.

Similar experiments using test video Building are illustrated in Fig. 2.25. Probably

the robust registration algorithm addressing water distortions is capable of correcting

strong geometric deformations quite well, but it seems that the registration step in Sec-

tion 2.3.2 is sufficient for handling most air induced motion.

2.4 Summary

In this chapter we analyzed the behavior of a local gradient based sharp-

ness metric in the presence of noise with spatially constant strength, and proposed

two restoration systems designed to remove spatially varying blur, including a focus-

stacking algorithm for multi-focus image fusion and an air turbulence removal approach
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(a) (b) (c)

(d) (e) (f)

Figure 2.25: Experiments using seeing through water method [3]. Video Building distorted by

real atmospheric turbulence is tested. (a) Output of method [3]. (b) Near-diffraction-limited

image generated using the sequence registered by [3]. (c) Image deblurred from (b). (d) Zoomed

ground truth. (e) Zoomed proposed result (same as Fig. 2.21 (i)). (f) Zoomed (c).

for long-distance imaging systems. Both systems utilize the gradient based metric to

select the sharpest local patches. The focus-stacking algorithm employs an α matting

algorithm to correct fusion error caused by the metric, and experiments showed that

this refinement can reduce the amount of fusion artifacts and preserve boundary regions.

The air turbulence removal approach first registers each frame to suppress geometric

deformation. Then, it uses a fusion process based on the gradient metric to produce

a single image that can be viewed as being convolved with a spatially invariant blur.

Finally, a blind deconvolution algorithm is implemented to generate the sharp output.

Experiments using real data illustrated that this approach is capable of alleviating blur

and geometric deformation caused by turbulence, recovering details of the scene and

significantly improving visual quality.
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Chapter 3

Assessing Blur and Noise in Images

Abstract - In this chapter we propose a new absolute metric extended from the gradient

sharpness metric described in Chapter 2. Different from Chapter 2, here both blur and

noise are considered and the new metric performs reasonably to these two factors. In

other words, the value of this metric drops as the given image becomes either more

blurry or more noisy. Though it is still an absolute sharpness metric, the proposed

measure is highly correlated with HVS and thus could be used in optimizing denoising

filters so that bias (blur) and variance (noise) of the filtered image can be automatically

balanced generating visually the best denoised output.

3.1 Analysis on Gradient-based Sharpness Metric

In Chapter 2 we analyzed the gradient based sharpness metric Sgrad in the

presence of noise with spatially constant strength. Generally speaking, the value of

Sgrad monotonically drops as the test image (or image patch) gets more and more

blurry, though the monotonicity of Sgrad could be affected by its variation (caused by
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random noise) to a certain degree. This metric is utilized in selecting sharpest patches

in fusion based image restoration algorithms. However, if the noise strength is not stable

in a given application, Sgrad then cannot be applied to assess image quality.

Recall that Sgrad measures local gradient energy. Consider a small patch w

within a given image g[x, y]. If the patch is contaminated by noise, then we have

Sgrad=
1

N

(
gT
x gx + gT

y gy
)

=
1

N

(
(g∗

x + nx)
T (g∗

x + nx) +
(
g∗
y + ny

)T (
g∗
y + ny

))
=

1

N

(
g∗T
x g∗

x + 2g∗T
x nx + nT

xnx + g∗T
y g∗

y + 2g∗T
y ny + nT

y ny

)
(3.1)

where, again g∗
x and g∗

y denote the noise-free version of the N × 1 local gradient vectors

gx and gy. N represents total number of pixels within w. nx and ny are the horizontal

and vertical components of the gradient of the zero-mean IID noise vector n with its

variance denoted as σ2. Specifically, nx = Dxn and ny = Dyn, where N ×N derivative

filtering matrices Dx and Dy are the gradient filters.

Statistically, because E(n) = 0 and cov(n) = σ2I, the expected noise gradient

vectors are:

E(nx) = DxE(n) = 0, E(ny) = DyE(n) = 0, (3.2)

and the expected value of the energy of the noise derivative vector becomes:

E(nT
xnx)=E

(
nTDT

xDxn
)

=E
(
tr
(
Dxnn

TDT
x

))
=σ2tr(DxD

T
x ) (3.3)

The value of the trace tr(DxD
T
x ) depends upon the specific filter used for gradient

calculation. It can be shown that if we choose the filter in (2.9), then tr(DxD
T
x ) = ξN ,
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where ξ = 1
2 . If we choose the following gradient filters:

1
8 ×


−1 0 1

−2 0 2

−1 0 1

 , 1
8 ×


−1 −2 −1

0 0 0

1 2 1

 , (3.4)

then ξ = 3
16 . Similarly, we have E(nT

y ny) = ξNσ2.

Because vectors g∗
x and g∗

y are deterministic, the expected value of Sgrad be-

comes

E(Sgrad)=
1

N

(
g∗T
x g∗

x + g∗T
y g∗

y + 2g∗T
x E(nx) + 2g∗T

y E(ny) + E(nT
xnx) + E(nT

y ny)
)

=
1

N

(
g∗T
x g∗

x + g∗T
y g∗

y + 2ξNσ2
)
. (3.5)

If the noise variance increases, according to the above equation the value of Sgrad should

also be raised. This property would cause confusion in image quality assessment. For

example, when the value of Sgrad rises, we cannot tell whether such change is caused

by an enhancement of image sharpness (quality improvement) or by an increase of

noise strength (quality decay). Similar problems happen in most local image sharpness

metrics [47].

In this chapter, we design a new metric that is capable of measuring the amount

of true image content1 in the presence of noise. Its value should monotonically drop as

the image quality deteriorates (more blurry or more noisy). Meanwhile, the metric’s

sensitivity to random noise and blur should also be consistent to HVS. We will show

later that such metric is important to image restoration algorithms, and that it can be

1By true image content we refer simultaneously to sharpness and local contrast, as manifested by

visually salient geometric structures such as edges etc., which convey information about the nature of

the physical objects in the scene. In this context, high frequency content such as that introduced by

noise, or low frequency content such as that produced by blur of various types are not considered true

image content.
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used for automatic image filter optimization. Before designing new metrics, let us first

analyze the spectral decomposition of Sgrad.

3.1.1 SVD of Gradient Matrix

We define a gradient matrix G = [gx,gy], and its corresponding gradient

covariance matrix C = GTG. It is well known that important information about the

content of the image patch w can be derived from the gradient matrix G or the gradient

covariance matrix C. In particular, we can calculate the locally dominant orientation

by computing the (compact) Singular Value Decomposition (SVD) of G [86, 87]:

G = USVT = U

 s1 0

0 s2

[ v1 v2

]T
(3.6)

where U and V are both orthonormal matrices. The column vector v1 represents the

dominant orientation of the local gradient field. Correspondingly, the second singular

vector v2 (which is orthogonal to v1) will describe the dominant “edge orientation” of

this patch. The singular values s1 ≥ s2 ≥ 0 represent the strength in the directions v1

and v2, respectively (see Fig. 3.1).

The above quantities can equivalently be measured using the eigenvectors of

C, because

C = VSTSVT = V

 s21 0

0 s22

VT . (3.7)

According to Equation (2.14) the relationship between the singular values and

Sgrad can be derived as:

NSgrad = tr (C) = tr
(
VSTSVT

)
= s21 + s22. (3.8)
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Figure 3.1: An example of local dominant orientation estimation. (b) plots the gradient of each

pixel within the chosen patch in (a). s1 and s2 represent the energy in the dominant orientation

and its perpendicular direction respectively.

(a) Flat (b) Linear (c) Quadratic (d) Quadratic (e) Edge

(Anisotropic) (Isotropic)

Figure 3.2: Types of patches that are used in the experiments throughout this section. Gray

levels are normalized to the range [0,1].

Ignoring the fixed window size N , we can see that s21 and s22 represent a decomposition

of Sgrad, and the decomposition is adaptive to the local image structure. So similar to

the behavior of Sgrad, the singular values s1 and s2 should be sensitive to blurring, and

therefore, may be used to define a sharpness metric. To gain some useful intuition, we

analyze the behavior of s1 and s2 on several types of idealized and noise-free patches

which include flat, linear, quadratic, and edge regions (shown in Fig. 3.2).

In the flat case, all points within the patch share a common intensity value:

g[x, y] = c (3.9)

Both gx[x, y] and gy[x, y] are equal to 0 for [x, y] ∈ w, and s1 = s2 = 0. Naturally,
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ignoring boundary effects arising from the finite nature of the window, a flat patch

remains unchanged after being blurred. In what follows, we will apply a space invariant

Gaussian blur function with a growing spread to the canonical regions shown in Fig.

3.2, and observe how the singular values behave. In this sense, the flat region can be

thought of as the asymptotic result as the spread of the blur function (or equivalently

the strength of the blur) is made arbitrarily large.

In the linear patch, the gray value of each point can be modeled as:

g[x, y] = a(x cos θ + y sin θ) + b (3.10)

where a decides the slope, θ decides the orientation, and b is the bias. It can be deduced

that s1 and s2 have the following values:

s1 = a
√
N, s2 = 0 (3.11)

Both s1 and s2 are independent from the orientation, and s1 is proportional to the slope

given a fixed patch size, while s2 remains at zero.

The quadratic patch is modeled as:

g[x, y] = a1(x− xo)
2 + a2(y − yo)

2 (3.12)

where (xo, yo) is the center point. This kind of patch is called isotropic when a1 = a2,

and anisotropic otherwise (see Fig. 3.2 (c) and (d)). The singular values of its gradient

matrix are:

s1 = amax

√
N(N−1)

3

s2 = amin

√
N(N−1)

3

(3.13)

where

amax = max(a1, a2)

amin = min(a1, a2)

(3.14)
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Here s1 and s2 reflect the values of a1 and a2, which determine the patch slope at each

point, and thus determine the sharpness and contrast of the region.

Another type of image region that is very sensitive to blurring is the ideal edge

patch. In the interest of convenience we just look at an ideal vertical edge:

g[x, y] =


b+ c x > xo

b otherwise

(3.15)

where, without loss of generality, c is a positive constant. The corresponding singular

values are:

s1 =
c√
2
N1/4

s2 = 0

(3.16)

Only s1 here reflects the value of parameter c, which gives the intensity difference

(contrast) between the two sides of the edge.

In general, and regardless of type, rotating a patch by an arbitrary angle θ

will not change the singular values of the gradient matrix. To see this, we note the

relationship between the rotated gradient matrix Gθ and the unrotated G:

Gθ = GRT
θ (3.17)

where Rθ is the (orthonormal) rotation matrix:

Rθ =

 cos θ sin θ

− sin θ cos θ

 (3.18)

Therefore, the SVD of Gθ becomes:

Gθ = US(RθV)T , (3.19)

which illustrates that the directions v1 and v2 are correspondingly rotated, but the

singular values s1 and s2 remain unchanged.
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Figure 3.3: Plots of s1 in blurring process for different patches. The blur kernel is Gaussian,

and the value of its standard deviation σb is raised steadily to make each patch more and more

blurred.

It is observed through the above analysis that the singular value s1 is quite

intimately related with the sharpness and contrast of the local region. This is valid

not only in regions with strong direction and contrast (edged patch (3.16)), but also in

regions which may be isotropic (quadratic patch (3.13), (3.14), where a1 = a2), or very

smooth (linear patch (3.11)).

To verify the usefulness of s1 in the presence of blur, we applied a Gaussian

blur kernel (of size 5 × 5) with a steadily growing standard deviation σb to the above

patch types (of size 11 × 11) and recorded the resulting s1 values, which are shown in

Fig. 3.3. It is observed that, similar to Sgrad, as the value of σb grows (more blurry) s1

for all the non-flat patches drops steadily as expected.
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3.1.2 Effect of Noise on Singular Values

Next, we address what happens to s1 if the image (or patch) is corrupted by

white (though not necessarily Gaussian) noise. Again, consider the white noise image

patch (with pixel-wise variance σ2) denoted in column-stacked vector format as an

N × 1 vector n. Its gradient matrix (denoted as Gn) can be produced by applying the

derivative filters:

Gn =

[
Dxn Dyn

]
(3.20)

Because the noise is zero-mean, the expected value of Gn is:

E(Gn) = [ 0 0 ] (3.21)

and the expected gradient covariance matrix becomes:

E(Cn) = E(GT
nGn)

= E


 nTDT

xDxn nTDT
xDyn

nTDT
y Dxn nTDT

y Dyn


 (3.22)

where according to Equation (3.3) the first entry can be deduced as:

E(Cn)1,1 = σ2tr(DxD
T
x ) (3.23)

and similarly we have:

E(Cn)1,2 = σ2tr(DyD
T
x ), E(Cn)2,1 = σ2tr(DxD

T
y )

E(Cn)2,2 = σ2tr(DyD
T
y )

Recall that if we choose the filters (2.9) or (3.4) to make Dx and Dy, the expected Cn

will have the form:

E(Cn) =

 ξN2σ2 0

0 ξN2σ2

 (3.24)
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where ξ = 1
2 if we use filters of (2.9), and ξ = 3

16 for filters of (3.4).

