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We investigate algorithms for reconstructing a convex body K in Rn

from noisy measurements of its support function or its brightness function
in k directions u1, . . . , uk . The key idea of these algorithms is to construct a
convex polytope Pk whose support function (or brightness function) best ap-
proximates the given measurements in the directions u1, . . . , uk (in the least
squares sense). The measurement errors are assumed to be stochastically in-
dependent and Gaussian.

It is shown that this procedure is (strongly) consistent, meaning that, al-
most surely, Pk tends to K in the Hausdorff metric as k → ∞. Here some
mild assumptions on the sequence (ui) of directions are needed. Using results
from the theory of empirical processes, estimates of rates of convergence are
derived, which are first obtained in the L2 metric and then transferred to the
Hausdorff metric. Along the way, a new estimate is obtained for the metric
entropy of the class of origin-symmetric zonoids contained in the unit ball.

Similar results are obtained for the convergence of an algorithm that re-
constructs an approximating measure to the directional measure of a station-
ary fiber process from noisy measurements of its rose of intersections in k

directions u1, . . . , uk . Here the Dudley and Prohorov metrics are used. The
methods are linked to those employed for the support and brightness function
algorithms via the fact that the rose of intersections is the support function of
a projection body.

1. Introduction. The problem of reconstructing an unknown shape from a fi-
nite number of noisy measurements of its support function [giving the (signed)
distances from some fixed reference point, usually taken to be the origin, to the
support hyperplanes of the shape] has attracted much attention. The nature of
the measurements makes it natural to restrict attention to convex bodies. Prince
and Willsky [27] used such data in computerized tomography as a prior to im-
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prove performance, particularly when only limited data is available. Lele, Kulkarni
and Willsky [21] applied support function measurements to target reconstruction
from range-resolved and Doppler-resolved laser-radar data. The general approach
in these papers is to fit a polygon or polyhedron to the data by a least squares
procedure. In contrast, Fisher, Hall, Turlach and Watson [8] use spline interpola-
tion and the so-called von Mises kernel to fit a smooth curve to the data in the
two-dimensional case. This method was taken up by Hall and Turlach [16] and
Mammen, Marron, Turlach and Wand [22], the former dealing with convex bod-
ies with corners and the latter giving an example to show that the algorithm of
Fisher, Hall, Turlach and Watson [8] may fail for a given data set. Further applica-
tions and the three-dimensional case can be found in papers by Gregor and Rannou
[14], Ikehata and Ohe [18] and Karl, Kulkarni, Verghese and Willsky [19].

Despite all this work, the convergence of even the most straightforward of the re-
construction algorithms has apparently never been proved. In Theorem 6.1 below,
we provide such a proof for an algorithm we call Algorithm NoisySupportLSQ,
due to Prince and Willsky [27]. By convergence, we mean that, given a suitable
sequence of directions, the estimators, convex polytopes, obtained by running the
algorithm with noisy measurements taken in the first k directions in the sequence,
converge in suitable metrics (the L2 and Hausdorff metrics) to the unknown con-
vex body as k tends to infinity. Suitable sequences of directions are those that are
“evenly spread,” only slightly more restrictive than the obviously necessary condi-
tion that the sequence be dense in the unit sphere.

Moreover, by applying some beautiful and deep results from the theory of em-
pirical processes, we are able to provide in Theorem 6.2 estimates of rates of
convergence of the estimators to the unknown convex body. Some considerable
technicalities are involved, and some extra conditions are required, of which, how-
ever, only a rather stronger condition on the sequence of directions should be
regarded as really essential. Convergence rates depend on the dimension of the
unknown convex body; for example, for the L2 metric, the rate is of order k−2/5 in
the two-dimensional case, and k−1/3 in the three-dimensional case.

Analogous results are obtained for an algorithm, Algorithm NoisyBrightLSQ,
essentially that proposed recently by Gardner and Milanfar [13], that constructs
an approximating convex polytope to an unknown origin-symmetric convex body
from a finite number of noisy measurements of its brightness function (giving the
areas of the shadows of the body on hyperplanes). The very existence of such an
algorithm is highly nontrivial, due to the extremely weak data; each measurement
is a single scalar that provides no information at all about the shape of the shadow!
Nevertheless, the algorithm has been successfully implemented, even in three di-
mensions. Here we are able to prove, for the first time, convergence (Theorem 7.2),
with estimates of rates of convergence (Theorem 7.6) also for this algorithm. One
technical device that aids in this endeavor is the so-called projection body, whose
support function equals the brightness function of a given convex body. This al-
lows some of our results on reconstruction from support functions to be transferred
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to the new reconstruction problem. However, we require additional deep results on
projection bodies (a subclass of the class of zonoids) from the theory of convex
geometry due to Bourgain and Lindenstrauss [1] and Campi [4]. Examples of rates
of convergence we obtain, for the Hausdorff metric, are of order k−4/15 in the
two-dimensional case and k−1/30 in the three-dimensional case.

Most of our results are actually much more informative in that they indicate
also how the convergence depends on the noise level and the scaling of the input
body. A discussion and the results of some Monte Carlo simulations can be found
in Section 8.

Many auxiliary results are obtained in the course of proving the convergence
of these algorithms, but one is perhaps worth special mention. Roughly speaking,
the results we employ from the theory of empirical processes give rates of conver-
gence of least squares estimators to an unknown function in terms of the metric
entropy of the class of functions involved. In obtaining our results on reconstruc-
tion from support functions, it turns out that we therefore need an estimate of
the metric entropy of the class of compact convex subsets of the unit ball B in
n-dimensional space, with the Hausdorff metric. Luckily, the precise order of this,
t−(n−1)/2 for sufficiently small t > 0, was previously established by Bronshtein
[3] (see Proposition 5.4; it is traditional to talk of ε-entropy rather than t-entropy,
but we require ε for a different purpose in this paper). In the problem of recon-
struction from brightness functions, however, we need to know the metric entropy
of the class of origin-symmetric zonoids contained in B . As far as we know, this
natural problem has not been addressed before. For n = 2, it is easy to see that
the answer, t−1/2, is unchanged, but in Theorem 7.3 we show that, for fixed n ≥ 3
and any η > 0, the t-entropy of this class is O(t−2(n−1)/(n+2)−η) for sufficiently
small t > 0. This is somewhat remarkable, since the t-entropy becomes O(t−2)

as n tends to infinity, in complete contrast to the case of general compact convex
sets. The hard work behind Theorem 7.3 is done in the highly technical papers
of Bourgain and Lindenstrauss [2] and Matoušek [24] on the approximation of
zonoids by zonotopes.

While most of the paper is devoted to reconstruction of convex bodies, Sec-
tion 9 focuses on a problem from stereology, that of reconstructing an unknown
directional measure of a stationary fiber process from a finite number of noisy
measurements of its rose of intersections. It turns out that the corresponding al-
gorithm, Algorithm NoisyRoseLSQ, is very closely related to Algorithm Noisy-
BrightLSQ, due to the fact that the rose of intersections is the support function
of a projection body. This fact was also used by Kiderlen [20], where an estima-
tion method similar to Algorithm NoisyRoseLSQ was suggested and analyzed.
Convergence of Algorithm NoisyRoseLSQ was proved by Männle [23], but also
follows easily from our earlier results (see Proposition 9.1). With suitable extra
assumptions, we can once again obtain estimates of rates of convergence of the
approximating measures to the unknown directional measure. These are first given
for the Dudley metric in Theorem 9.4, but can easily be converted to rates for the
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Prohorov metric. For example, for the Prohorov metric, the rate is of order k−1/20

in the three-dimensional case.

2. Definitions, notation and preliminaries. As usual, Sn−1 denotes the unit
sphere, B the unit ball, o the origin and ‖ · ‖ the norm in Euclidean n-space Rn. It
is assumed throughout that n ≥ 2. A direction is a unit vector, that is, an element
of Sn−1. If u is a direction, then u⊥ is the (n−1)-dimensional subspace orthogonal
to u. If x, y ∈ Rn, then x · y is the inner product of x and y and [x, y] denotes the
line segment with endpoints x and y.

If A is a set, dimA is its dimension, that is, the dimension of its affine hull,
and ∂A is its boundary. The notation for the usual (orthogonal) projection of A on
a subspace S is A|S. A set is origin symmetric if it is centrally symmetric, with
center at the origin.

We write Vk for k-dimensional Lebesgue measure in Rn, where k = 1, . . . , n,
and where we identify Vk with k-dimensional Hausdorff measure. If K is a
k-dimensional convex subset of Rn, then V (K) is its volume Vk(K). Define κn =
V (B). The notation dz will always mean dVk(z) for the appropriate k = 1, . . . , n.

Let Kn be the family of nonempty compact convex subsets of Rn. A set
K ∈ Kn is called a convex body if its interior is nonempty. If K ∈ Kn, then

hK(x) = max{x · y :y ∈ K},
for x ∈ Rn, is its support function and

bK(u) = V (K|u⊥),

for u ∈ Sn−1, its brightness function. Any K ∈ Kn is uniquely determined by its
support function. If K is an origin-symmetric convex body, it is also uniquely
determined by its brightness function. The Hausdorff distance δ(K,L) between
two sets K,L ∈ Kn can be conveniently defined by

δ(K,L) = ‖hK − hL‖∞.

We shall also employ the L2 distance δ2(K,L) defined by

δ2(K,L) = ‖hK − hL‖2.

By Proposition 2.3.1 of [15], there is a constant c = c(n) such that if K and L are
contained in RB for some R > 0, then

δ(K,L) ≤ cR(n−1)/(n+1)δ2(K,L)2/(n+1),(1)

which shows (together with a trivial inequality in the converse direction) that both
metrics induce the same topology on Kn.

A zonotope is a vector sum of finitely many line segments. A zonoid is the limit
in the Hausdorff metric of zonotopes. The projection body of a convex body K

in Rn is the origin-symmetric convex body �K defined by

h�K = bK.
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An introduction to the theory of projection bodies is provided by Gardner [10],
Chapter 4. It turns out that projection bodies are precisely the n-dimensional
origin-symmetric zonoids. For this reason, we shall denote the set of projection
bodies in Rn by Zn.

The surface area measure S(K, ·) of a convex body K is defined for Borel
subsets E of Sn−1 by

S(K,E) = Vn−1
(
g−1(K,E)

)
,(2)

where g−1(K,E) is the set of points in ∂K at which there is an outer unit nor-
mal vector in E. The convex body P is a zonotope if and only if P = �K for
some origin-symmetric convex polytope K . In this case, S(K, ·) is a sum of point
masses, each located at one of the directions of the line segments whose sum is P

and with weight equal to half the length of this line segment. This fact will be used
in a reconstruction algorithm in Section 7.

A fundamental result is Minkowski’s existence theorem (see, e.g., [10], Theo-
rem A.3.2), which says that a finite Borel measure µ in Sn−1 is the surface area
measure of some convex body K in Rn, unique up to translation, if and only if µ

is not concentrated on any great sphere and∫
Sn−1

udµ(u) = o.

The treatise of Schneider [28] is an excellent general reference for all of these
topics.

Let U = {u1, . . . , uk} ⊂ Sn−1. The nodes corresponding to U are defined as
follows. The hyperplanes u⊥

i , i = 1, . . . , k, partition Rn into a finite set of poly-
hedral cones, which intersect Sn−1 in a finite set of spherically convex regions.
The nodes ±vj ∈ Sn−1, j = 1, . . . , l, are the vertices of these regions. Thus, when
n = 2, the nodes are simply the 2k unit vectors each of which is orthogonal to
some ui , i = 1, . . . , k. When n = 3, each vj is of the form (ui × ui′)/‖ui × ui′‖,
where 1 ≤ i < i′ ≤ k and ui 
= ±ui′ . Thus, for n = 3, l ≤ k(k−1)/2 and in general,
l = O(kn−1). Campi, Colesanti and Gronchi [5] proved the following result.

PROPOSITION 2.1. Let K be a convex body in Rn and let U = {u1, . . . , uk} ⊂
Sn−1 span Rn. Among all convex bodies with the same brightness function values
as K in the directions in U , there is a unique origin-symmetric convex polytope P ,
of maximal volume and with each of its facets orthogonal to one of the nodes
corresponding to U .

This implies that, for any projection body �K and any finite set of directions
U ⊂ Sn−1, there is a zonotope Z with hZ(u) = h�K(u), for all u ∈ U . Moreover,
Z can be written as a sum of line segments, each parallel to some node correspond-
ing to U .
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The following deep result was proved independently by Campi [4] (for n = 3)
and Bourgain and Lindenstrauss [1]. The latter authors state their theorem in terms
of a metric other than the Hausdorff metric, and make an additional assumption
on the distance between the projection bodies. Groemer ([15], Theorem 5.5.7)
presents the version below, and his proof yields the estimate of the constant in (4).
This involves some tedious calculations (see www.ac.wwu.edu/~gardner; no at-
tempt was made to obtain the optimal expression). In (4) and throughout the pa-
per, the “big O” notation is used in the sense of “less than a constant multiple
depending only on n.”

PROPOSITION 2.2. Let K and L be origin-symmetric convex bodies in Rn,
n ≥ 3, such that

r0B ⊂ K,L ⊂ R0B,

for some 0 < r0 < R0. If 0 < a < 2/(n(n + 4)), there is a constant c =
c(a,n, r0,R0) such that

δ(K,L) ≤ cδ2(�K,�L)a.(3)

Moreover, if 0 < a < 2/(n(n + 4)) is fixed, r0 < 1 and R0 > 1, then

c = O(r−2n−1
0 R5

0).(4)

3. Some properties of sets and sequences of unit vectors. In this section we
gather together some basic results on sets and sequences of unit vectors that will
be useful in Sections 5 and 7.

If {u1, . . . , uk} is a finite subset of Sn−1, its spread �k is defined by

�k = max
u∈Sn−1

min
1≤i≤k

‖u − ui‖.(5)

For i = 1, . . . , k, let �i be the spherical Voronoi cell

�i = {u ∈ Sn−1 :‖u − ui‖ ≤ ‖u − uj‖ for all 1 ≤ i, j ≤ k}(6)

containing ui . Then
⋃k

i=1 �i = Sn−1, and we define

ωk = max
1≤i≤k

Vn−1(�i).(7)

By the definition of spread, {u1, . . . , uk} is a �k-net in Sn−1, meaning that, for
every vector u in Sn−1, there is an i ∈ {1, . . . , k} such that u is within a distance �k

of ui . The existence of ε-nets in Sn−1 with relatively few points is provided by the
following well-known result. It can be proved by induction on n in a constructive
way; see, for example, [13], Lemma 7.1.

PROPOSITION 3.1. For each ε > 0 and n ≥ 2, there is an ε-net in Sn−1 con-
taining O(ε1−n) points.

www.ac.wwu.edu/~gardner
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Now let (ui) be an infinite sequence in Sn−1. We retain the notation �k for
the spread of the first k points in the sequence, and similarly for ωk . We need to
consider some conditions on (ui) that are stronger than denseness in Sn−1. To this
end, for u ∈ Sn−1 and 0 < t ≤ 2, let

Ct(u) = {v ∈ Sn−1 :‖u − v‖ < t}
be the open spherical cap with center u and radius t . We call (ui) evenly spread if
for all 0 < t < 2, there is a constant c = c(t) > 0 and an N = N(t) such that

|{u1, . . . , uk} ∩ Ct(u)| ≥ ck,(8)

for all u ∈ Sn−1 and k ≥ N .
The following lemma provides relations between various properties of se-

quences we need later. A discussion of how these properties relate to the well-
known concept of a uniformly distributed sequence can be found in the Appendix
of [11].

LEMMA 3.2. Consider the following properties of a sequence (ui) in Sn−1:

(i) �k = O(k−1/(n−1)).
(ii) ωk = O(k−1) and (ui) is dense in Sn−1.

(iii) (ui) is evenly spread.
(iv) (ui) is dense in Sn−1.

Then (i) ⇒ (ii) ⇒ (iii) ⇒ (iv), and there are sequences with property (i).

PROOF. Assume (i), and let k ∈ N and i ∈ {1, . . . , k}. Let �i , 1 ≤ i ≤ k, be
the Voronoi cells corresponding to the set {u1, . . . , uk} defined by (6). Note that
�i ⊂ C�k

(ui) and hence,

Vn−1(�i) ≤ Vn−1
(
C�k

(ui)
) ≤ Vn−1(Dk(ui)),

where Dk(ui) is the (n − 1)-dimensional ball in the tangent hyperplane to Sn−1

at ui , obtained by the inverse spherical projection (with center o) of C�k
(ui). If

�k <
√

2, then Dk(ui) has center ui and radius rk = tan(2 arcsin(�k/2)). There-
fore,

ωk = max
1≤i≤k

Vn−1(�i) ≤ rn−1
k κn−1 = O(�n−1

k ) = O(k−1).