Now consider how the value of s1 changes when an ideal clean image g∗ is

corrupted by the white noise image denoted by n. The gradient matrix of the noisy

image g would become:

G = G∗ +Gn (3.25)

Since G∗ is deterministic, the expected C would have the form:

E(C) = E(GTG)

= G∗TG∗ + E(GT
nGn) + 2G∗TE(Gn)

= V

 s∗21 + ξN2σ2 0

0 s∗22 + ξN2σ2

VT (3.26)

So on average the dominant singular value s1 of the noisy image can approximately be

written as:

s1 ≈
√
s∗21 + ξN2σ2 (3.27)

This equation tells us that s1 is determined by both s∗1 and σ2. Given a fixed σ2,

the value of s1 drops as s∗1 is decreased, or say when the image g∗ becomes more

blurry. Unfortunately, similar to Sgrad, s1 is also monotonically increasing with the

noise variance σ2.

3.1.3 Normalizing for the Noise Variance

To alleviate this problem, we define an intermediate metric H as follows:

H =
s1
σ2

(3.28)

For now, we assume that the noise variance σ2 is known, or at least can be estimated.

For a fixed σ2, the behavior of H is basically the same as s1. If σ
2 is sufficiently large,
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s1 becomes approximately proportional to the standard deviation σ:

s1 ≈ ξ
1
2Nσ (3.29)

And therefore, the value of H ≈ ξ
1
2N
σ drops to zero with increasing σ, as desired. We

note that in (3.28) the value of H estimated from patches in an image can be used to

decide whether those patches contain real content (based on sharpness and contrast) as

opposed to noise. Said another way, H can be thought of as a rough indicator of the

signal to noise ratio.

Although the metric H has well-behaved characteristics in the presence of both

blur and noise, it still suffers from the shortcoming that the variance of noise is assumed

known or reliably estimated, which may not be the case in many real applications [88].

As a practical example, if the image of interest is the output of a spatially adaptive

denoising filter [89], it is difficult to estimate how much noise still remains, because the

denoising effect varies with the local content in different parts of the image. So we need

a metric which implicitly contains an estimate of the local noise variance as well. This

is what we set out to do next.

3.2 Metric Q

We define the image content metric Q as:

Q = s1
s1 − s2
s1 + s2

(3.30)

Compared with H in (3.28), it can be seen that in the definition of Q the factor 1
σ2 is

replaced by another quantity, which we call the coherence:

R =
s1 − s2
s1 + s2

(3.31)
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As we briefly describe below, this replacement will not only do away with the explicit

need to know the noise variance as a priori, but also enables us to measure content even

if the noise variance is non stationary across the image.

3.2.1 Behavior of Coherence with Noise

Recall that for a noisy image patch g, its singular values s1 and s2 can approx-

imately be written as:

s1 ≈
√

s∗21 + ξN2σ2

s2 ≈
√

s∗22 + ξN2σ2

where s∗1 and s∗2 stand for singular values of a patch of the noise-free image g∗. So the

coherence can be written as:

R ≈
√

s∗21 + ξN2σ2 −
√

s∗22 + ξN2σ2√
s∗21 + ξN2σ2 +

√
s∗22 + ξN2σ2

=
s∗21 + ξN2σ2 − s∗22 − ξN2σ2

(
√

s∗21 + ξN2σ2 +
√
s∗22 + ξN2σ2)2

=
s∗21 − s∗22

s∗21 + s∗22 + 2ξN2σ2 + 2
√

(s∗21 + ξN2σ2)(s∗22 + ξN2σ2)
(3.32)

The above illustrates that in a noisy image patch, the computed value of coherence R

is roughly inversely proportional to the local noise variance σ2 when s∗1 > s∗2 (which is

true whenever the underlying patch is anisotropic.)

This is not the first time that coherence R has been used to analyze local

image characteristics. Indeed, Bigun et al. [87] used this quantity to measure the

locally dominant orientation of textures in a deterministic setting. In [86], we used this

measure in a statistical framework to estimate dominant orientations in a multi-scale

setting. As mentioned before, s1 and s2 represent the energy in both the dominant
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direction and its perpendicular direction. So basically R measures their relative size.

Considering a noise-free region with strong anisotropic geometric structure (such as

the edged patch), the difference between s∗1 and s∗2 is very large, and in the absence

of noise, the value of R is near 1. If white noise is added, the resulting R would be

reduced, indicating that this region has become less structured, or the strength of the

dominant direction has been reduced. It is worth repeating that metric Q is valid as

an approximation of H only when the noise-free patch contains a dominant orientation

(where s∗1 > s∗2). The behavior of Q when the patch is isotropic (where s∗1 = s∗2) will be

discussed in the next subsection.

So far, the definition and descriptions of measures Q and R were quite general

in the sense that the only assumption on noise was that it is white. It is instructive

to study the statistical behavior of Q and R in a specific (Gaussian) noise setting.

As may be expected, the statistical distribution of these metrics in the presence of

noise of arbitrary distribution is in general very complex. However, their distributions

are tractable when the noise is restricted to be white and Gaussian. For the sake of

completeness therefore, we next discuss the statistical behavior of R when the image

patch is purely white Gaussian noise (WGN).2

If the image patch g is pure WGN (s∗1 ≈ s∗2 ≈ 0), according to (3.32) coherence

R ≈ 0, but in practice in a finite window size, R has a small positive value. Put

another way, while in theory, a white noise images contains (by definition) no dominant

orientation, patches with limited size lead to a small relative difference between s1 and

s2, leading to a nonzero coherence. More specifically, given a patch of white Gaussian

2For the sake of completeness, the statistical distribution of Q is also given in the Appendix.
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noise pixels, the corresponding R is a random variable whose density function is (See

Fig. 3.5 and Appendix for detailed derivation):

fR(r) = 4(N − 1)r
(1− r2)N−2

(1 + r2)N
, (3.33)

It is interesting to note that the pdf of R is independent of the mean and variance of

the white noise; instead, it is a strong function of the patch size N .

We computed the coherence R on an edged patch (as described in (3.15), where

b = 0.3 and c = 0.5) and a flat patch (as described in (3.9), where c = 0.5) to illustrate

its behavior in random noise. A sample of WGN n is added to each patch with its

standard deviation σ ranging from 0 to 0.7. The plots of the coherence R of each noisy

edged patch are shown in Fig. 3.4 (a). Since s∗1 > s∗2 = 0 in the clean edged patch,

R = 1 when σ = 0. We can see that as σ increases, the value of R drops as desired, and

approaches the value of Rn, which is the coherence of the noise-only sample n. This is

reasonable, because when σ → ∞, the patch looks more and more like pure WGN. In

the flat case (see Fig. 3.4 (b)), where no anisotropic structure exists, R = Rn for all the

nonzero noise standard deviations3. The random variable Rn is distributed according

to the pdf (3.33).

The pdf of R for a variety of N is plotted in Fig. 3.5, where the change of

the first and second moments of fR(r) versus
√
N are also shown. We can see that

the expected value of R decreases as N increases. This coincides with the fact that as

the patch size grows, asymptotically there is no dominant direction in a noise patch.

The reader may be wondering why we bother to derive and illustrate the statistical

distribution of R as we have done here. This indeed turns out to be helpful in the latter

3For the flat patch, s1 = s2 = 0 when σ = 0. In such situations, we define R = 0.
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Figure 3.4: Plots of the coherence R of a noisy edged patch (a) and a noisy flat patch (b)

versus the noise standard deviation σ. Rn stands for the coherence of the noise sample.
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(a) Probability density functions with different patch sizes. (b) The expected values.(c) The

variances.

part of this section, where the density function of R will be used in a significance test

to tease apart isotropic patches from anisotropic ones. This distinction will then be

employed in reliably calculating the metric Q for the whole image.

3.2.2 Metric Q in Patches

To further understand the performance of the image content metric Q in dif-

ferent types of patches in the presence of Gaussian noise, we employ Monte-Carlo simu-

lations. White Gaussian noise with a variety of σ, ranging4 from 0.01 to 0.3, was added

4The pixel value is on a scale of [0, 1] gray level.
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Figure 3.6: Plots of the mean metric Q versus the noise standard deviation σ in Monte-Carlo

simulations for different patches. 100 different noise realizations were used for each σ to get the

averaged Q.

to the test patches shown earlier. For each σ, 100 Monte-Carlo simulations are carried

out with independent noise realizations. Fig. 3.6 shows the plots of the averaged Q

across these experiments, versus the standard deviation of noise. In this experiment, we

distinguish quadratic patches into isotropic (a1 = a2) and anisotropic (a1 ̸= a2) types.

It can be observed that the behavior of Q is consistent across all anisotropic patch types

(including linear, anisotropic quadratic and edge), but different in the isotropic patches

(including flat, and isotropic quadratic.)

It is no surprise to see that in isotropic cases, Q goes up steadily when σ rises,

because the coherence part in Q cannot play the role of 1
σ2 as we mentioned before. Take

the flat patch for example. The coherence R does not change with the noise variance

(see Fig. 3.4(b)), while ŝ1 is proportional to σ (see equation (3.29)). So in this case, Q
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Figure 3.7: Monte-Carlo simulations using both random noise and blur for different patches.

Each patch was blurred first and then white Gaussian noise with σ = 0.1 was added. After each

blurring process, 100 independent noise simulations were applied respectively, and averaged

value of metric Q was calculated. The size of the Gaussian smoothing kernel is 5× 5.

also becomes proportional to σ.

For anisotropic cases, Q behaves reasonably, since the coherence part decreases

as described in (3.32) with respect to the increase of the noise standard deviation σ. But

when σ goes to infinity, the image patch looks more and more like pure noise. So the

coherence part approaches the expected value of the random variable R characterized

by the density function (3.33). This value is usually small, but not zero. While, on the

other hand, the increase of the s1 part in Q is approximately proportional to σ, hence

the value of Q rises again. Fortunately, this becomes a problem only when the noise

standard deviation becomes extremely large.

Next, we take the blurring process into account. Blurred patches are obtained

by applying a Gaussian smoothing filter with a growing standard deviation σb. After
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that, white Gaussian noise with variance σ2 is added respectively. In Fig.3.7 we can

see that basically for all the anisotropic cases, the value of metric Q drops when the

test region gets more and more blurred in the presence of noise as expected. While in

isotropic cases, Q does not show significant change.

So what do we learn from the above simulations? Namely, we can see that

generally for anisotropic patches, where a dominant orientation exists, the proposed

metric Q is able to detect both blur and random noise. So in practice, when measuring

the true content of an image as a whole using Q, the anisotropic areas are detected

and used to compute a global measure for the whole image. Put another way, isotropic

patches should be avoided in the calculation of the overall image content metric Q.

Specifically, one way to distinguish isotropic from anisotropic areas is by employing

significance testing based on local coherence R, whose statistics in the “noise-only” case

were described earlier in Section 3.2.1.

Defining the null hypothesis H0 as: “The given patch is isotropic with white

Gaussian noise,” we can calculate the metric R and use it as a test statistics to decide

whether to reject the null hypothesis H0. Numerically, the test is carried out by com-

paring the calculated R for the patch to a preselected threshold τ . If R ≥ τ , then the

hypothesis is rejected. For its part, τ is determined by a significance level 0 < δ < 1,

which is the probability of rejecting the null hypothesis when this hypothesis is in fact

true. The relationship between δ and τ , which comes directly from integrating the pdf

of R, is5:

5Strictly speaking, the density function used in the above formula should be a valid pdf for R in all

types of isotropic patches with WGN added; but this is not practical. Instead, for simplicity, we employ

the pdf for pure WGN (see equation (3.33)) as an approximate and quite reasonable alternative.
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δ = Prob(R ≥ τ |H0) =

∫ 1

τ
fR(r)dr

The integral of fR(r) above can be computed in closed form as:

δ =

∫ 1

τ
fR(r)dr =

[
−
(
1− r2

1 + r2

)N−1
]1
τ

=

(
1− τ2

1 + τ2

)N−1

(3.34)

For a desired δ, to determine the threshold, we can simply solve the above for τ . For

example, if the patch size N = 64, and we want the significance level δ to be 0.001, then

the corresponding threshold becomes τ = 0.2340. If the local coherence R ≥ τ , the test

patch would be labeled as “anisotropic”.

3.2.3 Calculating Q for a Whole Image

To summarize the above discussions, we provide here a concise description of

the algorithmic procedure for calculating the metric Q from a given image:

Algorithm 2 Algorithmic Procedure for Computing Q

1. Given a noisy image, divide it into M non-overlapping patches of size N , and

calculate the local coherence Rj using equation (3.31) for each patch j = 1, · · · ,M .

2. Find (say m ≤M) anisotropic patches by thresholding the local coherence values

as Rj ≥ τ . The threshold τ is determined by solving the equation (3.34) with a given

significance level δ.

3. Calculate the local metric Qj using equation (3.30) on each anisotropic patch

identified in step 2.

4. Output the value Q = 1
M

∑m
j=1Qj as the metric for the whole image.

A simulated experiment using the natural image Man has been carried out to

illustrate the above procedure. The data in the test image set are generated through

86



the following model:

g = Hf + n (3.35)

where f stands for the clean and sharp image,H represents the blurring matrix generated

by a Gaussian blurring kernel, and n is the WGN.