Since it is clear that (i) also implies that (ui) is dense in Sn−1, (ii) holds.
Suppose that (ii) holds. Fix 0 < t < 2 and u ∈ Sn−1. Cover Sn−1 with finitely

many open caps Cj = Ct/6(vj ), 1 ≤ j ≤ m. Since (ui) is dense in Sn−1, there is an
N = N(t) ∈ N such that, for k ≥ N , any of these caps contains at least one point of
{u1, . . . , uk}. The cap Ct/3(u) contains at least one Cj , and hence a point ui0 with
1 ≤ i0 ≤ N . Note that N does not depend on u.
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Fix k ≥ N and let �i , 1 ≤ i ≤ k, be the Voronoi cells corresponding to the set
{u1, . . . , uk}. If �i ∩ intCt/3(u) 
= ∅, i 
= i0, there must be a point in Ct/3(u) closer
to ui than to ui0 . This implies ui ∈ Ct(u). Consequently,

intCt/3(u) ⊂ ⋃{�i :�i ∩ intCt/3(u) 
= ∅} ⊂ ⋃{�i :ui ∈ Ct(u)}.
Now (ii) implies that there is a c′ = c′(t) such that

Vn−1(Ct/3(u)) ≤ ∑
ui∈Ct (u)

Vn−1(�i)

≤ ωk|{i :ui ∈ Ct(u)}|
≤ c′

k
|{u1, . . . , uk} ∩ Ct(u)|.

Since the left-hand side of the previous chain of inequalities does not depend on u,
this yields (iii). That (iii) implies (iv) is clear.

To obtain a sequence with property (i), observe that, by Proposition 3.1, there is
a constant C such that, for each m ∈ N, there is a set Wm of at most C2m(n−1) unit
vectors forming a 2−m-net. Order the elements of each Wm in an arbitrary fashion,
and let (ui) be the sequence obtained by forming one sequence from these finite
sequences W1, W2 and so on in that order. Let

Nm = C
(
2n−1 + 22(n−1) + · · · + 2m(n−1)) = C2n−1

(
2m(n−1) − 1

2n−1 − 1

)
.

Then for all k ≥ Nm, the points u1, . . . , uk form a 2−m-net.
Now suppose that k is the least integer such that the points u1, . . . , uk have

spread �k , where

2−m ≤ �k < 21−m.

Then

k ≤ Nm = C2n−1
(

2m(n−1) − 1

2n−1 − 1

)
< C2n−1

(
2n−1�1−n

k − 1

2n−1 − 1

)
,

or

�k ≤
(

k(2n−1 − 1)

C22(n−1)
+ 1

2n−1

)−1/(n−1)

= O
(
k−1/(n−1)). �

Let (ui) be a sequence of vectors in Sn−1. For application in Section 7, we need
to consider properties of the “symmetrized” sequence

(u∗
i ) = (u1,−u1, u2,−u2, . . .).(9)

Let

�∗
k = max

u∈Sn−1
min

1≤i≤k
min{‖u − ui‖,‖u − (−ui)‖}(10)
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be the symmetrized spread of u1, . . . , uk . Also, let ω∗
k be the maximum Vn−1-mea-

sure of the 2k spherical Voronoi cells corresponding to the set {±u1,±u2, . . . ,

±uk}.
Following [20], page 14, we call (ui) asymptotically dense if

lim inf
k→∞

1

k
|{u1, . . . , uk} ∩ G| > 0,

for all origin-symmetric open sets G 
= ∅ in Sn−1.

LEMMA 3.3. Consider the following properties of a sequence (ui) in Sn−1:

(i) �∗
k = O(k−1/(n−1)).

(ii) ω∗
k = O(k−1) and (u∗

i ) is dense in Sn−1.
(iiia) (u∗

i ) is evenly spread.
(iiib) (ui) is asymptotically dense.

(iv) (u∗
i ) is dense in Sn−1.

Then (i) ⇒ (ii) ⇒ (iiia) ⇔ (iiib) ⇒ (iv), and there are sequences with prop-
erty (i).

PROOF. The implications (i) ⇒ (ii) ⇒ (iiia) ⇒ (iv) are direct consequences
of Lemma 3.2 and the definition of (u∗

i ). The existence statement also fol-
lows from this lemma, as any sequence with �k = O(k−1/(n−1)) satisfies �∗

k =
O(k−1/(n−1)).

That (iiia) implies (iiib) is trivial. To prove the converse, let Ct(u) be an open
cap in Sn−1 of radius t , and cover the compact set Sn−1 with open caps C1, . . . ,Cm

of radius t/2. Then Cj ⊂ Ct(u) for some j . If (ui) is asymptotically dense, we can
apply the definition of this property with G = Cj ∪ (−Cj) to conclude that there
are a constant c′ > 0 and an N ′ such that∣∣{u1, . . . , uk} ∩ (

Cj ∪ (−Cj)
)∣∣ ≥ c′k

for all k ≥ N ′ and, hence, that

|{±u1, . . . ,±uk} ∩ Ct(u)| ≥ c′k

for all k ≥ N ′. From this, it follows easily that (u∗
i ) is evenly spread. �

4. Metric entropy and convergence rates for least squares estimators. Let
G 
= ∅ be a class of measurable real-valued functions defined on a subset E of Rn.
Suppose that xi ∈ E, i = 1,2, . . . , are fixed, and let Xi , i = 1,2, . . . , be indepen-
dent random variables with mean zero and finite variance. If g0 ∈ G, we regard the
quantities

yi = g0(xi) + Xi,
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i = 1,2 . . . , as measurements of the unknown function g0. For k ∈ N, any function
ĝk ∈ G satisfying

ĝk = arg min
g∈G

k∑
i=1

(
yi − g(xi)

)2(11)

is called a least squares estimator for g0 with respect to G, based on measurements
at x1, . . . , xk . (Since ĝk depends on y1, . . . , yk , it also depends on the random vari-
ables X1, . . . ,Xk , but this is not made explicit.) If k, G and x1, . . . , xk are clear
from the context, we shall simply refer to ĝk as a least squares estimator for g0.
In the definition of ĝk , xi and yi are not needed for i > k, but later we shall take
additional measurements into account in order to examine the asymptotic behav-
ior of ĝk as k increases. In general, ĝk need not be unique and the existence of a
least squares estimator has to be assumed. In the applications we have in mind,
a least squares estimator always exists. To provide the necessary measurability for
the background theory to work, a suitable condition can be imposed on the class G.
Following [25], page 196, we call G permissible if it is indexed by a set Y that is
an analytic subset of a compact metric space, such that G = {g(·, y), y ∈ Y }, and
g(·, ·) : Rn ×Y → R is Ln ⊗B(Y )-measurable, where Ln is the class of Lebesgue
measurable sets in Rn and B(Y ) is the class of Borel subsets of Y . The metric on Y

will be important only insofar as it determines B(Y ).
Let (S, d) be a set S equipped with a pseudometric d and let ε > 0. A set U ⊂ S

is called an ε-net if each point in S is within a d-distance at most ε of some point
in U .

We can now define metric entropy, a valuable concept introduced by
Kolmogorov. Metric entropy is often also called ε-entropy, but we need to re-
serve the letter ε for a different purpose. Accordingly, we define the t-covering
number N(t, S, d) of (S, d) as the least cardinality of all t-nets. In other words,
N(t, S, d) is the least number of balls of radius t with respect to d that cover S.
Then H(t, S, d) = logN(t, S, d) is called the t-entropy of (S, d), and we can drop
the argument d when there is no possibility of confusion. This notion will mainly
be used for subsets of G. For k ∈ N, we define a pseudonorm | · |k on G by

|g|k =
(

1

k

k∑
i=1

g(xi)
2

)1/2

, g ∈ G.

Note that this pseudonorm depends on x1, . . . , xk . For ε > 0, let

Gk(ε, g0) = {g ∈ G : |g − g0|k ≤ ε}.
Then we denote by H(t,Gk(ε, g0)) the t-entropy of Gk(ε, g0) with respect to the
pseudometric generated by the pseudonorm | · |k ; again, this depends on x1, . . . , xk .
If G is a cone (i.e., G = sG for all s > 0), then

H
(
t,Gk(ε, g0)

) = H
(
st,Gk(sε, sg0)

) = H
(
st, sGk(ε, g0)

)
,(12)
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for any s > 0. This follows from the fact that the balls of radius t (with respect to
| · |k) with centers g1, . . . , gm form a minimal cover of Gk(ε, g0) if and only if the
balls of radius st with centers sg1, . . . , sgm form a minimal cover of Gk(sε, sg0).
A local entropy integral Jk(ε,G) can be defined for a > 0 and 0 < ε < 26a by

Jk(ε,G) = max
{∫ ε

ε2/(26a)
H

(
t,Gk(ε, g0)

)1/2
dt, ε

}
.(13)

Note that this integral depends on g0, a and x1, . . . , xk , although this is not explicit
in the notation.

To state the principal technical result, a little more terminology is needed. The
random variables Xi are called uniformly sub-Gaussian if there are constants
A and τ such that, for i = 1,2, . . . , we have

A2(
E

[
e|Xi |2/A2] − 1

) ≤ τ 2.(14)

Note that if Xi is a normal N(0, σ 2) random variable for i = 1,2, . . . , then this
condition is satisfied when A = τ = 2σ .

The following result is due to van de Geer [32], Theorem 9.1 (see also [31]).

PROPOSITION 4.1. Let a > 0 and let Xi , i = 1,2, . . . , be uniformly sub-
Gaussian independent random variables satisfying (14), each with mean zero. Let
G be a permissible class of real-valued functions on a subset E of Rn, let g0 ∈ G,
and let (xi) be a sequence in E. Let Jk(ε,G) be defined by (13), and suppose that
� is a function with �(ε) ≥ Jk(ε,G) for all k ∈ N and such that �(ε)/ε2 is de-
creasing for 0 < ε < 26a. Then there is a constant c = c(A, τ) such that, for any
k ∈ N and any εk > 0 with

√
kε2

k ≥ c�(εk), we have

Pr(|g0 − ĝk|k > εk) ≤ ce−kε2
k/c2 + Pr

(
1

k

k∑
i=1

X2
i > a2

)
,(15)

for any least squares estimator ĝk of g0 with respect to G based on measurements
at x1, . . . , xk .

It is crucial that the constant c depends neither on a nor on k. In Theorem 9.1
of [32], the fact that c is independent of k is not explicitly stated and requires
some explanation. In our notation, the proof of Theorem 9.1 of [32] arrives at
the inequality

√
kεk ≥ 16C�(εk), where C is a constant independent of k. The

assumptions and (13) yield

√
k ≥ 16C

�(εk)

ε2
k

≥ 16C
Jk(εk,G)

ε2
k

≥ 16C

εk

,

or
√

kεk ≥ 16C. This allows the finite sum on the last line of page 149 of [32] to be
bounded above by a geometric series whose sum depends on k only in the required
exponential form. (See the proof of Lemma 3.2 of [32] for a similar argument.)
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The following result is implicit in pages 187–188 of [32]. A proof is provided
for the convenience of the reader and because we need some details about the
constants involved.

COROLLARY 4.2. Suppose that the assumptions on the random variables Xi

and class G in Proposition 4.1 hold. For all k ∈ N, let ĝk be a least squares esti-
mator of g0 with respect to G, based on measurements at x1, . . . , xk . If there are
positive constants α, t0 and M such that

H
(
t,Gk(ε0, g0)

) ≤ M2t−α,(16)

for all k ∈ N, 0 < t ≤ t0 and ε0 = 213/2τ , then, almost surely, there are constants
C = C(A, τ,α) and N = N(A, τ,α, t0,M) such that

|g0 − ĝk|k ≤


CM2/(2+α)k−1/(2+α), if α < 2,
Ck−1/4 log k, if α = 2,
CM1/αk−1/(2α), if α > 2,

(17)

for k ≥ N .

PROOF. Let Jk(ε,G) be defined by (13) with a = √
2τ . We may suppose that

τ > 0 and therefore that a > 0. As H(t,Gk(ε, g0)) is an increasing function of ε

(with t fixed), (16) holds when ε0 is replaced by any 0 < ε ≤ 26a = ε0.
Consider first the case α < 2 and let 0 < ε < 26a. For 0 < ε < t0, we have∫ ε

ε2/(26a)
H

(
t,Gk(ε, g0)

)1/2
dt ≤ 2M

2 − α

(
ε1−α/2 −

(
ε2

26a

)1−α/2)
.

As H(t,Gk(ε, g0)) is a decreasing function of t (with ε fixed), ε ≥ t0 implies∫ ε

ε2/(26a)
H

(
t,Gk(ε, g0)

)1/2
dt

=
∫ t0

ε2/(26a)
H

(
t,Gk(ε, g0)

)1/2
dt +

∫ ε

t0

H
(
t,Gk(ε, g0)

)1/2
dt

≤ 2M

2 − α
t
1−α/2
0 + H

(
t0,Gk(ε, g0)

)1/2
(ε − t0).

Let

�(ε) =


max

{
2M

2 − α
ε1−α/2, ε

}
, if 0 < ε < t0,

max
{

2M

2 − α
t
1−α/2
0 + Mt

−α/2
0 (ε − t0), ε

}
, if ε ≥ t0.

(18)

Then �(ε) ≥ J (ε,G) and by (18), �(ε)/ε2 is a decreasing function of ε > 0.
Suppose that c > 0 and let εk = A1k

−1/(2+α). If both

A1 =
(

2Mc

2 − α

)2/(2+α)

(19)
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and

k > max
{(

c

A1

)2(2+α)/α

,

(
A1

t0

)2+α}
(20)

hold, then one can check that εk < t0 and (using this also) that
√

kε2
k ≥ c�(εk). As

noted by van de Geer [32], page 150, (14) implies that

Pr

(
1

k

k∑
i=1

X2
i > 2τ 2

)
≤ e−kτ 2/(12A2).

Thus, (15) yields

Pr
(|g0 − ĝk|k > A1k

−1/(2+α)) ≤ ce−A2
1k

α/(2+α)/c2 + e−kτ 2/(12A2),(21)

provided (19) and (20) hold. The sum over k of the right-hand side of (21) con-
verges, so by the Borel–Cantelli lemma we have, almost surely,

|g0 − ĝk|k ≤ A1k
−1/(2+α) = CM2/(2+α)k−1/(2+α),

say, for sufficiently large k. Therefore, (17) is true when α < 2.
The argument when α ≥ 2 is similar; we omit the details. If α > 2, we take

�(ε) =


max

{
2M

α − 2

(
ε2

26a

)1−α/2

, ε

}
, if 0 < ε < t0,

max
{

2M

α − 2

(
t2
0

26a

)1−α/2

+ Mt
−α/2
0 (ε − t0), ε

}
, if ε ≥ t0,

and εk = A2k
−1/2α for a suitable constant A2. If α = 2, we can take

�(ε) =
{

max
{
M

(
log(26a) − log ε

)
, ε

}
, if 0 < ε < t0,

max
{
M

(
log(26a) − log t0 + (ε − t0)/t0

)
, ε

}
, if ε ≥ t0,

and εk = A3k
−1/4 log k for a suitable constant A3. In both cases it can be checked

that εk < t0 and then that
√

kε2
k ≥ c�(εk) when k is sufficiently large. (The case

α = 2 is qualitatively different, as A3 can be chosen independent of M .) �

5. Least squares estimation of support functions. Suppose that K is an un-
known convex body in Rn, and (ui) is a sequence in Sn−1. For k ∈ N, the support
function hK of K is measured at u1, u2, . . . , uk . The measurements

yi = hK(ui) + Xi,(22)

i = 1,2, . . . , k, are noisy, the Xi ’s being independent random variables with zero
mean and finite variance. We want to find a convex body with the property
that its support function values at u1, . . . , uk best approximate the measurements
y1, . . . , yk . In order to apply the results of the previous section, we let E = Sn−1

and

G = {hL :L ∈ Kn},
the class of support functions, throughout this section.
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LEMMA 5.1. The class G is permissible.

PROOF. Referring to the above definition of the term “permissible,” the index
set Y = Kn is a subset of the family Fn of all closed subsets of Rn. The latter,
endowed with the hit-and-miss topology, is a compact metrizable space; see, for
example, [29], Satz 1.1.1. By Satz 1.3.2 of [29], Y is a Borel set in Fn, so it is an-
alytic in Fn. Although the induced topology on Y as a subset of Fn is coarser than
the topology induced by the Hausdorff metric, the respective families of Borel sets
coincide; see [29], Satz 1.3.2. The mapping (K,u) �→ hK(u) is continuous with
respect to both topologies, so the parametrization mapping is Borel measurable.