We arranged the simulated images into a grid as shown in Fig. 3.8 (a), where

images get more and more blurred from left to right (by applying a 9 × 9 Gaussian

blur kernel with growing standard deviation σb), and more and more noisy from top

to bottom. The corresponding metric Qs (with the patch size N = 8 and δ = 0.001)

are given in Fig. 3.8 (d). Full-reference metric mean-squared error (MSE) and a no

reference sharpness metric JNB [4] are also tested for comparison. It can be observed

that, like MSE, the change of the metric Q successfully reflects the change of the image

quality, while the sharpness metric JNB (whose value drops as image becomes blurry,)

failed in distinguishing quality decay against noise.

3.3 Extending Q to Isotropic Regions

So far we have developed a no-reference image content metric Q based on the

singular value decomposition (SVD) of local image gradients. Simulated experiments

show that this metric is capable of measuring true image content for local anisotropic

patches (e.g. edge patch in Fig. 3.9 (a)). Its value drops monotonically when such

patches becomes either blurry or noisy. We have also shown that Q is capable of

globally monitoring the change of image quality by concentrating on the anisotropic

regions.

However, one problem for metric Q is that it fails in structured regions that do
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Figure 3.8: Evaluations of Q, MSE and JNB [4] on the image Man (256 × 256), and its

successively degraded versions. In (b), the green areas illustrate the anisotropic patch set used

in measuring Q. In (c), we inverted the color scale just to show the similarity between MSE and

Q in capturing the trend of image quality change.

not contain a single dominant direction. One example is the isotropic circular patch in

Fig. 3.9 (b), which has a circular shape and the energy in every orientation is basically

the same. Actually any axially symmetric structure in a region will yield singular values

s1 = s2 (see Fig. 3.9 (c)). If a metric cannot assess the quality change of such strongly

structured patches, it may fail in monitoring the whole image. To solve this problem,

we extend current metric Q in this section. The updated metric is called Qpro, which

implements SVD in transformed coordinates that are adapted to local image content.

We will see that the metric Q in Section 3.2 is a special case of Qpro, and Qpro is valid

for most structured regions, including isotropic ones.
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(a) Edge (b) Circular (c) Corner

Figure 3.9: Patches with strong structures, including (a) edge, (b) circular and (c) corner. (a)

is a typical anisotropic patch. (b) is a typical isotropic patch. Though (c) looks like anisotropic,

its s1 = s2 and thus it is isotropic.

3.3.1 SVD in Transformed Coordinates

Consider a typical isotropic patch example in Fig. 3.10, where in traditional

Cartesian coordinate system we have s1 = s2. Our goal is to find a way to collect the

gradient energy along the circular edge direction and separate it from the one in its

perpendicular direction. One way is through the application of a rotation transform.

For example, consider the j-th point on the circle and its pixel-wise gradient vector

∇g[xj ] = [gx[xj ], gy[xj ]]
T , (where xj = [xj , yj ],). To distinguish the gradient component

in the normal direction to the edge from the one in the tangent direction to the edge, we

can rotate the local Cartesian coordinates (with origin at xj) by an angle θj (see Fig.

3.10) and calculate the rotated vector ∇g′[xj ] using the rotation matrix Rθj defined in

equation (3.18). Specifically, we have:

∇g′[xj ] = Rθj∇g[xj ] (3.36)

where∇g′[xj ] = [gs[xj ], gt[xj ]]
T . gs[xj ] represents the gradient component in the normal

direction to the edge of the circle at xj , and gt[xj ] denotes the component in the tangent

direction.

Note that the angle θj is determined by both the pixel position xj and the
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Figure 3.10: Rotational transformation example.

center position (denoted as xo = [xo, yo]). We implement this transform on the patch

(b) from Fig. 3.9, and its corresponding gradients are given in Fig. 3.11, where we can

see that after applying the transform, most gradient energy is transferred to gs, which

means the rotational transform of local coordinates produces a dominant direction in

the gradient space.

Because the rotation matrix is orthogonal, it does not change the correlation

structure of random noise that is assumed to be zero-mean IID. So all the statistical

analysis on Q in Section 3.2 is still valid. We define the new metric Qpro as:

Qpro = s′1
s′1 − s′2
s′1 + s′2

(3.37)

where s′1 and s′2 are the singular values of the transformed gradient matrix G′ in local

window w:

G′ =


...

...

gs[xj ] gt[xj ]

...
...

 , j ∈ w (3.38)

Because we have

s21 + s22 = tr(GTG) =
∑
j∈w
∇gT [xj ]∇g[xj ], (3.39)
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Figure 3.11: (a)-(b): Magnitude of the horizontal and vertical derivatives of Fig. 3.9 (b) before

the rotational transform. (c)-(d): Magnitude of the derivatives in the normal direction to the

edge and its perpendicular direction.

and also because ∇g′[xj ] = Rθj∇g[xj ], hence the total gradient energy:

s′
2
1 + s′

2
2 =

∑
j∈w
∇g′T [xj ]∇g′[xj ]

=
∑
j∈w
∇gT [xj ]R

T
θj
Rθj∇g[xj ]

=
∑
j∈w
∇gT [xj ]∇g[xj ]

= s21 + s22, (3.40)

which means the rotational transform of the local coordinates does not change the total

energy of gradient field, but it produces a dominant direction, which helps Qpro to

capture the main structure of the isotropic patch.
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3.3.2 Behavior of Qpro in An Isotropic Patch

To verify the validity of Qpro with respect to both blur and noise, a simulated

experiment similar to the one in Section 3.2.3 is carried out. The test isotropic patch in

Fig. 3.9 (b) is distorted through the same model (3.35). Both noise variance and blur

kernel spread could be varied to alter the distortion level. The corresponding values of

metric Q and Qpro are given in Fig. 3.12 (b) and (c). Full-reference metric MSE is

also plotted in (a) for comparison. In the plots given in Fig. 3.12 the test patch gets

more and more blurred from left to right, and more and more noisy from top to bottom.

It can be observed that, like MSE, the change of the metric Qpro successfully reflects

the change of the image quality: Qpro monotonically drops as the distortion level rises,

while the old Q fails.
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Figure 3.12: Evaluations of MSE, Q and Qpro on patch Fig. 3.2 (b), and its successively

degraded versions. In (a) we inverted the color scale just to show the similarity between MSE

and Qpro in capturing the trend of image quality change.

3.3.3 Qpro Calculation

One problem for Qpro is that for each patch it is sensitive to the center position

xo, while the isotropic content is not always centered at the middle of the patch. In other

words, before calculating Qpro we need to detect the proper center position first. On the
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other hand, in practice anisotropic patches appear more frequently than isotropic ones,

which means given a patch we may need to decide which metric should be employed.

In Section 3.2.2 we have discovered that the validity of Q depends on the

relative difference between s1 and s2, which can be measured through its coherence R.

Similarly, given a pair of singular values from transformed coordinates, we have the

corresponding coherence:

R′ =
s′1 − s′2
s′1 + s′2

(3.41)

Higher coherence value indicates more structure captured by s′1, and thus the corre-

sponding Qpro should perform better. In other words, we can also employ the coherence

R′ to determine the best center position. Given a patch, since its coherence is deter-

mined by the center position xo, we can denote R′ as R′(xo).

Assume that we have a set of candidate positions {xj}, the one with the highest

R′(xj) could be selected as the proper center position. Note that this position can be

either inside or outside the patch. Specifically, if the center position is infinitely far from

the patch (x∞ = [−∞, 0]), the corresponding rotation matrix would become identity,

and its Qpro = Q. In other words, Q is nothing but a special version of Qpro with its

center point located at x∞.

In practice, given an image patch inside window w, we calculate its Qpro

through the following scheme:

1) Collect the candidate center position set {xj} including all the pixel positions inside

w and the infinity position x∞. Calculate the corresponding coherence set {R′(xj)}.

2) Select the position with the highest coherence value as the proper center position

xo = argmaxxj R
′(xj).
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3) Calculate the Qpro based on the position xo.

Note that by using the above scheme, if the measured patch is a typical

anisotropic one (e.g. the edge patch in Fig. 3.9), then x∞ will be selected as the

proper center position (since {R′(x∞)} has the highest value), and thus Qpro will be-

come Q. In other words, Q is automatically included by Qpro, and there is no need to

decide which metric (Q or Qpro) should be used.

Though Qpro is valid for both isotropic and anisotropic patches, given an ar-

bitrary patch we still need to decide whether it contains sufficiently strong structure or

not. For example, given a flat patch neither Q or Qpro is valid, since no mater how we

rotate the coordinates we always have s′1 = s′2 = 0. So, given a whole image, before

calculating its Qpro we still need to examine each local patch to see if it is valid for

Qpro measurement. The validity could again be determined by a significance test based

on R′(xo). In other words, except for an extra step of selecting xo for all the non-

overlapping patches, the way of calculating Qpro for a given whole image is basically

the same as the way used for calculating metric Q (see Algorithm 3).

3.4 Correlation with HVS

In the previous section we have shown that as a given image gets more blurry

or noisy, its Q and Qpro monotonically drop. However, we have not yet provided any

evidence to illustrate whether they behave close to HVS. Specifically, we want to see if

their sensitivity to blur and noise is consistent with HVS. In this section, we provide some

tests based on TID2008 database [90] to illustrate the correlation between subjective

ratings and the two proposed metrics. TID2008 database contains 25 reference images
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Algorithm 3 Algorithmic Procedure for Computing Qpro

1. Given a noisy image, divide it into M non-overlapping patches of size N .

2. For each patch j = 1, · · · ,M , select the proper center position xo and record the

corresponding coherence R′(xo).

3. Find (say m ≤ M) valid structured patches by thresholding the local coherence

values as R′(xo) ≥ τ . The threshold τ is determined by solving the equation (3.34)

with a given significance level δ.

4. Calculate the local metric Qpro[xj ] on each structured patch identified in step 3.

5. Output the value Qpro =
1
M

∑m
j=1Qpro[xj ] as the metric for the whole image.

(some are illustrated in Fig. 3.13 (a)-(c)) and each reference image fi (i = 1, 2, ..., 25)

is degraded by several types of distortions (Gaussian blur, Gaussian noise, quantization

noise, JPEG compression, etc.), where each type has 4 distortion levels. For each

distorted version gik (k = 1, 2, ...), the corresponding mean opinion score (MOS) is also

recorded and included in the database. In this section, we consider both Gaussian noise

and Gaussian blur distortions as these are related to our application of interest. So for

a given reference fi, we consider a set of corresponding degraded images φi = {gik|k =

1, 2, ..., 8} including 4 noisy and 4 blurry images.

All 25 image sets from the database were tested. When calculating both Q and

Qpro we fix the patch size N = 8, and the significance level δ = 0.001 (or the threshold

τ = 0.2340). The no-reference sharpness metric JNB [4] is also tested for comparison.

For each set φ, Spearman rank-order correlation coefficient (SROCC) [91] is employed to

measure the correlation between MOS and the target metrics, including Q, Qpro, MSE

and JNB. The average SROCC scores and the standard deviations are given in Table
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Table 3.1: Mean and standard deviation of the SROCC values of full-reference (FR) and no-

reference (NR) metrics using 25 image sets from TID2008 database.

SROCC blurry images noisy images blur + noise

mean std. mean std. mean std.

MSE (FR) -1.0 0.0 -0.992 0.039 -0.930 0.091

Metric Q (NR) 1.0 0.0 0.976 0.086 0.921 0.080

Metric Qpro (NR) 1.0 0.0 0.992 0.040 0.937 0.083

JNB (NR) 1.0 0.0 -0.840 0.339 0.452 0.171

3.1 (where test results using blurry image sets and noisy image sets separately are also

provided). It can be observed that the performance of the proposed metric Q and Qpro

is as good as MSE: the magnitude of the corresponding SROCC for Q, Qpro and MSE

are above 0.9 with low variances. Qpro is even better than MSE with higher magnitude

of mean SROCC and lower variance. Meanwhile, Q and Qpro outperform JNB [4] since

JNB fails in distinguishing quality decay against high frequency components due to

noise. As specific illustrations, plots of MOS versus the tested metrics corresponding to

the sample images in Fig. 3.13 (a)-(c) are illustrated in Fig. 3.13 (d)-(l), which show

that both metric Q and Qpro respond to blur and noise in a way close to the subjective

quality perception. For some images (such as Fig. 3.13 (c)), SROCC of Qpro (see (l))

is slightly higher than the one of Q (see (i)). This is probably because Qpro captures

more structured information than Q.

3.5 Application: Optimizing Denoising Filters

In any leading denoising algorithm, there always exist some tuning parameters.

Such as smoothing parameter of Bilateral filter, noise level estimate of BM3D, analysis

window size of NLM, etc. How to automatically adjust the tuning parameters with
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Figure 3.13: Sample reference images (a)-(c) from TID2008 database. (d)-(f) show plots of

MOS versus JNB [4] of the image sets degraded from (a)-(c) respectively, where each set contains

images distorted (using Gaussian blur and Gaussian noise) from a single reference. (g)-(i) show

plots of MOS versus metric Q. (j)-(l) show plots of MOS versus metric Qpro.

respect to the visual quality of the output image is a significant problem.
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3.5.1 Existing Parameter Selection Methods

First, let us briefly summarize the relevant existing literature in this area.

A commonly used optimization method is through full-reference or reduced-reference

metrics [92]. Full-reference metrics need a complete reference image, and what they

calculate is basically the similarity between the target and reference images. Such mea-

sures of similarity include the classical MSE and and the recently introduced Structural

Similarity (SSIM) [92]. Reduced-reference metrics require the reference image to be

partially available, which is usually in the form of a set of extracted features [92]. How-

ever, in most practical applications the reference image is unavailable. Therefore, in

applications the (full-reference) quality metrics MSE or SSIM can not be directly used

to optimize the parameters of algorithms.

Several (no-reference) approaches have been developed to address the parame-

ter optimization problem. Generalized cross-validation (GCV) [93], [94] and the L-curve

method [95], [96] have been widely used in choosing the regularization parameters for

various restoration applications. More recently, methods based on Stein’s unbiased risk

estimate (SURE) were proposed for the denoising problem [97], [98], which provide a

means for unbiased estimation of the MSE without requiring the reference image. Useful

as they are, these methods are far from ideal. Namely, aside from their computational

complexity, they address the parameter optimization problem without direct regard for

the visual content of the reconstructed images. Instead, they compute or approximate

quantities such as MSE (or the related cross-validation cost), which are not necessar-

ily very good indicators of visual quality of the results. As a particular example, for

instance, Ramani et al.’s Monte-Carlo SURE [98], which can be used for arbitrary de-
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noising algorithms, is based on the idea of probing the denoising operator with additive

noise and manipulating the response signal to estimate MSE. This approach is also

only appropriate when the noise is assumed to be Gaussian, and generally requires an

accurate estimation of the noise variance as well.

In image restoration, as is the case for any estimation problem generally, it can

be observed that selecting parameters amounts to a tradeoff between bias and variance

in the final estimate. A canonical example is the regularization parameter in MAP-

based restoration algorithms [93], [96]. Generally, the larger the parameter is, the more

smooth the image content becomes (small variance), while more useful detail and edges

are flattened or blurred (larger bias). In other words, an ideal no-reference measure

that is useful for the parameter optimization problem should take both blur and noise

on the reconstructed image into account [99]. However, most sharpness metrics [47], [4],

[44], [60] can hardly distinguish image quality decay against high frequency behavior

due to noise. Take the approach in [4] for example, whose value drops when the image

is increasingly more blurred. The value of this measure also rises if the variance of noise

is increased (see Fig. 3.8 (e)). For the metrics based on edge detection and edge width

estimation [44], the performance stability can easily suffer in the presence of noise. Such

problems are precisely what our proposed metric Q and its extension Qpro are intended

to address.

On a related note, we mention that some no-reference image quality metrics

have been developed to detect blur and noise simultaneously. One example is the metric

based on the image anisotropy [100] proposed by Gabarda and Cristóbal [46]. They

calculate the Rényi entropy [101] pixel by pixel along different directions, and use the
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Figure 3.14: Selecting the tuning parameter using metric Qpro or Q.

variance of the entropy to index visual quality. However, such metrics require uniform

degradation across the whole image, and do not work well if the random noise or blur

varies spatially, which is the case, for instance, in images denoised by spatially adaptive

filters.

3.5.2 Automatic Parameter Tuning System Based on Proposed Met-

rics

In this section, we will provide evidence that the proposed metric Qpro (also

Q) can be used to optimize the parameters of denoising algorithms. In particular, like

[98], the application of Qpro to any “black-box” denoising algorithm with parameters in

need of tuning is possible.

In order to obtain a practical procedure for parameter setting, the strategy

we take for computing the proposed metric Qpro is slightly different from what we

described in Section 3.3.3. Namely, we use the original noisy input image to estimate

a valid structure patch set, and use this reference set to compute the metric Qpro on

the output of the respective denoising filter. We vary the value of the tuning parameter
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while observing the resulting Qpro. The “best” value of the algorithm parameter is then

selected as that which maximizes the metric Qpro on the output (see Fig. 3.14). In all

the following experiments for parameter optimization, we fix the patch size N = 8, and

the significance level δ = 0.001 (or the threshold τ = 0.2340). From a practical point of

view, insofar as computing Qpro is concerned, these values are universally good and do

not need to be varied across images or in different context (or else this would defeat the

very purpose of automatic parameter selection!) So we can compute the metric Qpro

with the same patch size and significance level in all the various experiments shown in

this section. Same settings are also applied to metric Q for comparison.

3.5.3 Experimental Results

We focus on two recent state of the art denoising algorithms. One is the Locally

Adaptive Regression Kernels (LARK) method of Takeda et al. [89], where there are two

main parameters to tune: the global smoothing parameter h, and the iteration number.

The effect of these parameters is generally interdependent in that the smaller the h is,

the more iterations are needed to achieve the best output image [89]. Hence in practice,

in makes sense to set h to a fixed value (we set it to 2.0 throughout) and to attempt to

optimize the iteration number within a reasonable range (which we select to be between

1 and 20.)

The second algorithm is the BM3D algorithm [28], which is considered to be

the state of the art denoising algorithm at the time of this writing. In the BM3D filter,

a Wiener filter is employed for collaborative filtering, which requires the estimate of

a (variance) parameter σ2
est. The value of the parameter σest can strongly affect the
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output, and thus needs to be tuned. In the following experiments, we optimize this

parameter in the broad range of 1 to 30.

In what follows, both simulated and real data are considered. In the simulated

experiments, where the reference image is available (but not used in our case), MSE is

also computed for the sake of comparison even though this calculation is not practical,

and MSE is not a good visual metric anyway. Monte-Carlo SURE [98], on the other

hand, offers a way to access MSE without a reference, and it is used for our experiments

with a real noisy image.

3.5.3.1 Simulated Experiments

In this set of experiments, we simulated noisy data by adding white Gaussian

noise to three clean images shown in Fig. 3.15; namely, Squares (256×256), Motorcycle

(384× 384) and Lighthouse (384× 384). Experiments are conducted at peak signal-to-

noise ratios6 (PSNR) of 30dB, and 23dB, to test the performance of the metrics in a

range of noise strengths.

Plots of the experimental results are given in Fig. 3.16-3.21. We can observe

that both metric Q and Qpro were consistently effective in capturing the changing trend

of quality in the output as the (LARK and BM3D) algorithm parameters were varied.

As a result, the maximum values of Q and Qpro yielded very good results in almost

every case in a completely unsupervised fashion and without access to a reference image

or an estimate of the MSE.

The behavior of the two proposed metrics provides not only optimized values

for the algorithm parameters, but also tends to reveal interesting behavioral character-

6Peak signal-to-noise ratio is defined as 10 log10(255
2/σ2), where σ2 is the variance of noise.
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Squares (256× 256) Barbara (512× 512) Flower (384× 384)

Noisy Squares Noisy Barbara Noisy Flower

Figure 3.15: Original images that are used in the simulated experiments, and the corresponding

noisy images whose PSNR = 23dB.

istics of the algorithms to which it is applied. As a case in point, we observe that as

the value of the parameter being optimized (number of iterations for LARK, and σest

for BM3D) increases, the overall visual quality of the output image rises first due to the

suppression of random noise, and then goes down because of the blurring effect of the

filter. This phenomenon happens most strongly in the experiments using two natural

images (Motorcycle and Lighthouse) – see Figures 3.18 - 3.21. In the Squares case,

where the image content is relatively simple, the edges are successfully preserved by

the BM3D filter even when the σest is set to be very large. This feature is also seen in

the curves of MSE, Q and Qpro (see Fig. 3.16), where we can see the curves flattening

out as the image quality changes little. The LARK algorithm, on the other hand, is

more sensitive to increasing number of iterations, even when the content is relatively

simple as in the Squares case, as can be seen in Fig. 3.17. Meanwhile, we can also
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observe that Qpro performs better than Q in preserving image details in some cases.

For example, in the Lighthouse image related experiments (see Fig. 3.21 and 3.20), Q

optimized images are slightly over-smoothed, while Qpro optimized images are visually

good in both noise suppression and image detail preservation. This is probably due to

the weak ability of structure capturing of Q. Fig. 3.22 illustrates the valid patch maps

of Lighthouse for both Q and Qpro, where we can see that the map for Qpro includes

more structured patches than the one for metric Q.

For the sake of completeness, we also tried the no-reference sharpness metric

JNB [4] to test its behavior and found that in general it fails to capture the trend of

quality change since it cannot handle noise well. One example is provided in Fig. 3.23.

3.5.3.2 Real Noise Experiments

Fig. 3.24 illustrates a test image JFK (367 × 343) that suffers from real

noise. The noise comes from film grain, scanning and compression processes, and is not

Gaussian – indeed its variance is space varying. For lack of a better yardstick, we use

the Monte-Carlo SURE [98] method for comparison, where the standard deviation of

the noise (assumed to be globally constant) is estimated through the median absolute

deviation (MAD) method [82]. The measured values for the above test image is σ = 4.2.

In implementing the Monte-Carlo SURE, the standard deviation of the probing noise is

set to be 0.1 as recommended in [98].

Again, LARK and BM3D filters are employed in this set of experiments. The

plots of SURE, Q and Qpro versus the tuning parameter for the LARK algorithm, and

the corresponding optimized output images are provided in Fig. 3.26. For the LARK
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Figure 3.16: Plots of MSE , metric Q and Qpro versus the tuning parameter in BM3D

denoising using image Squares (with PSNR 23dB, 30dB), and the optimized filtered images.
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Figure 3.17: Plots of MSE , metric Q and Qpro versus the tuning parameter in LARK denoising

using image Squares (with PSNR 23dB, 30dB), and the optimized filtered images.

106



0 5 10 15 20 25 30
50

100

150

200

250

300

350

Test σ

M
S

E

0 5 10 15 20 25 30
30

32

34

36

38

40

42

Test σ

Q

0 5 10 15 20 25 30

52

54

56

58

60

62

Test σ

Q
pr

o

MSE (23dB) Q (23dB) Qpro (23dB)

MSE optimized, σest = 17 Q optimized, σest = 22 Qpro optimized, σest = 17

0 5 10 15 20 25 30
20

40

60

80

100

120

140

Test σ

M
S

E

0 5 10 15 20 25 30
50

52

54

56

58

60

Test σ

Q

0 5 10 15 20 25 30

68

70

72

74

76

78

80

Test σ

Q
pr

o

MSE (30dB) Q (30dB) Qpro (30dB)

MSE optimized, σest = 9 Q optimized, σest = 12 Qpro optimized, σest = 10

Figure 3.18: Plots of MSE , metric Q and Qpro versus the tuning parameter in BM3D

denoising using image Motocycle (with PSNR 23dB, 30dB), and the optimized filtered images.
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Figure 3.19: Plots of MSE , metric Q and Qpro versus the tuning parameter in LARK denoising

using image Motocycle (with PSNR 23dB, 30dB), and the optimized filtered images.
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Figure 3.20: Plots of MSE , metric Q and Qpro versus the tuning parameter in BM3D

denoising using image Lighthouse (with PSNR 23dB, 30dB), and the optimized filtered images.

109



0 5 10 15 20
80

100

120

140

160

180

200

220

240

Iteration number

M
S

E

0 5 10 15 20
9

9.5

10

10.5

11

11.5

12

12.5

13

Iteration number

Q

0 5 10 15 20
20

20.5

21

21.5

22

22.5

23

Iteration number

Q
pr

o

MSE (23dB) Q (23dB) Qpro (23dB)

MSE optimized, 14th iteration Q optimized, 20th iteration Qpro optimized, 12th iteration

0 5 10 15 20
0

20

40

60

80

100

Iteration number

M
S

E

0 5 10 15 20
20.5

21

21.5

22

22.5

23

23.5

24

24.5

Iteration number

Q

0 5 10 15 20
27

28

29

30

31

32

Iteration number

Q
pr

o

MSE (30dB) Q (30dB) Qpro (30dB)

MSE optimized, 3rd iteration Q optimized, 9th iteration Qpro optimized, 5th iteration

Figure 3.21: Plots of MSE , metric Q and Qpro versus the tuning parameter in LARK denoising

using image Lighthouse (with PSNR 23dB, 30dB), and the optimized filtered images.
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(a) (b)

Figure 3.22: Examples of valid patch maps of Q (a) and Qpro calculated from the noisy

Lighthouse image (23dB) .
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Figure 3.23: Plot of JNB [4] versus the tuning parameter in BM3D denoising using image

Lighthouse (with PSNR 23dB), and the optimized filtered image.
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method, the optimal iteration number suggested by SURE is 1, which is clearly inade-

quate for denoising, as obvious noise can be observed in the output image. Meanwhile,

images using the Q optimized iteration number 4 and Qpro optimized number 3 show

good visual performance in balancing between denoising and detail-preservation.

Plots of SURE, Q and Qpro versus the tuning parameter for the BM3D al-

gorithm, and the corresponding optimized output images are provided in Fig. 3.25.

Again, SURE optimized image looks noisy. Q optimized image is much cleaner, but it

is also mildly over-smoothed. Qpro optimized image provides excellent visual quality in

terms of both noise suppression and detail-preservation.

Through the above real noise data experiments, it can be seen that the Monte-

Carlo SURE method did not give adequate parameters for the filters when testing on

the image JFK. We note that this example is not entirely fair to the SURE method

since the assumptions underlying that method are violated in this example: the noise

is not white Gaussian, and the estimate of its standard deviation is likely inaccurate.