�

Fix k ∈ N and K ∈ Kn. In accordance with the notation of the previous section
[see (11)], we let (ĥK)k be a least squares estimator for hK with respect to G based
on measurements at u1, . . . , uk , so that hK now plays the role of the function g0. As
G is a closed cone in the usual Banach space of continuous functions on the sphere
[and the objective function in (11) is continuous on this space], a least squares
estimator always exists. For h :Sn−1 → R, the pseudonorm |h|k is now given by

|h|k =
(

1

k

k∑
i=1

h(ui)
2

)1/2

.(23)

The following lemma provides an upper bound for the L2 distance between
two convex bodies L and M contained in a ball SB in terms of the pseudometric
|hL − hM |k .

LEMMA 5.2. Let S > 0 and let L and M be convex bodies in Rn contained
in SB . Let {u1, . . . , uk} be a subset of Sn−1. Then

δ2(L,M) ≤ (kωk)
1/2(|hL − hM |k + 2�kS),(24)

where �k and ωk are defined by (5) and (7), respectively.

PROOF. As in Section 3, denote the Voronoi cells corresponding to
{u1, . . . , uk} by �i , 1 ≤ i ≤ k. If u ∈ �i , we have ‖u − ui‖ ≤ �k and hence,

hL(u) ≤ hL(ui) + hL(u − ui)

≤ hL(ui) + ‖u − ui‖hL

(
u − ui

‖u − ui‖
)

≤ hL(ui) + �kS.

Similarly,

hM(ui) ≤ hM(u) + hM(ui − u) ≤ hM(u) + �kS.

Therefore,

hL(u) − hM(u) ≤ hL(ui) − hM(ui) + 2�kS,
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and interchanging L and M , we obtain

|hL(u) − hM(u)| ≤ |hL(ui) − hM(ui)| + 2�kS.

Therefore,

δ2(L,M)2 =
∫
Sn−1

(
hL(u) − hM(u)

)2
du

≤
k∑

i=1

∫
�i

(|hL(ui) − hM(ui)| + 2�kS
)2

du

≤ ωk

k∑
i=1

(|hL(ui) − hM(ui)| + 2�kS
)2

≤ ωk

((
k∑

i=1

(
hL(ui) − hM(ui)

)2
)1/2

+
(

k∑
i=1

(2�kS)2

)1/2)2

= kωk(|hL − hM |k + 2�kS)2. �

We shall also need the next lemma, which under the assumption K ⊂ RB and
a mild condition on the sequence (ui) yields the radius of a ball containing L in
terms of the pseudometric |hK − hL|k .

LEMMA 5.3. Let K and L be convex bodies in Rn. Suppose that K ⊂ RB for
some R > 0, and that (ui) is an evenly spread sequence in Sn−1. Then there are
constants C0 = C0((ui)) > 0 and N0 = N0((ui)) ∈ N such that

L ⊂ (C0|hK − hL|k + 2R)B,

for all k ≥ N0.

PROOF. Fix k and choose xk ∈ L, where we may assume that ‖xk‖ > 2R since
otherwise L ⊂ 2RB . Then hL(u) ≥ xk · u for all u ∈ Sn−1. Let vk = xk/‖xk‖.
Choose t0 > 0 small enough that, for each u ∈ Sn−1 and any v,w ∈ Ct0(u), we
have v · w ≥ 1/2. (Of course, t0 does not depend on k.) If ui ∈ Ct0(vk), then

|hK(ui) − hL(ui)| ≥ xk · ui − R >
‖xk‖

2
− R > 0.

Therefore,

|hK − hL|2k ≥ 1

k

∑
ui∈Ct0 (vk)

|hK(ui) − hL(ui)|2

≥
(‖xk‖

2
− R

)2 1

k

∣∣{u1, . . . , uk} ∩ Ct0(vk)
∣∣

≥ c

(‖xk‖
2

− R

)2

,
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for some c > 0 and all k ≥ N , say, because (ui) is evenly spread. [Note that c and
N depend only on (ui).] From this, we obtain

‖xk‖ ≤ 2
(

1√
c
|hK − hL|k + R

)
,

for k ≥ N , and the result follows. �

The following result is due to Bronshtein [3]. His definition of entropy uses log2
instead of the natural logarithm, requiring an extra constant factor in the lower
bound.

PROPOSITION 5.4. Let Kn(B) denote the space of compact convex subsets
of the unit ball B in Rn, endowed with the Hausdorff metric. Then for 0 < t <

10−12/(n − 1), the t-entropy H(t,Kn(B)) of Kn(B) satisfies

κn−1 log 2

8n−1(n − 1)
t−(n−1)/2 ≤ H

(
t,Kn(B)

) ≤ (log 12)106n5/2t−(n−1)/2.(25)

Let ε and t be positive numbers and let k ∈ N. As before, let

Gk(ε, hK) = {hL ∈ G : |hK − hL|k ≤ ε},
and let

H
(
t,Gk(ε, hK)

) = H
(
t,Gk(ε, hK), | · |k)

be the t-entropy of Gk(ε, hK) with respect to the pseudometric generated by | · |k .

COROLLARY 5.5. Let (ui) be an evenly spread sequence in Sn−1 and let K

be a convex body in Rn with K ⊂ RB for some R > 0. Then there are constants
t1 = t1(n, (ui)) and C1 = C1(n, (ui)) such that

H
(
t,Gk(ε, hK)

) ≤ C1R
(n−1)/2t−(n−1)/2,(26)

for all k ∈ N, 0 < ε ≤ R and 0 < t ≤ Rt1.

PROOF. We first make the following claim: There is a constant s0 =
s0(n, (ui)) > 0 such that, for all k ∈ N and hL ∈ Gk(ε, hK), there is an L′ ∈
(R/s0)K

n(B) with hL′(ui) = hL(ui), for i = 1, . . . , k.
The claim will be proved later. Assuming it is true, we observe that if hL ∈

(s0/R)Gk(ε, hK), then there is an L′ ∈ Kn(B) such that |hL −hM |k = |hL′ −hM |k
for any compact convex set M in Rn. It follows from this and (12) with s = s0/R

that

H
(
t,Gk(ε, hK)

) = H
(
s0t/R, (s0/R)Gk(ε, hK)

)
≤ H

(
s0t/R, {hL′ :L′ ∈ Kn(B)}, | · |k).
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Since

|hL − hM |k ≤ ‖hL − hM‖∞ = δ(L,M),

for any two compact convex subsets L and M in Rn, we have

H
(
t,Gk(ε, hK)

) ≤ H
(
s0t/R, {hL′ :L′ ∈ Kn(B)}, | · |k) ≤ H

(
s0t/R,Kn(B)

)
.

Now (26) is an immediate consequence of (25) if we put t1 = 2 ·10−12/((n−1)s0)

and C1 = (log 12)106n5/2(2s0)
(n−1)/2.

It remains to prove the claim. Let hL ∈ Gk(ε, hK). By Lemma 5.3, there are
constants C0 = C0((ui)) and N0 = N0((ui)) such that if k ≥ N0, then

L ⊂ (C0ε + 2R)B ⊂ (C0 + 2)RB.(27)

For such k, we let L′ = L. Now let k ≤ N0. Since hL ∈ Gk(ε, hK), we have

|hL(ui)|2 ≤ k|hL|2k ≤ N0(ε + |hK |k)2 ≤ 4N0R
2,(28)

for i = 1, . . . , k. Let I ⊂ {1, . . . ,N0} be nonempty, and consider the continuous
function fI on Sn−1 defined by

fI (u) = ∑
i∈I

|u · ui |.

For u in the span of {ui : i ∈ I }, fI (u) > 0. Therefore, we can choose a0 =
a0(n, (ui)) > 0 such that, for any such I and u in the span of {ui : i ∈ I },
fI (u) ≥ a0.

Suppose that {u1, . . . , uk} spans Rn. The polyhedron P = ⋂k
i=1{x ∈ Rn :

x ·ui ≤ hL(ui)} satisfies hP (ui) = hL(ui) for i = 1, . . . , k, but may be unbounded.
Let L′ = conv{x1, . . . , xm}, where x1, . . . , xm are the vertices of P . Then L′ is
bounded and satisfies hL′(ui) = hL(ui) for i = 1, . . . , k. Any vertex xj of P is an
intersection of n hyperplanes with linearly independent normals ui1, . . . , uin , say.
Using (28) with L replaced by L′, we obtain, for any xj 
= o,

‖xj‖a0 ≤ ‖xj‖
n∑

p=1

∣∣∣∣ xj

‖xj‖ · uip

∣∣∣∣ =
n∑

p=1

∣∣xj · uip

∣∣ ≤
n∑

p=1

hL′
(
uip

) ≤ 2n
√

N0R.