However, the experiment does illustrate that Q and Qpro are nevertheless able to main-

tain their stable performance, indicating that our proposed metrics can be useful for a

more general variety of practical situations. Meanwhile, it shows that Qpro generally

performs closer to HVS than Q since it captures more structured patches from the test

image. This is consistent to the results of the perceptual data experiments in Section 3.4.
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JFK

Figure 3.24: Image corrupted by real noise.

3.6 Summary

In this chapter we first analyzed the behavior of the singular values of local

image gradient matrix in the presence of both changing blur and changing noise, and

introduced the metric Q that responses reasonably to both blur and noise in anisotropic

image regions. We then extended the measuring idea to isotropic structures and pro-

posed the metric Qpro, which is valid to both isotropic and anisotropic regions as long

as they contain sufficiently strong structures. Simulations illustrate that by monitoring

local structured regions, Qpro is capable of globally assessing image quality. Tests using

the TID2008 database show that the proposed metric Qpro correlates well with subjec-

tive quality evaluations for both blur and noise distortions. Ample simulated and real

data experiments also illustrate that this metric can be used to automatically optimize

the tuning parameters of any given denoising filters so that they can generate visually

the best output images.
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Figure 3.25: Plots of SURE, metric Q and Qpro versus the tuning parameter in BM3D

denoising experiments using image JFK, and optimized filtered images. The 3rd row images

are zoomed parts of the 2nd row images.
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Figure 3.26: Plots of SURE, metricQ andQpro versus the tuning parameter in LARK denoising

using image JFK, and the optimized filtered images. The 3rd row images are zoomed parts of

the 2nd row images.
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Chapter 4

Estimating Local Defocus Blur

Abstract - A PSF of defocus blur can be specified by a single parameter indicating its

scale. In this chapter we introduce an algorithm capable of estimating a defocus scale

map from a single image. This method is able to measure the probability of local defocus

scale in the continuous domain. It also takes smoothness and color edge information

into consideration to generate a coherent defocus scale map indicating the amount of

blur at each pixel. Simulated and real data experiments illustrate its good performance,

and its successful applications in foreground/background segmentation.

4.1 Introduction

As described in Chapter 1, the value of a relative metric should be independent

of the latent image contrast. For example, given two patches with different contrast

levels or even with completely different image contents, a relative metric should be able

to compare their sharpness with respect to the peakedness of their latent PSFs. In this

chapter, we address the relative sharpness measurement problem for defocus blur, given

116



a single image.

Optical imaging systems have a limited depth of field, which may lead to

defocus blur. One way of measuring local defocus blur is by estimating the defocus PSFs

directly. Most single image blind deconvolution algorithms focus on estimating spatially

invariant PSFs, or shift-varying PSFs that can be treated as projections of a globally

constant blur descriptor caused by camera shake [7, 8, 38, 9, 10]. However, estimating

defocus blur is a challenging task mainly because the corresponding PSFs are spatially

varying and cannot be represented by any global descriptor. Indeed, spatially varying

defocus PSFs for a given camera can be pre-calibrated and described typically through

a simple model (e.g. disc, Gaussian), which is characterized by a single parameter

indicating its scale (e.g. radius, standard deviation, etc.). For an image, we call a 2-D

map of the scale parameter the defocus blur map, which indicates the level of local blur at

each pixel (see an example in Fig. 4.1). Because the defocus blur scale is directly related

to the peakedness of the PSF, such blur map also indicates local relative sharpness. In

other words, given a defocus PSF model, estimating local blur scale is equivalent to

measuring local relative sharpness score.

Defocus blur map estimation has several potential applications. For exam-

ple, it can be employed to detect and segment in-focus subjects from the out-of-focus

background, helping a photo editor or artist to edit the subject of interest (usually in

focus) or the background, separately. Besides that, since defocus blur level is intimately

related with depth of the scene, a blur map also provides important information for

depth estimation. The computation of depth information typically requires two photos

of the same scene taken at the same time but from slightly different vantage points,
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Figure 4.1: Defocus blur map estimation experiment using a real image. (a) Test image. (b)

Estimated defocus blur map. (c) Automatic foreground/background segmentation.

i.e. a stereo pair [41]. However, in most cases only one image is available. A blur map

allows one to reconstruct a 3-D scene from a single photograph as long as the camera

settings (focal length, aperture settings, etc.) are known. Even without these camera

settings, an estimated blur map can still (at least coarsely) depict the 3-D geometric

information (see Fig. 4.1 (b)). For image restoration applications, if both the defocus

PSF calibration and blur map estimation are made, we can reconstruct an all-in-focus

image through a non-blind spatially varying deblurring process (see the example in Fig.

4.8).

In [37] Levin et al. proposed an algorithm that simultaneously restores a sharp

image and a depth map from a single input. This method locally selects the best PSF

by evaluating its deconvolution errors. It requires a specially designed aperture filter

for the camera, which strongly limits its domain of application. Instead of estimating

the optimal blur scale in the continuous domain, it can only identify the most likely

candidate from a finite number of calibrated PSFs with somewhat limited accuracy.

Chakrabarti et al. suggested a method estimating the likelihood function of a given
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candidate PSF based on local frequency component analysis without deconvolution

[102]. In their paper the method is applied to detect simple motion blur, but it can

also be employed for defocus blur identification. Again it can only detect optimal PSFs

from a finite number of candidates.

In this chapter we propose a new method for estimating defocus PSF scale at

each pixel. The estimation is based on local frequency analysis similar to [102], but is

significantly more general since it is carried out in the continuous domain. Smoothness

constraints and image color edge information are also taken into consideration to gener-

ate a map that is smooth and meanwhile allows discontinuity in the boundary regions1

between objects. This algorithm does not rely on any specific functional model of the

PSFs and is therefore very generally applicable. It can be implemented using any PSF

model that is a function of a single parameter. As we illustrate in Section 4.4, even

without accurate PSF calibration and modeling the method can still roughly tell local

blur level for real images by employing the disc function as a generic model.

A similar estimation method was proposed by Bae and Durand [5] that is used

to magnify focus differences, but their blur estimation is done only at edges. Their blur

map is essentially interpolated elsewhere. Their first step is an explicit edge detection

step, which may not be very robust to either strong blur, or noise. Since the goal in [5] is

magnifying focus differences, the case of a background that is too blurry for reliable edge

detection is not mentioned. On the other hand, our statistical models are applicable

everywhere as long as there exists some image contrast, even where there is no clear

edge that can be localized. Thus, we produce a dense set of probability distributions

1One example of the boundary regions is the boundary between sharp foreground objects and blurry

background. Such boundary issue is also discussed in the multi-image fusion problem in Section 2.2.

However, here we assume that only one observed image is be available.
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versus blur radii over the image. Besides, the method of [5] models only step edges with

a Gaussian blur PSF, while ours does not need such requirement on blur PSF model.

Our continuous blur radius modeling discussed in section 4.2 leads to a very

accurate estimate of local blur, which in turn provides for better discrimination than

[102] in separating the effects of defocus blur over noise and image content. A second

important improvement over [102] is that we find and enhance 2nd and 3rd local maxima

in the blur radius probability distribution at each pixel. When the global maximum does

not give the correct blur radius, the 2nd or 3rd highest local maxima almost always do

(see Fig. 4.5). Our smoothness constraint then allows the method to choose the proper

radius, thereby significantly reducing errors in the blur radius map.

The rest of this chapter is organized as follows. Section 4.2 gives an analysis

on local image statistics to motivate the basic estimation idea. The proposed algorithm

is described in Section 4.3. Simulated and real data experiments are given in Section

4.4 to show the algorithm performance. We also provide application examples in this

section, focusing mainly on automatic foreground/background segmentation. Known

shortcomings are discussed in Section 4.6.

4.2 Local Analysis of Image Statistics

Recall that an imaging system suffering from spatially changing blur and ran-

dom noise can be generally modeled as:

g[x] = (hx ⊗ f) [x] + n[x] (4.1)

where ⊗ denotes a 2-D convolution operator. f and g represent the ideal all-in-focus

image and the observed blurry image (in gray level), respectively. hx is the spatially
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varying blur kernel at position x, and n denotes random noise that is assumed to be

IID Gaussian: n[x] ∼ N (0, σ2
n).

Because both f and hx are unknown, the blur estimation is highly ill-posed,

and thus prior knowledge about the latent image f is required. Although the distribution

of f is difficult to describe, we assume that its gradient field can be locally modeled as

white Gaussian. Specifically, in a small analysis window w of size
√
N ×

√
N we have

∇f [x] = (∇⊗ f)[x] ∼ N (0, ςx), ∀x ∈ w (4.2)

where ∇ denotes a derivative operator in a particular direction (horizontal or vertical).

ςx represents the local variance of the signal derivatives in the window w around x. We

assume that blur kernel hx is spatially invariant inside w. For simplicity, in the rest of

this chapter we use h and ς to replace hx and ςx, respectively.

It is known that information about blur can be conveniently analyzed by means

of a frequency spectrum given the observed g. We first define a localized 2-D Fourier

filter basis {ti}, which is a set of functions over the same spatial extent as the analysis

window w. Each such function represents a different spatial frequency, or a group of

related spatial frequencies. Specifically, a Gabor filter is employed, which is the product

of a pure sinusoid with a 2-D Gaussian function. For example, for the i-th frequency

[ω(i), υ(i)], the function value at position x = [x, y] is

ti[x] = m[x] exp
(
−2πj

(
xω(i) + yυ(i)

))
. (4.3)

Here the 2-D Gaussian function m[x] is centered in the analysis window w and its

standard deviation is 1/4 of the diameter
√
N of the window size. This has the advantage

of tapering values down to 0 as they approach the boundary of the window. Otherwise
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Figure 4.2: A subset of the cosine filters in our Gabor filter bank for
√
N ×

√
N windows of

size
√
N = 41.

the window boundary will appear to be sharp in the image and mask the true frequency

response. A subset of the real (cosine) filters in our Gabor filter bank for
√
N = 41 is

shown in Fig. 4.2.

If we impose such localized Fourier analysis onto image g within the window

centered at x:

∇gi[x] = (∇g ⊗ ti) [x], (4.4)

then, using [102] as a starting point we can derive the likelihood function of the modulus

squared of these coefficients as:

p ({∇gi[x]}|h) =
∏
i

N
(
∇gi[x] | 0, ςσ2

hi + σ2
ni

)
(4.5)

where {σ2
hi} is called the blur spectrum for blur kernel h defined by:

σ2
hi =

∑
x

|(h⊗ ti)[x]|2 (4.6)

and {σ2
ni} is the noise spectrum:

σ2
ni = σ2

nσ
2
∇i with σ2

∇i ,
∑

x∈w |∇ ⊗ ti[x]|2. (4.7)

Note that in [102] no Gaussian window is used. Instead, a hard rectangular

window is implicitly imposed on the image data. One advantage of using a hard window
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is that the local power spectra can be better localized in space. However, as we know

from the convolution theorem, multiplication in one domain (spatial or frequency) cor-

responds to a convolution in the other domain. Thus, by using a hard window in the

spatial domain the frequency data is convolved with the Fourier transform of the hard

window: a 2-D tensor product of sinc functions. In contrast, multiplication by a Gaus-

sian in the spatial domain corresponds to convolution with a Gaussian in the frequency

domain. Since the power of sinc(ω) function falls off as 1/|ω| its power is much more

spread out than that of a Gaussian, and thus there is more mixing of components of the

spectrum from the hard window. In real experiments with both hard and soft windows

we have found that using the Gaussian window gives in more accurate and less noisy

results.

Assume that the defocus PSF model h is given, and that it can be indexed

by its scale parameter r: h = h(r). Theoretically an optimal r̂ could be selected by

maximizing the likelihood function (4.5) if both ς and σ2
n are given:

r̂ = argmax
r

p ({∇gi[x]} |h(r), ς) (4.8)

The noise variance σ2
n is assumed to be spatially constant and can be estimated by many

approaches, for example [103]. However, the variance of the latent image gradients ς is

unknown and is difficult to estimate directly.

From (4.5) we estimate the conditional likelihood function as

p ({∇gi[x]}|h) ∝ max
ς

∏
i

N
(
∇gi[x] | 0, ςσ2

hi + σ2
ni

)
(4.9)

where the optimal ς̂ that maximizes the conditional likelihood is selected for each given

h. In other words, maximizing the likelihood function (4.9) is equivalent to optimizing
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it over both ς and r simultaneously:

< r̂, ς̂ >= argmax
r,ς

p ({∇gi[x]} |h(r), ς) (4.10)

However, it is still not quite clear why optimizing (4.5) with respect to both r and ς is

a reasonable way to select the scale r, since we do not have any prior knowledge about

r or ς.

To further analyze the behavior of the likelihood function (4.5) over r and ς, a

simulated experiment is carried out and shown in Fig. 4.3, where (a) shows the latent

test image patch of size 41×41. We use a disc function to simulate the defocus PSF and

its radius to define the scale value r. The radius of the true h that convolves the image

patch is set as: r∗ = 5. White Gaussian noise with σ2
n = 10−7 is also added according

to (4.1).2 Then, we decompose the simulated patch (b) through equation (4.4) (where

horizontal derivative filter ∇ = [1,−1] is used) and calculate the likelihood value p with

different ς and r based on equation (4.5). The results are plotted in (d), where a global

maximum is located in the point with the true radius value. In this case, maximizing

function (4.10) in the continuous domain can generate the correct r.

However, it is not guaranteed that the global maximum always indicates the

true radius. Fig. 4.4 illustrates another example where we implement the same sim-

ulation as Fig. 4.3 but with a different patch (see Fig. 4.4 (a)). At this time there

still exists a local maximum around the true radius value, but it is no longer the global

maximum.

We repeat this experiment on overlapping patches centered at every pixel of

Fig. 4.5 (b), which is uniformly convolved by the disc function with r∗ = 5. For

2The pixel intensity range here is [0, 1].
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(a) (b)

(c)
(d)

Figure 4.3: Simulated experiment based on a local patch. (a) Latent test patch. (b) Simulated

blurry patch. (c) True PSF using the disc model. (d) Plot of the conditional likelihood values

of (4.5) with different r and ς.

each patch, the radius r̂1 corresponding to the global maximum, and the radius r̂2

corresponding to the second highest local maximum are detected and illustrated in Fig.

4.5 (c) and (d), respectively. From (c) we can see that for most pixels the latent radii

are correctly captured, but meanwhile there exist some “holes” where the maximum

likelihood estimation failed (see circled regions for example). At the same time, for

most of these holes the correct radii values are captured by the second highest maxima

(see (d)).

This phenomenon is further illustrated in Fig. 4.6 where we see plots of

log(p(r)), assuming optimal ς as in equation (4.9), at three different patches in the

image in Fig. 4.5 blurred with the disc of radius 5. The blue plot is for one patch,

where the maximum likelihood estimation gives the correct radius. The red and green

plots are for the patches where the maximum likelihood estimation fails, but where

there is a clear local maxima at r = 5.

At this point we should make a few comments as to why the maximum like-
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(a) (b)

(c)
(d)

Figure 4.4: Simulated experiment based on a local patch. (a) Latent test patch. (b) Simulated

blurry patch. (c) True PSF using the disc model. (d) Plot of the conditional likelihood values

of (4.9) with different r and ς.

lihood estimation fails in some cases. One factor is that we make the assumption that

the latent image gradient is Gaussian distributed. However, according to recent studies

on natural image statistics the gradient magnitude follows a “heavy-tailed” distribution

[7], which is better approximated through a Gaussian mixture model. Another factor

is the tension between wanting a small window size for localizing the blur estimate to

a smaller spatial region, but also needing enough data in that window for the power

spectra estimation to be statistically robust. The best tradeoff will sacrifice some in

both areas. Thus, we end up using a window size that gives power spectra that are

nosier than ideal. This, in turn, is another cause for occasional failure of the maximum

likelihood estimation.

From the above simulations, we can conclude that:

1. Function (4.5) is non-convex over r and ς.

2. In many cases, the global maximum point of (4.5) corresponds to the latent r∗,
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(a) (b)

(c) (d)

Figure 4.5: Simulated experiment based on an image. (a) Latent in-focus image. (b) Simulated

blurry image convolved by a disc function with radius r∗ = 5. (c) Estimated radii map corre-

sponding to the global maxima. (d) Estimated radii map corresponding to the second highest

local maxima. In the circled regions, the true radii values are missed by the global maxima, but

captured by the second highest local maxima.

but this is not guaranteed.

3. For most cases, the true radius value r is located in a local/global maximum with

a relatively high probability.

For the maximum likelihood estimation in (4.5), because we don’t have any

prior on either r or ς, its accuracy is limited. However, function (4.5) still provides

candidate r’s for most patches. If priors or constraints about r can be taken into

account, then it is possible to improve the quality of blur map estimation further as we

describe in the next section.
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Figure 4.6: log(p) versus r at three different points in the image of Fig. 4.5 in blurred with

disc of radius r∗ = 5.

4.3 Proposed Algorithm

Our blur map estimation approach includes two main steps:

1. Local PSF probability estimation;

2. Coherent map labeling.

Given an input color image, the first step estimates up to 3 candidate scale r values

for every pixel in its luminance channel: the candidate r values correspond to the

global/local maxima of function (4.5) with the highest likelihood values, and they are

calculated in the continuous domain. The second step creates a coherent blur map based

on the estimate of the first step, image derivative information, and a smoothness prior.

4.3.1 Local PSF Probability Estimation

To find the most important local maxima of (4.5) we use a fixed point iteration,

namely, calculating the optimal r or ς iteratively with the other variable fixed.
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In the defocus blur situation the blur spectrum {σ2
hi} is solely determined by

r, i.e. h = h(r). Thus, in this section we use the notation σ2
i (r) to describe σ2

hi. It

has been deduced in [102] that given a fixed set of blur spectra {σ2
i (r)}, the optimal ς̂

maximizing (4.5) can be found through the following fixed point iteration:

ς̂ =

(∑
i

ρi(ς̂)

)−1∑
i

ρi(ς̂)
|∇gi[x]|2 − σ2

ni

σ2
i (r)

, (4.11)

where

ρi(ς̂) =

(
1 +

σ2
ni

ς̂σ2
i (r)

)−2

.

Although it is possible to analytically compute the blur spectrum for a disc

kernel, we want to keep our system general enough to handle any blur kernel model

(such as the somewhat polygonal blur kernels arising from the leaf shutters of some

cameras). We therefore fit the function σ2
i (r) under a reasonably mild constraint.

Consider a given domain of r (e.g. r ∈ [0, 8]). We select samples equally

spaced over the domain with a relatively small interval, say ∆r = 0.1. Then a set of

sample PSFs can be generated according to the PSF model, and their blur spectrum

{σ2
i (r)} can be calculated by equation (4.6) for each basis function ti. We note that

these discrete samples are only used to generate the continuous fitting functions {σ2
i (r)}.

Then, for each frequency i we fit the following function of r to the samples

σ2
i (r) = exp

(
αi,pr

p+αi,p+1r
p+1+· · ·+αi,0r

0+· · ·+αi,qr
q
)

(4.12)

For defocus PSFs, blur spectrum are likely to be close to zero in some domain locations,

in which case a mild fitting error may be exaggerated when calculating the likelihood

(4.5). So an exponential function is used here to promote the fitting accuracy for the
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small values. A least squares criterion is used to get the best fitting function σ̃2
i (r) for

each frequency basis function ti.

Once the function set {σ̃2
i (r)} is available, given a fixed ς, the optimal r̂ can

be generated by maximizing (4.5), or equivalently by minimizing the following:

r̂ = argmin
r

∑
i

(
|∇gi[x]|2

ςσ̃2
hi(r) + σ2

ni

+ log
(
ςσ̃2

hi(r) + σ2
ni

))
(4.13)

Because σ̃2
hi(r) is differentiable, (4.13) can be optimized through a gradient descent

algorithm. Here a steepest descent procedure is employed.

However, in a gradient descent optimization process calculating the spectrum

values and their derivatives directly from function (4.12) is computationally expensive,

since this process needs to be carried out for every frequency basis function at every

pixel. To reduce the cost, look-up tables, which store the spectrum values, their first

and second order derivatives, are employed to replace the runtime computation. Ex-

periments show that using look-up tables takes only one-tenth the time of the runtime

computation.

We can also generate these tables directly from the analytic description of the

blur model, if it is available. However, in practice we may not have a parametric model

for the PSFs of a given lens. In the calibration step it is impractical to get a large

number of PSF samples to generate the dense look-up tables. It is easier to collect

fewer PSF samples through calibration, fit the spectrum curves from the sparse samples

using function (4.12), and finally get the dense look-up tables through the fitted curves.

Hence the benefit of the fitting and re-sampling. Since the fitting function does not

depend on any specific function of h, our system can be implemented given any PSF

model indexed by a single scalar r as long as the blur spectrum {σ2
hi} are smooth over r.

130



For example, it can be a model based on data collected from a particular lens used on

a particular camera. A new model can be easily implemented in our system by simply

replacing the fitting function set {σ̃2
i (r)}.

The above fixed point iteration process optimizing (4.5) at each pixel x is

summarized as follows:

1. Set l = 0, and initialize rl.

2. Compute ς l+1 = argmaxς p
(
{∇gi[x]}|h(rl), ς

)
by (4.11).

3. Compute rl+1=argmaxr p
(
{∇gi[x]}|h(r), ς l+1

)
by (4.13).

4. l← l + 1.

5. End if stopping criterion is met, otherwise go to Step 2.

This optimization is sensitive to the initial guess r0 since (4.5) is non-convex.

To cover most local maxima, we make a set of initial values. For example, we choose

the integers 1, 2, · · · , 8 as the initial guess and run the optimization procedure for all

these values, so that most local maxima over the domain [0, 8] could be captured. After

such searching step, only the top 3 optimal scales {r̂1, r̂2, r̂3} and their corresponding

likelihood values {p̂1, p̂2, p̂3} are stored for each pixel x. These data will be sent to the

following stage.

4.3.2 Coherent Map Labeling

This section discusses how to make a coherent blur map based on the previ-

ous probability estimation and other constraints (e.g. smoothness). This goal can be
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achieved by minimizing the following energy function:

E(R) =
∑
x

Dx(rx) +
∑

(x,v)∈ν

λx,vV (rx, rv), (4.14)

which includes two major terms: a data term Dx(rx) reflecting fidelity to the previous

probability estimation at position x, and a smoothness term V (rx, rv) regularizing the

output. The smoothness parameter λx,v controls the strength of this constraint, and

is adaptive to local image content. ν is the set of pairs of neighboring pixels. In our

system, given pixel x, only the 8 surrounding pixels are considered for the smoothness

term. R = {rx}x denotes a solution over all positions.

Because the data term is highly non-convex, estimating the optimal solution in

the continuous domain is not trivial. To use existing optimization techniques, without

introducing too much error, a discrete labeling procedure is carried out. In the blur

map labeling problem, labels are discrete r from a finite set φ of possible values. Note

that as long as the possible labels within the required range are sufficiently dense, we

can still get a good approximation to the continuous solution.

It may seem strange that we went though considerable effort in the preceding

local probability estimation to obtain the exact r for the top three local maxima in the

continuous domain and now switch to a discrete domain for r in this phase. However,

the effort to estimate r in the continuous domain is not wasted. The values attained at

various local maxima in the p(r) function can be very close, as can be seen in Fig. 4.6.

A discrete sampling could miss a local maximum or return a lower p(r) that is actually

attained. It is the detection of these local maxima and the values attained at them that

are most important; the exact value of r at which the maximum is attained does not

require pinpoint accuracy. Thus, the information gained in the preceding probability
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estimation step will not be lost if we round r, but not p(r), to a discrete value.

Theoretically, the data term should give the fidelity cost of rx assigning to x

with respect to the likelihood values from equation (4.5). However, using the values

directly from (4.5), such as Dx(r) = − log p(h(r)), does not perform well. It is com-

putationally expensive, and it does not give sufficient prominence to the top of local

maxima. So in our system for pixel x, given the estimated candidates {r̂1, r̂2, r̂3} and

their corresponding likelihood values {p̂1, p̂2, p̂3} from the first estimation step, an ar-

tificial discrete likelihood array p̃x(r) are made through the following scheme (see Fig.

4.7):

1. Create an empty array px(r) = 0, where r ∈ φ.

2. Set px(r̂l) = p̂l, l = 1, 2, 3.

3. Convolve p(r) with a symmetric 1D kernel κ. Then, normalize px(r) ⊗ κ to sum

to 1 to get an array p̃x(r).

We set κ = [10−20, 10−12, 10−7, 10−3, 10−1, 1, 10−1, 10−3, 10−7, 10−12, 10−20].

This convolution array is just wide enough so that similar, but not exactly

equal, r values that are at adjacent pixels do not incur a large penalty in the smoothness,

V , term of the energy function.

Finally, we let Dx(r) = − log p̃x(r). Since in the labeling problem only a finite

set of labels need to be considered, such an array can sufficiently describe the data

function Dx(r).

A simple and efficient V function for creating a coherent blur map is

V (rx, rv) = |rx − rv| (4.15)
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Figure 4.7: Making the artificial likelihood array.

The bigger the difference between the scales, the larger the penalty becomes. There is

zero cost to setting adjacent pixels with the same scale value. This smoothness term

can reduce the noise effect in the data term, correcting the errors caused in the first

probability estimation stage.

However, such smoothness constraint may also blur the boundaries between

different focus planes. To encourage the discontinuity of the blur map to fall along

object edges, we define the smoothness parameter as:

λx,v = λ0 exp

(
−∥Ax −Av∥2

2σ2
λ

)
(4.16)

Here λ0 is a global parameter controlling the overall strength of the smoothness term.

Ax is a 3 × 1 vector containing the RGB values of pixel x of the input color image.

Color is an important and effective feature for object distinguishing, because different

objects tend to have different colors. ∥Ax−Av∥2 measures the color difference between

x and v. σλ is another tuning parameter. In general, the value of λx,v decreases if the

color distance between pixel x and v is large, protecting the boundaries between the

objects in different focus planes.