Thus, L′ ⊂ (2n
√

N0/a0)RB .
If the span of {u1, . . . , uk} is a proper subspace S of Rn, the above argument can

be applied to L|S regarded as a compact convex subset of S to obtain the same in-
clusion. In view of (27), which holds for all k ≥ N0 with L replaced by L′, we con-
clude that L′ ⊂ (R/s0)B for all k ∈ N, where s0 = min{1/(C0 + 2), a0/(2n

√
N0 )}

depends only on n and (ui). �

THEOREM 5.6. Let (ui) be an evenly spread sequence in Sn−1 and let Xi ,
i = 1,2, . . . , be uniformly sub-Gaussian independent random variables satisfy-
ing (14), each with mean zero. Let K be a convex body in Rn with K ⊂ RB , where
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R ≥ 213/2τ , and for k ∈ N, let (ĥK)k be a least squares estimator of hK with re-
spect to G, based on measurements at u1, . . . , uk . Then, almost surely, there are
constants C2 = C2(A, τ, n) and N2 = N2(A, τ, n,R, (ui)) such that

|hK − (ĥK)k|k ≤


C2R
(n−1)/(n+3)k−2/(n+3), if n = 2,3,4,

C2k
−1/4 logk, if n = 5,

C2R
1/2k−1/(n−1), if n ≥ 6,

(29)

for k ≥ N2.

PROOF. Let ε0 = 213/2τ . Since 0 < ε0 ≤ R, Corollary 5.5 yields

H
(
t,Gk(ε0, hK)

) ≤ C1R
(n−1)/2t−(n−1)/2,(30)

for k ∈ N and 0 < t ≤ Rt1. By (30), we may apply Corollary 4.2, with
α = (n − 1)/2, t0 = Rt1 and

M2 = C1R
(n−1)/2,

to conclude that (17) holds, almost surely, with M as above and C = C(A, τ,α) =
C2(A, τ, n) and N = N(A, τ,α, t0,M) = N2(A, τ, n,R, (ui)). �

COROLLARY 5.7. Let (ui) be an evenly spread sequence in Sn−1 and let Xi ,
i = 1,2, . . . , be independent N(0, σ 2) random variables. Let K be a convex body
in Rn with K ⊂ RB , where R ≥ σ 15/2, and for k ∈ N, let (ĥK)k be a least squares
estimator of hK with respect to G, based on measurements at u1, . . . , uk . Then,
almost surely, there are constants C3 = C3(n) and N3 = N3(σ,n,R, (ui)) such
that

|hK − (ĥK)k|k ≤


C3σ
4/(n+3)R(n−1)/(n+3)k−2/(n+3), if n = 2,3,4,

C3σk−1/4 logk, if n = 5,
C3σ

1/2R1/2k−1/(n−1), if n ≥ 6,

(31)

for k ≥ N3.

PROOF. As was noted earlier, we may take A = τ = 2σ in Theorem 5.6 and
conclude that if K ⊂ RB and R ≥ σ 15/2, then, almost surely, the least squares
estimators (ĥK)k for hK with respect to G satisfy (29), where the dependence of
C2 and N2 on A and τ is replaced by dependence on σ . Instead we now use scaled
measurements

λyi = λhK(ui) + λXi,

with some λ > 0, to estimate the support function hλK = λhK of the scaled con-
vex body λK . Then λ(ĥK)k is a least squares estimator for hλK . Also, λXi ,
i = 1,2, . . . , are independent normal N(0, (λσ )2) random variables. Replacing
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K , R and σ by λK , λR and λσ , respectively, we conclude that, almost surely,
there are constants c0 = c0(λσ,n) and n0 = n0(λσ,n,λR, (ui)) such that

|λhK − λ(ĥK)k|k ≤ c0(λR)bnfn(k),(32)

for k ≥ n0, where Rbn and fn(k) are the functions of R and k, respectively, in (29).
When λ = 1/σ , (32) becomes

|hK − (ĥK)k|k ≤ C3σ
1−bnRbnfn(k),(33)

where C3 = C3(n) and k ≥ N3 = N3(σ,n,R, (ui)). Substituting bn and fn

from (29) into (33), we arrive at (31). �

6. Convergence of the Prince–Willsky algorithm. Let u1, . . . , uk be fixed
vectors in Sn−1 whose positive hull is Rn. We say that the nonnegative real num-
bers h1, . . . , hk are consistent if there is a compact convex set L in Rn such that
hL(ui) = hi , i = 1, . . . , k. If h1, . . . , hk are consistent, there will be many such
sets L; let P(h1, . . . , hk) denote the one that is the polytope defined by

P(h1, . . . , hk) =
k⋂

i=1

{x ∈ Rn :x · ui ≤ hi}.(34)

For n = 2 and vectors u1, . . . , uk equally spaced in S1, the following algorithm
was proposed and implemented by Prince and Willsky [27].

ALGORITHM NOISYSUPPORTLSQ.
Input: Natural numbers n ≥ 2 and k ≥ n + 1; vectors ui ∈ Sn−1, i = 1, . . . , k,

whose positive hull is Rn; noisy support function measurements

yi = hK(ui) + Xi,

i = 1, . . . , k, of an unknown convex body K in Rn, where the Xi’s are independent
N(0, σ 2) random variables.

Task: Construct a convex polytope P̂k in Rn that approximates K , with facet
outer normals belonging to the set {ui : i = 1, . . . , k}.

Action: Solve the following constrained linear least squares problem (LLS1):

min
h1,...,hk

k∑
i=1

(yi − hi)
2,(35)

subject to h1, . . . , hk are consistent.(36)

Let ĥ1, . . . , ĥk be a solution of (LLS1) and let P̂k = P(ĥ1, . . . , ĥk). �

Naturally any implementation of Algorithm NoisySupportLSQ involves mak-
ing explicit the constraint (36). Although we do not need to address this prob-
lem for our purposes, a few remarks are appropriate. For n = 2, this was done
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by Prince and Willsky [27] for vectors u1, . . . , uk equally spaced in S1, and by
Lele, Kulkarni and Willsky [21] for arbitrary vectors u1, . . . , uk , by means of an
inequality constraint of the form Ah ≤ 0, where h = (h1, . . . , hk) and A is a cer-
tain matrix. For general n, this is more difficult and was studied by Karl, Kulkarni,
Verghese and Willsky [19]. (In these papers there is no mention of Rademacher’s
condition for consistency when n = 2, or of Firey’s extension (see [28], page 47) of
Rademacher’s condition to n ≥ 2.) The authors of [19] did not implement the algo-
rithm for n ≥ 3; an implementation for n = 3 and certain special sets of directions
was carried out by Gregor and Rannou [14].

If the positive hull of {u1, . . . , uk} is not Rn, then (34) could still be consid-
ered as output of the Algorithm NoisySupportLSQ, if consistency of h1, . . . , hk

is extended to closed convex sets which may be unbounded. We choose not to
do this, however. Indeed, if (ui) is a dense sequence of vectors in Sn−1, then,
for sufficiently large k, the positive hull of u1, . . . , uk is Rn and in this case,
Algorithm NoisySupportLSQ produces a polytope P̂k as output. We now establish
conditions under which P̂k converges, almost surely, to K as k → ∞. Of course,
the denseness of (ui) is a necessary condition for such convergence.

The following theorem establishes the strong consistency of Algorithm Noisy-
SupportLSQ when (ui) is evenly spread.

THEOREM 6.1. Let K be a convex body in Rn and let (ui) be an evenly spread
sequence in Sn−1. If P̂k is an output from Algorithm NoisySupportLSQ as stated
above, then, almost surely,

lim
k→∞ δ(K, P̂k) = 0.

PROOF. Theorem 5.6 and (ĥK)k = h
P̂k

imply that, almost surely, we have

lim
k→∞

∣∣hK − h
P̂k

∣∣
k = 0.(37)

Fix a realization for which (37) holds.
By Lemma 5.3, there is an S > 0 such that P̂k ⊂ SB for all k. Accord-

ing to Blaschke’s selection theorem, the set {P̂1, P̂2, . . .} is relatively compact
in the space of convex bodies in Rn with the Hausdorff metric. To prove
limk→∞ P̂k = K , it is therefore enough to show that K is the only accumulation
point of (P̂k).