In our system, α-expansion is used to minimize the energy function (4.14)

[104].
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4.3.3 Foreground/background segmentation

Besides blur map labeling, another interesting application of the proposed

coherent map estimation method is foreground/background segmentation, which labels

the in focus foreground subject from the rest of the input image. However, in this case

only a binary labeling map is required. This goal can be easily achieved using the same

labeling form as (4.14):

E(ϕ) =
∑
x

Dx(ϕx) +
∑

(x,v)∈ν

λx,vV (ϕx, ϕv), (4.17)

where Φ = {ϕx} denotes a binary labeling solution. ϕ = 0 is the blurry label, and ϕ = 1

is the in-focus label. The data term in this case can be simplified as:

Dx(0) = − logmax
r>τ

p̃x(r), Dx(1) = − logmax
r≤τ

p̃x(r) (4.18)

where τ represents the in-focus threshold. So if there exists a large blur (r > τ) with

high probability, then there is a low cost Dx(0) of labeling pixel x as blurry. Similarly,

if there exists a small blur r ≤ τ with high probability, then there is a low cost Dx(1)

of labeling pixel x as sharp.

The smoothness term here is defined the same as (4.15). Again, we only use

the 8 surrounding pixels for ν.

4.4 Experimental Results

Both simulated and real data experiments are carried out to test the perfor-

mance of the proposed defocus blur estimation framework. In the local probability

estimation step, we use square windows with side length
√
N = 41. Our default noise

setting is σ2
n = 10−4. The coherent blur maps choose the blur radius r from the set
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{0, 0.1, 0.2, . . . , 7.9, 8}. Our default parameter settings for the coherent blur labeling are

λ0 = 20 and σλ = 0.1 (for intensities in the range [0, 1]). The settings for the binary

foreground/background segmentation problem are τ = 2, λ0 = 1000 and σλ = 0.04.

Unless otherwise noted, the default parameter values are used. As can be seen

in the results, the default settings work well for nearly all the test images shown in this

section. In fact, the only parameter we varied in these experiments is the noise variance

σ2
n. In a few of the examples presented here, we found it useful to set σ2

n = 10−6 (very

low noise).

4.4.1 Simulated Experiments

A simulated experiment is illustrated in Fig. 4.8, which allows us to quanti-

tatively test the performance of the proposed method. The input image is generated

according to the model in (4.1). Similar to the test in Fig. 4.3 disc functions are

employed to simulate defocus PSFs. Variance of the additive white Gaussian noise is

σ2
n = 1× 10−6. The latent blur map is given in (c), where the blur radius continuously

changes over the image space. This actually violates the assumption that local blur hx

is constant within local analysis window w. However, the proposed output seems to be

robust to the violation of this assumption (see Fig. 4.8 (d)): trend of the blur change

is successfully captured by our method. This is probably because we use overlapping

windows. The mean-squared-error (MSE) of (d) with respect to the latent map (c) is

0.022.

Based on the blur map estimation {r̂x}, and further the PSFs {ĥx} generated

by the disc function, a spatially varying deconvolution procedure is carried out through
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(a) (b)

(e)

(f)

(c) (d)

(g)

(h)

Figure 4.8: Simulated experiment for blur map estimation and spatially varying blind de-

blurring. (a): Simulated input image with spatially varying blur, whose PSNR is 27.3dB. (b):

Deblurred image based on the proposed estimate in (d). Its PSNR is 32.3dB. (c): Latent blur

map. (d): Estimated blur map. (e), (g): zoomed part of (a). (f), (h): zoomed part of (b).

the following optimization:

f̂ = argmin
f

∑
x

∣∣∣(ĥx ⊗ f
)
[x]− g[x]

∣∣∣2 + λ
∑
x

∥∇f [x]∥1 (4.19)

The deblurred output f̂ is given in Fig. 4.8 (b), where we can observe that spatially

varying blurs have been successfully removed (see zoomed parts (e)-(h)). The PSNR of

the original input (a) is 27.3dB, whereas the PSNR of (b) is 32.3dB with 5dB improved,

which means in this experiment the accuracy of our estimation method is good enough

for blind deblurring.
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4.5 Real Data Experiments

Real image experiments are given in Fig. 4.1 and Fig. 4.9. Because these

data are collected from outside sources, the corresponding calibrated defocus PSFs are

not available. However, it is known that blur from an ideal lens with a circular aperture

could be modeled by the disc function in the absence of diffraction effects [105]. Since

diffraction effects are almost always negligible once the blur is of visible size, we use the

disc function to approximate the real PSFs in our experiments. Even though the actual

blur PSF for cameras used for the test images are unknown, the disc approximation

seems to be quite adequate. Our method still captures the amount of local defocus blur

for all these test images, depicts 3-D geometric information for each scene, and does a

good job in identifying in-focus subjects.

For example, Fig. 4.1 (a) contains four focal layers: the in-focus herdsman,

the slightly defocused cattle, the background mountain and the highly blurry sky. These

layers are all reflected in the output blur map (b), and the in-focus herdsman is also

correctly labeled in (c). In Fig. 4.9 (a) the lizard and part of the rock are in-focus,

which are correctly identified and labeled by Fig. 4.9 (b)-(c). Note that here we are

not doing pure object segmentation, and that the segmentation only depends on local

sharpness level (which means we are not trying to segment the lizard only from the rest

of the image). Fig. 4.9 (j) illustrates another example with the blur smoothly varies

over the space. Again, our blur map captures the progression of out-of-focus to in-focus

to out-of-focus along the correct angle (lower left to upper right of the image) on the

wood (see Fig. 4.9 (k)).

Additional real examples of our automatic binary segmentation algorithm into
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in-focus and out-of-focus regions are illustrated in Fig. 4.10.

Finally, in Fig. 4.11 we show some comparisons between the blur maps pro-

duced by Defocus Magnification [5] (DM) and by our method on some of the examples

in [5]. In the DM blur maps in the middle column of Fig. 4.11, the whiter the pixel

the larger the standard deviation in their fitted Gaussian blur model and the higher

the predicted blurriness. The DM approach estimates the blur only at image edges and

then propagates the sparse blur estimates to the rest of the image by assuming pixels

of similar intensity and color have similar blurriness.

In general, the DM blur estimation method tends to show the underlying image

edges in places where the blur measure is actually smooth. Examples of this in the center

column of Fig. 4.11(b) include the nose of the dog, and the boundary of the legs of the

stuffed animals. Our blur estimates are (correctly) much smoother in these areas.

In Fig. 4.11(e), the DM result on the grass to the left of the subject has the

same level of blur as the foreground subject, while ours is at two background levels:

the grass closer to the subject and then the patch of white flowers further back that is

clearly marked as significantly blurrier than the subject. We also capture the blur of the

distant background as being much greater than other areas of the image. Automatic

in-focus segmentations for the examples in Figure 4.11 are given in Fig. 4.12.

(a) (b) (c) (d)

Figure 4.12: Automatic In-focus segmentations for the examples in Figure 4.11.
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4.6 Summary and Discussions

In this chapter we proposed a method for estimating a defocus blur map from

a single image. It is capable of measuring the probability of local blur scale in the

continuous domain by analyzing the localized Fourier (i.e. Gabor) spectrum. For each

analysis window, not only the global optimum maximizing the likelihood function but

also a few local optima are detected as candidate scales. Finally, color edge information

and smoothness constraints are incorporated into the system to select the best candi-

dates and generate a coherent map of the blur scale at each pixel. Experiments show

that this method can be used to produce a blur map that coarsely depict the depth

of the scene, help remove spatially varying blur, and segment in-focus subjects from

defocused background.

One problem with our method for estimating blur maps is that we do not

explicitly model the case where a window overlaps areas with different blur scales. In

this case we have found that the sub-area of a window with the smallest blur size tends

to dominate the probability analysis, as this sub-area contributes more power per pixel

to the power spectrum. Thus, sharp areas would be enlarged by the radius of the

analysis window in a blur map produced without the coherence labeling step. We rely

on the coherence labeling step to snap the boundary back to the closest color boundary

in the underlying image, which is usually where the actual depth discontinuity lies. But

in cases of gradually changing blur, or in cases where there is not a good color boundary

at the depth discontinuity, this may fail.

For the coherence labeling step to have the above correcting influence we have

to set the λ parameter to a significantly large value. This can cause a slight over-
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smoothing of the blur values and manifests as the blur values taking discrete steps in

areas where the blur changes continuously as seen in Fig. 4.8. The jaggedness of the

contours in the same figure is partially a result of the inherent uncertainty present in

the statistical computation.

The same comments apply to the foreground/background segmentation case,

in that we are relying on coherence to snap the foreground mask to the nearest color

boundaries in the image. Generally the results are quite good, but we occasionally see

problems. Because there is increased energy to follow a serpentine contour sometimes

long, thin parts of the subject of interest are cut off.

Currently our MATLAB implementation takes around 10 minutes to process

a 500 × 500 image using a PC with a 2.70GHz CPU. Efficiency could be improved

through C++ implementation. The runtime can be reduced further by using parallel

computation. For example, the local optima searching process starting from the 8

different initial r values described in Section 4.3 could be done in parallel.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.9: Defocus blur map estimation experiments using real images. Left column: in-

put images. Middle column: estimated defocus blur maps. Right column: automatic fore-

ground/background segmentation results.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.10: Automatic In-focus Segmentation Results. 1st and 3rd rows are input images.

2nd and 4th rows are corresponding results.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.11: Comparison with Defocus Magnification [5] blur map results. (a) IMG 0419. (b)

man. (c) cup. (d) hands.
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Chapter 5

Contributions and Directions for Future

Work

5.1 Summary of Contributions

In this thesis we studied the spatially varying blur measurement problem un-

der different scenarios, introduced some image sharpness metrics, and proposed several

applications based on these metrics to solve real problems.

◃ Chapter 1 – We discussed different types of image blur sources and their prop-

erties. Image degradation models were introduced to represent both spatially

invariant and spatially varying blurring processes. We explained the importance

of image blur measurement and its potential applications. We also discussed lim-

itations of existing blur estimation algorithms and sharpness metrics.

◃ Chapter 2 – We focused on the problems related to multi-frame fusion, where a

local metric capable of comparing sharpness between different copies of the same

image content is required. We discussed a gradient-based sharpness metric, and
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analyzed its behavior in the presence of noise with spatially uniform strength. We

then proposed two fusion-based image restoration algorithms using this metric.

The first algorithm is a focus-stacking method for multi-focus image se-

quences. It employs the sharpness metric to roughly select the sharpest pixels

within observed images at each position and merges them together to get an all-

in-focus image. Different from existing focus-stacking methods, this algorithm

refines its pixel selection map through an alpha matting procedure. Experiments

demonstrated that such refinement could effectively reduce fusion artifacts and

preserve boundary regions between objects from different focal planes.

The second proposed algorithm is about removing air turbulence caused

distortions for long-distance imaging systems. Air turbulence generates spatially

varying geometric deformation and blur. Our algorithm first registers each frame

to suppress geometric deformation. Then, it uses a fusion process based on the

sharpness metric to produce a single image that can be viewed as being convolved

with a spatially invariant blur. Finally, a blind deconvolution algorithm is imple-

mented to generate a sharp output. Experiments using real data illustrated that

this approach is capable of alleviating blur and geometric deformation caused

by turbulence, recovering details of the scene and significantly improving visual

quality.

◃ Chapter 3 – We considered both blur and noise, and proposed a metric called

Qpro which reacts reasonably to these two factors. This metric is based on singular

value decomposition of local gradient matrix, and it is capable of capturing the

dominant structure of local patches. The value of this metric drops as a given
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structured image patch gets either more blurry or more noisy. Simulations il-

lustrated that by monitoring local structured regions, this metric is also capable

of globally assessing image quality. Tests using TID2008 database showed that

the proposed metric correlates well with subjective quality evaluations for both

blur and noise distortions. We also proposed a parameter tuning system based

on this metric. Ample simulated and real data experiments illustrated that this

system can be used to automatically optimize the tuning parameters of any given

denoising filters so that they can generate visually the best output images.

◃ Chapter 4 – We proposed a method capable of estimating the scale of local

defocus blur at each pixel given a single image. It measures the probability of

local blur scale in the continuous domain by analyzing the localized Fourier (i.e.

Gabor) spectrum. For an analysis window centered at each pixel, not only the

global optimal blur scale maximizing the likelihood function but also a few local

optima are detected as candidate scales. Color edge information and smoothness

constraints are incorporated into the estimation system to select the best candi-

dates and generate a coherent map of the blur scale. Simulated and real data

experiments demonstrated that this method can be used to produce a blur map

that coarsely depict the depth of the scene, help remove spatially varying blur,

and segment in-focus subjects from defocused background.

5.2 Future Directions

The future directions we discuss below focus on (i) how to extend our turbu-

lence removal system to videos with complex motion, (ii) how to apply the Qpro based
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parameter tuning system to deblurring algorithms, and (iii) how to remove spatially

varying defocus blur given a single image.

5.2.1 Turbulence Removal with Complex Motion

In Chapter 2 we introduced a system capable of removing air turbulence caused

distortions for long-distance imaging systems. One limitation of this system is that it

requires the camera and the scene to be static, since it can only handle the random

motion generated by air turbulence. However, in practice there may exist global motion

due to camera shake and local motion of objects in the scene. How to register videos

with complex motion is an important issue for a robust turbulence removal system.