Let K̃ be an arbitrary accumulation point of this sequence. Then a subsequence
of (h

P̂k
) converges uniformly to h

K̃
. This and (37) can be applied to the right-hand

side of

|hK − h
K̃

|k ≤ ∣∣hK − h
P̂k

∣∣
k + ∣∣h

P̂k
− h

K̃

∣∣
k

to show that a subsequence (|hK − h
K̃

|k′) converges to 0. For each k′ in this sub-
sequence,

|hK − h
K̃

|k′ = ‖hK − h
K̃

‖L2(µk′ )
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is the L2 norm of hK −h
K̃

with respect to the probability measure µk′ that assigns
a mass 1/k′ to each of the points u1, . . . , uk′ . As the set of probability measures
in Sn−1 is weakly compact, there is a subsequence (µk′′) of (µk′) that converges
weakly to a probability measure µ. Using the continuity of support functions, we
conclude that

0 = lim
k→∞‖hK − h

K̃
‖L2(µk′′ ) = ‖hK − h

K̃
‖L2(µ).

We claim that, since (ui) is evenly spread, the support of µ is Sn−1; this will
then imply hK = h

K̃
and, hence, K = K̃ . To prove the claim, suppose that G is a

nonempty open set in Sn−1 such that µ(G) = 0. Choose an open cap Ct(u) ⊂ G,
t > 0, and a nonnegative continuous real-valued function f on Sn−1 with support
contained in G and such that f ≥ 1 on Ct(u). Then the fact that (ui) is evenly
spread implies that

0 < lim inf
k→∞

∫
Sn−1

1Ct (u)(v) dµk(v) ≤ lim
k→∞

∫
Sn−1

f (v) dµk(v)

=
∫
Sn−1

f (v) dµ(v) ≤ ‖f ‖∞µ(G) = 0,

where 1Ct (u) denotes the characteristic function of Ct(u). This contradiction com-
pletes the proof. �

The conclusion of the following theorem is stronger than that of Theorem 6.1
since it provides convergence rates. However, the hypothesis on the sequence (ui)

is also stronger; see Lemma 3.2, which also guarantees the existence of suitable
sequences (ui).

THEOREM 6.2. Let σ > 0 and let K be a convex body in Rn such that K ⊂
RB for some R ≥ 215/2σ . Let (ui) be a sequence in Sn−1 with �k = O(k−1/(n−1)).
If P̂k is an output from Algorithm NoisySupportLSQ as stated above, then, almost
surely, there are constants C4 = C4(n, (ui)) and N4 = N4(σ,n,R, (ui)) such that

δ2(K, P̂k) ≤


C4σ
4/(n+3)R(n−1)/(n+3)k−2/(n+3), if n = 2,3,4,

C4σk−1/4 log k, if n = 5,
C4

(
R + (σR)1/2)

k−1/(n−1), if n ≥ 6,
(38)

for k ≥ N4.
Also, there are constants C5 = C5(n, (ui)) and N5 = N5(σ,n,R, (ui)) such that

δ(K, P̂k) ≤


C5σ

8/((n+1)(n+3))R(n−1)(n+5)/((n+1)(n+3))

× k−4/((n+1)(n+3)), if n = 2,3,4,
C5σ

1/3 R2/3k−1/12(log k)1/3, if n = 5,
C5

(
R + σ 1/(n+1)Rn/(n+1)

)
k−2/(n2−1), if n ≥ 6,

(39)

for k ≥ N5.
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PROOF. By Lemma 5.3, we can apply Lemma 5.2 with L = K , M = P̂k and
S = C0|hK − h

P̂k
|k + 2R to obtain

δ2(K, P̂k) ≤ (kωk)
1/2(

4�kR + (2�kC0 + 1)
∣∣hK − h

P̂k

∣∣
k

)
,(40)

for all k ≥ N0. By Lemma 3.2, kωk = O(1) and we also have (ĥK)k = h
P̂k

. The

various estimates for δ2(K, P̂k) now follow from the corresponding estimates for
|hK − (ĥK)k|k in Corollary 5.7.

To obtain the estimates for δ(K, P̂k), we combine those just found and the rela-
tion (1) that yields

δ(K, P̂k) ≤ cS(n−1)/(n+1)δ2(K, P̂k)
2/(n+1),

where S = C0|hK − h
P̂k

|k + 2R, for all k ≥ N0. �

7. Reconstruction from brightness function measurements. Suppose that
K is an unknown origin-symmetric convex body in Rn, and (ui) is a sequence
of directions in Sn−1. For k ∈ N, the brightness function bK of K is measured at
u1, u2, . . . , uk . The measurements

yi = bK(ui) + Xi,(41)

i = 1,2, . . . , k, are noisy, the Xi’s being independent random variables with zero
mean and finite variance. We want to find an origin-symmetric convex body with
the property that its brightness function values at u1, . . . , uk best approximate the
measurements y1, . . . , yk .

The following algorithm was proposed by Gardner and Milanfar [12]. Since it is
convenient for us to describe it in somewhat different language, we briefly explain
how it works in the case of exact measurements, a situation analyzed in detail
by Gardner and Milanfar [13]. The algorithm proceeds in two phases, motivated
by the connection between zonoids, projection bodies and surface area measures
outlined in Section 2. In the first phase, a constrained least squares problem is
solved to find a zonotope Z with hZ(ui) = bK(ui), i = 1, . . . , k. This zonotope
is the projection body of a polytope whose surface area measure can easily be
calculated from Z. The second phase reconstructs the polytope from this known
surface area measure.

ALGORITHM NOISYBRIGHTLSQ.
Input: Natural numbers n ≥ 2 and k; vectors ui ∈ Sn−1, i = 1, . . . , k, that

span Rn; noisy brightness function measurements

yi = bK(ui) + Xi,

i = 1, . . . , k, of an unknown origin-symmetric convex body K in Rn, where the
Xi’s are independent normal N(0, σ 2) random variables.
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Task: Construct a convex polytope Q̂k in Rn that approximates K .
Action:
Phase I: Find a zonotope Ẑk ∈ Zn that solves the following least squares prob-

lem:

min
Z∈Zn

k∑
i=1

(
yi − hZ(ui)

)2
.(42)

Calculate the (finitely supported) surface area measure S(Q̂k, ·) of the origin-
symmetric polytope Q̂k satisfying

Ẑk = �Q̂k.(43)

Phase II: Reconstruct Q̂k from S(Q̂k, ·) (or directly from Ẑk , if possible). �

It was observed by Gardner and Milanfar [13] that the remark after Proposi-
tion 2.1 can be used in Phase I; this shows that a zonotope Ẑk solving (42) exists.
Moreover, as Ẑk can be assumed to be a sum of line segments, each parallel to
a node corresponding to U = {u1, . . . , uk}, only the length of these line segments
has to be determined. [Note, however, that this restriction on the direction of the
line segments is not required in (42).] This turns (42) into a finite-dimensional
quadratic program which can be solved using standard software. When n = 2,
Phase II is simple (see [13], page 284, but note also the statistically improved
method proposed by Poonawala, Milanfar and Gardner [26]). For n ≥ 3, Phase II
is highly nontrivial, but can be performed by means of the previously known algo-
rithm MinkData (see [13] for references).

When the brightness function measurements are exact, it was proved by Gardner
and Milanfar ([13], Theorem 6.1) that if (ui) is dense in Sn−1, then the outputs Q̂k

[corresponding to the first k directions in (ui)] converge to K , as k → ∞. For a
convergence proof that applies to noisy measurements, we can apply our results
from Section 5. We begin with a suitable form of Lemma 5.3. Recall definition (9)
of the symmetrized sequence (u∗

i ).

LEMMA 7.1. Let K and L be origin-symmetric convex bodies in Rn. Sup-
pose that K ⊂ RB for some R > 0, and that (ui) is a sequence in Sn−1 such
that (u∗

i ) is evenly spread. Then there are constants C∗
0 = C∗

0 ((ui)) > 0 and
N∗

0 = N∗
0 ((ui)) ∈ N such that

L ⊂ (C∗
0 |hK − hL|k + 2R)B,

for all k ≥ N∗
0 .

PROOF. This follows easily from Lemma 5.3, if (ui) and k are replaced
by (u∗

i ) and 2k, respectively, and

1

2k

2k∑
i=1

(
hK(u∗

i ) − hL(u∗
i )

)2 = |hK − hL|2k
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is taken into account. �

The next theorem gives the strong consistency of Algorithm NoisyBrightLSQ
when (u∗

i ) is evenly spread.