Global motion due to camera movement is relatively easy to deal with. One

way is to globally register each frame first using a parametric model (e.g. translational,

affine), and then run the existing restoration system. We can also combine the global

registration procedure and the non-rigid registration step in our system (proposed in

Section 2.3.2) together. Take the affine global registration model for example. In this

case, we just need to replace the deformation model in equation (2.22) with the following:

W(x;−→p ,a) = x+A(x)−→p +

 a1 a2

a3 a4

x+

 a5

a6

 , (5.1)

where the affine parameter vector a = [a1, a2, a3, a4, a5, a6]
T . By optimizing the corre-

sponding cost function with respect to both the non-rigid deformation vector −→p and

the affine vector a, it is possible to estimate the local turbulence motion and the global

camera motion simultaneously.

If local objects’ movement are also considered, then accurately registering each

frame could be highly challenging. A recent article has proposed detecting moving
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objects from videos with a static background [106]. If the static background is of

interest, then accurately detecting the moving objects can help us to avoid possible

registration errors and fusion artifacts. Further research needs to be carried out in this

direction to enhance the practicability and reliability of our turbulence removal system.

5.2.2 Automatically Tuning Deblurring Filters

Parameter optimization is a common problem for image restoration algorithms.

In Chapter 3 we have shown that the proposed metric Q and its extended version Qpro

can be used in parameter optimization for denoising filters. We are also curious to see

whether these metrics can be applied in optimizing general restoration algorithms, such

as image deblurring algorithms, and super-resolution algorithms.

In a recent paper [107], M. Almeida and M. Figueiredo show that our Q can

be successfully applied in optimizing the parameters for arbitrary non-blind deconvolu-

tion algorithms. In their work, two recent algorithms SpaRSA (sparse reconstruction

by separable approximation) [108] and SALSA (split augmented Lagrangian shrinkage

algorithm) [109] are tested, and for each algorithm both the regularization parameter

and the stopping iteration number are tuned. Experiments illustrated that our metric

Q has achieved state-of-the-art performance, and for most test images it works even

better than their proposed methods1 with respect to improvement in signal-to-noise

ratio (ISNR) [107]. However, Q does not work well for blind deconvolution algorithms

[107].

The experimental results provided in [107] are not surprising. Take the regu-

larization parameter optimization for example. For non-blind deconvolution, where the

1Details about the comparison can be found in Section IV.B from [107].
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(a) (b)

Figure 5.1: Blind deconvolution example from [6]. (a) Blurry image and the latent PSF. (b) An

output deconvolved by an incorrectly estimated PSF, where we can see strong ringing artifacts.

latent PSF is known, the major artifacts caused by an improper setting of the regu-

larization parameter are magnified random noise and over-smoothing (blur), which are

similar to the denoising case. When recovering the attenuated frequency components

of the useful image signal, non-blind deconvolution without regularization would in-

evitably magnify noise [110]. Strong regularization can suppress noise magnification,

but it generates blur. On the other hand, insufficient regularization strength may lead

to an output even noisier than the input. Hence, tuning the regularization parameter of

a non-blind deconvolution method is close in spirit to tuning the denoising parameters,

and thus the system proposed in Section 3.5 could be applied directly.

However, in blind deconvolution the latent PSF is not available. Mild error

in the estimated PSF could produce strong ringing and halo (see Fig. 5.1), which are

structured artifacts [8]. Currently neither Q or Qpro are able to identify these artifacts.

Actually ringing and halo could be counted as useful structure by our metrics. In other

words, the more ringing the output contains, the higher the value of Q/Qpro becomes.

This explains why Q does not perform well for the blind deconvolution experiments in

[107].

Note that our metrics can quantitatively measure the amount of structured

150



artifacts since they also have dominant directions. Suppose we can somehow find a way

to identify the measured structures as either “useful signal” (Qusf
pro ) or “artifact” (Qart

pro),

and use the following metric

Qpro = Qusf
pro −Qart

pro, (5.2)

then, it would be possible to use such metric to accurately assess the quality of blindly

deblurred images. How to identify the nature of the measured structures and how to

extend our metrics to images with structured artifacts merit further study.

5.2.3 Blindly Removing Spatially Varying Defocus Blur

In Section 4.4 we provided a single image blind deblurring example with spa-

tially varying defocus blur, where local blur PSFs are estimated using the method in

Chapter 4 for measuring blur scale. For blur scale measurement only, there is no need

to get an accurate parametric PSF model since the continuous PSF likelihood func-

tion could be approximated through a polynomial-based fitting procedure (as explained

in Section 4.3). However, for blind deblurring an accurate parametric PSF model is

required, so that given an estimated local scale r we can instantly calculate its PSF

h(x | r). So far we have only implemented such deblurring in simulated experiments

where the latent PSF model is known.

Studies on PSF calibration show that mild defocus blur could be modeled

as Gaussian, while large scale defocus PSFs look more like discs [105, 111]. For PSF

estimation with a wide range of scale r, we need a more general model. One possible

example is the exponential power class formulated as [112]

h(x | ζ, ς) = Ω−1 exp

(
−c(ζ)

(
xTx

ς2

) 1
1+ζ

)
, ς > 0, −1 < ζ ≤ 1, (5.3)

151



Figure 5.2: Examples of the parameterized PSF by the exponential power class with a variety

of power parameter ζ: (a) −0.99 (disc blur), (b) −0.5, (c) 0 (Gaussian), (d) 0.5, and (e) 1.0

(Laplacian). The scale parameter ς = 3.0 is used for all.

where ς determines the scale, and ζ determines the shape (see Fig. 5.2). Ω is the

normalization coefficient, and c(ζ) is given by

c(ζ) =

(
Γ
(
3
2(1 + ζ)

)
Γ
(
1
2(1 + ζ)

)) 1
1+ζ

, Γ(·) : Gamma function. (5.4)

As Fig. 5.2 illustrates, a variety of shapes such as disc, Gaussian and Laplacian

can be obtained by varying the parameter ζ. This function can be used for accurate PSF

modeling. For example, given a camera lens, suppose we have collected PSF samples

{hk} for a set of discrete scale values {rk} through a calibration procedure. We can

first fit each PSF sample using (5.3) producing the corresponding parameters {ζk} and

{ςk}. Secondly, fit the sample parameters through two polynomial functions ζ(r) and

ς(r). Through these two steps, we may get an accurate PSF model h(x | ζ(r), ς(r))

in the continuous scale domain. Given the parametric PSF model and an estimated

blur scale map, we can generate the local PSF at each pixel position. Then, based on

the spatially varying convolution model given in equation (1.3), the defocus blur could

be removed through a spatially varying non-blind deconvolution procedure similar to

equation (4.19).

However, such blind deblurring method is only valid for the image regions

where there is no occlusion. In the boundary area between two objects in different focal
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(a) (b)

Figure 5.3: Foreground defocused image example. (a) Observed image. (b) Zoomed part of

(a), where in the background area that is close to the foreground/background boundary we

can observe both the sharp background content and the blurry foreground edge that partially

occludes the background.

planes, the local PSF model could be more complicated than the axially symmetric

defocus model discussed in Chapter 4. For example, consider the image given in Fig. 2.5

(b) (also illustrated in Fig. 5.3 (a)), where its foreground object is defocused and the

background is sharp. In the background area that is close to the boundary we can

observe both the sharp background content and the blurry foreground edge that partially

occludes the background (see Fig. 5.3) (b)). In this case, the local PSF is definitely not

a simple axially symmetric function.

Suppose the latent all-in-focus image is denoted as f , and let mF represent

a foreground mask, which has the value of 1 in the foreground area, and 0 in the

background area (similar to the decision map given in Fig. 2.7 (c)). Then, we can

define a foreground image fF = f · mF , and a background image fB = f(1 − mF ).

Consider the case of Fig. 5.3 where fB is in focus (whose PSF equals to a δ function)
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and fF is defocused (with the corresponding PSF hD). Given a background position

x close to the boundary, if only the foreground object is available, the corresponding

observation:

g[x] = (fF ⊗ hD)[x] + n[x] (5.5)

where n[x] is the additive noise. On the other hand, if only the background is given, we

have

g[x] = (fB ⊗ δ)[x] + n[x] = fB[x] + n[x]. (5.6)

If both fF and fB are available, as illustrated in Fig. 5.4 (a), due to the

occlusion effect the amount of light from the background area is reduced. It can be

deduced that the observed pixel value at location x becomes

g[x] = (fF ⊗ hD)[x] + ϱfB[x] + n[x] (5.7)

where ϱ is an occlusion factor within the range [0, 1], and its value is determined by

the distance between x and the boundary. If x is in the area completely occluded by

the foreground, then ϱ = 0. If x is in the background area without any occlusion, then

ϱ = 1. In other cases 0 < ϱ < 1.

Actually the above imaging model can still be represented through the general

spatially varying convolution model:

g[x] = (f ⊗ h)[x] + n[x]. (5.8)

where it can be deduced that in the boundary region the local PSF is a combination

of the local δ scaled by ϱ and an occluded defocus PSF hD (see Fig. 5.4 (d)). How to

deconvolve such boundary region is an interesting problem that merits further study.
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(a)

(b) (c) (d)

Figure 5.4: Occlusion illustration. (a) Figure illustrating the effect of occlusion in the fore-

ground/background boundary region, where the amount of light from the background position x

is reduced due to the foreground occlusion. Meanwhile, the foreground content is defocused on

the sensor plane. (b) Defocus PSF of the foreground. (c) Defocus PSF of the sharp background,

which is a δ function. (d) Example of a local PSF in the boundary region x.
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Appendix A

Calculation of Probability Density

Functions of Local Coherence and

Metric Q

If all components of the gradient matrix G are independent standard Normal

variables, the joint probability density function for its singular values s1 and s2 is given

by [113]:

fS1,S2(s1, s2) =
1

(N − 2)!
e−

1
2
(s21+s22)sN−2

1 sN−2
2 (s21 − s22) (A.1)

In a more general case, where the variance of a white Gaussian noise image

(including N pixels) is σ2, its G can be viewed as a N × 2 Gaussian matrix with a

variance equals to ξσ2, where ξ is determined by the filters that we choose to calculate

the discrete image gradient. The joint density function of the singular values s1 and s2
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can then be derived from (A.1) as:

fS1,S2(s1, s2) =
ν2N

(N − 2)!
e−

ν2

2
(s21+s22)

·sN−2
1 sN−2

2 (s21 − s22) (A.2)

where ν = 1/(σξ
1
2 ).

The marginal pdf of s1 is:

fS1(s1) =

∫ s1

0
fS1,S2(s1, t)dt

=
1

2(N − 2)!
e−

s21ν
2

2 s2β−1
1 ν2β

·
[
2(s1ν)

2βe−
s21ν

2

2 − 2β
(
2β − s21ν

2
)
γ

(
β,

s21ν
2

2

)]
(A.3)

where β = (N − 1)/2, and γ(a, x) stands for lower incomplete gamma function, which

is defined as:

γ(β, x) =

∫ x

0
tβ−1e−tdt (A.4)

According to the definition of the sharpness metric H in equation (3.28) and

the formula (A.3), the density function of H becomes:

fH(h) =
1

2(N − 2)!
e
− h2

2µ2
h2β−1

µ2β

[
2

(
h

µ

)2β

e
− h2

2µ2

−2β
(
2β − h2

µ2

)
γ

(
β,

h2

2µ2

)]
(A.5)

where

µ =
ξ

1
2

σ + ϵ/σ
(A.6)

The ratio between s1 and s2 is called the condition number κ:

κ =
s1
s2

(A.7)
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whose pdf is given by [113]

fK(κ) = 2N−1(N − 1) κ2−1
(κ2+1)N

κN−2, 1 ≤ κ ≤ ∞. (A.8)

We note that the coherence R is related to κ by κ = 1+R
1−R . Using the formula of random

variable transformation [114], the pdf of R can then be derived as:

fR(r) = 4(N − 1)r (1−r2)N−2

(1+r2)N
, 0 ≤ r ≤ 1. (A.9)

Given the joint density function fS1,S2(s1, s2) in (A.2), the conditional density

of s2 given s1 can be derived as:

fS2|S1
(s2|s1) =

fS1,S2(s1, s2)

fS1(s1)
(A.10)

According to the definition (3.30), the relationship between s2 and Q can also be written

as:

s2 = s1
s1 −Q

s1 +Q
(A.11)

Again, using the random variable transformation, the conditional density function of Q

given s1 becomes:

fQ|S1
(q|s1) = fS2|S1

(s2|s1)
∣∣∣∣ds2dq

∣∣∣∣
= fS2|S1

(
s1

s1 − q

s1 + q

∣∣∣∣ s1) 2s21
(s1 + q)2

(A.12)

Then the joint density function of s1 and Q can be written as:

fQ,S1(q, s1) = fS1(s1)fQ|S1
(q|s1)

= fS1,S2

(
s1, s1

s1 − q

s1 + q

)
2s21

(s1 + q)2
(A.13)
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So the pdf of Q becomes:

fQ(q) =

∫ ∞

q
fQ,S1(q, t)dt

=
8qν2N

(N − 2)!

∫ ∞

q
t2N+1 (t− q)N−2

(t+ q)N+2
e
−t2ν2

(t2+q2)

(t+q)2 dt

(A.14)
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