THEOREM 7.2. Let K be a convex body in Rn and let (ui) be a sequence in
Sn−1 such that (u∗

i ) is evenly spread. If Q̂k is an output from Algorithm Noisy-
BrightLSQ as stated above, then, almost surely,

lim
k→∞ δ(K, Q̂k) = 0.(44)

PROOF. Choose 0 < r < R such that rB ⊂ K ⊂ RB . Then �(rB) ⊂ �K ⊂
�(RB), so

sB ⊂ �K ⊂ tB,(45)

where s = κn−1r
n−1 and t = κn−1R

n−1. Theorem 5.6 and (ĥ�K)k = h
Ẑk

imply
that, almost surely, we have

lim
k→∞

∣∣h�K − h
Ẑk

∣∣
k = 0.(46)

Fix a realization for which (46) holds.
By (45), (46) and Lemma 7.1 with K , L and R replaced by �K , Ẑk and

κn−1R
n−1, respectively, there is an S > 0 such that Ẑk ⊂ SB holds for all k. We

can now apply Blaschke’s selection theorem and the argument used in the proof of
Theorem 6.1 to conclude that

lim
k→∞ δ(�K, Ẑk) = 0,(47)

as (u∗
i ) is evenly spread in Sn−1.

When n = 2, it is easy to see that �K and �Q̂k are rotations about the origin
by π/2 of 2K and 2Q̂k , respectively. (See, e.g., [10], Theorem 4.1.4.) Therefore,
(44) follows immediately from (47).

Suppose that n ≥ 3. By (45) and (47), we have

s

2
B ⊂ Ẑk = �Q̂k ⊂ 3

2
tB,(48)

for sufficiently large k. (Note that the fact that Ẑk is n-dimensional for sufficiently
large k guarantees the existence of Q̂k .) Exactly the same argument as in the proof
of Lemma 4.2 of [13] [beginning with formula (16) in that paper] leads from (48)
to

r0B ⊂ Q̂k ⊂ R0B,(49)
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for sufficiently large k, where

R0 = 3nκn

κn−1

(
3

2

)1/(n−1) Rn

rn−1 and r0 = κn−1r
n−1

2nRn−2
0

.(50)

Since rB ⊂ K ⊂ RB implies r0B ⊂ K ⊂ R0B , we can apply (47) and Proposi-
tion 2.2 with L = Q̂k to obtain (44). �

The results from Section 5 also give rates of convergence. However, we are able
to do better, at least for 3 ≤ n ≤ 5, by replacing the class of regression functions
by the smaller family

G̃ = {hZ : Z ∈ Zn}.
Note that this class is permissible, since it is easy to check that Zn is a Borel set
in Kn.

In the plane, the class Z2(B) of origin-symmetric zonoids contained in B is
just the class of origin-symmetric convex bodies contained in B . Using this fact,
an appropriate modification of the proof of [3], Theorem 4, of the lower bound
in (25) can be made that shows there is a constant c > 0 such that

H
(
t,Z2(B)

) ≥ ct−1/2,(51)

for sufficiently small t > 0. It follows that the exact entropy exponents for Z2(B)

and K2(B) are the same, namely, −1/2. For n ≥ 3, however, the following theo-
rem represents a dramatic improvement.

THEOREM 7.3. Let Zn(B) denote the space of origin-symmetric zonoids con-
tained in the unit ball B in Rn, endowed with the Hausdorff metric. If n ≥ 3, then
for all 0 < t < 1/2 and any η > 0,

H
(
t,Zn(B)

) = O
(
t−2(n−1)/(n+2)−η)

.(52)

PROOF. Let t > 0. Suppose that K is a zonoid in Zn(B). Clearly, there are an
N = N(n, t) ∈ N, depending only on n and t , and a zonotope Z such that

K ⊂ Z ⊂ (1 + t/2)K,(53)

where Z = ∑N
i=1 a[−vi, vi], for some 0 < a < 1 and vi ∈ Sn−1, i = 1, . . . ,N .

Let S be a t/(4N)-net in [0,1] and let U be a t/(4N)-net in Sn−1. Let s be the
closest point in S to a, let ui be the closest point in U to vi , i = 1, . . . ,N , and let

Z′ =
N∑

i=1

s[−ui, ui].(54)
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For each i = 1, . . . ,N , Li = a[−vi, vi] and Mi = s[−ui, ui] are origin-symmetric
line segments whose Hausdorff distance apart is bounded by the distance between
the points avi and sui . Using this, we obtain

δ(Z,Z′) = ‖hZ − hZ′‖∞ ≤
N∑

i=1

∥∥hLi
− hMi

∥∥∞ ≤
N∑

i=1

‖avi − sui‖

≤
N∑

i=1

(‖avi − aui‖ + ‖aui − sui‖) ≤
N∑

i=1

(
t

4N
+ t

4N

)
= t

2
.

From this and (53), we obtain δ(K,Z′) ≤ t .
By Proposition 3.1, we can choose S and U so that |S| = O(N/t) and |U | =

O((N/t)n−1). With this choice, the number of zonotopes of the form (54) is
O((N/t)nN). Therefore, the t-entropy of Zn(B) is

H
(
t,Zn(B)

) = O

(
N log

(
N

t

))
.(55)

Bourgain and Lindenstrauss [2] proved that, for 0 < t < 1/2, one can take

N = N(3, t) = O

(
t−4/5

(
log

1

t

)2/5)
(56)

when n = 3 and

N = N(4, t) = O

(
t−1

(
log

1

t

)3/2)
(57)

when n = 4. They also obtained a good bound for n ≥ 5, but this was improved by
Matoušek [24], who obtained

N = N(n, t) = O
(
t−2(n−1)/(n+2)),(58)

for n ≥ 5. Substituting (56), (57) and (58) into (55), we obtain (52). �

Let ε and t be positive numbers and let k ∈ N and Z ∈ Zn be given. In accor-
dance with earlier notation, let

G̃k(ε, hZ) = {hL ∈ G̃ : |hZ − hL|k ≤ ε},
and let H(t, G̃k(ε, hZ)) = H(t, G̃k(ε, hZ), | · |k) be the t-entropy of G̃k(ε, hZ) with
respect to the pseudometric generated by | · |k .

COROLLARY 7.4. Let (ui) be a sequence in Sn−1 such that (u∗
i ) is evenly

spread and let Z be an origin-symmetric zonoid in Rn with Z ⊂ RB for some
R > 0. If n ≥ 3, then for any η > 0, there are constants t6 = t6(n, (ui), η) and
C6 = C6(n, (ui), η) such that

H
(
t, G̃k(ε, hZ)

) ≤ C6R
2(n−1)/(n+2)+η t−2(n−1)/(n+2)−η,(59)

for all k ∈ N, 0 < ε ≤ R and 0 < t ≤ Rt6.
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PROOF. This follows from Theorem 7.3, exactly as Corollary 5.5 follows from
Proposition 5.4. �

Lemma 3.3 guarantees the existence of sequences satisfying the hypothesis of
the next theorem.

THEOREM 7.5. Let σ > 0 and let K be an origin-symmetric convex body
in Rn such that K ⊂ RB , where κn−1R

n−1 ≥ 215/2σ . Let (ui) be a sequence of di-
rections in Sn−1 with �∗

k = O(k−1/(n−1)), and suppose that Ẑk is a corresponding
solution of (42). If n = 2, then, almost surely, there are constants C7 = C7((ui))

and N7 = N7(σ,R, (ui)) such that

δ2(�K, Ẑk) ≤ C7σ
4/5R1/5k−2/5,(60)

for k ≥ N7. If n = 3 or 4, there is a constant γ0 = γ0(n) > 0 such that if 0 <

γ < γ0, then, almost surely, there are constants C8 = C8(n, (ui), γ ) and N8 =
N8(σ,n,R, (ui), γ ) such that

δ2(�K, Ẑk) ≤ C8σ
(n+2)/(2n+1)−γ R(n−1)2/(2n+1)+γ k−(n+2)/(4n+2)+γ ,(61)

for k ≥ N8.
Finally, if n ≥ 5, there are constants C9 = C9(n, (ui)) and N9 = N9(σ,n,R,

(ui)) such that

δ2(�K, Ẑk) ≤ C9R
n−1k−1/(n−1),(62)

for k ≥ N9.

PROOF. Let ε0 = 215/2σ and η > 0. As K ⊂ RB , we have �K ⊂ κn−1R
n−1B .

Since 0 < ε0 ≤ κn−1R
n−1, Corollary 5.5 (for n = 2, using G̃ ⊂ G) and Corol-

lary 7.4 (for n ≥ 3) with Z and R replaced by �K and κn−1R
n−1, respectively,

yield

H
(
t, G̃k(ε, h�K)

) ≤ C̃6R
(n−1)αt−α,(63)

for all k ∈ N and 0 < t ≤ Rt6, where

α =
{

1/2, if n = 2,
2(n − 1)/(n + 2) + η, if n ≥ 3.

(64)

If η < 6/(n + 2), then α < 2, so applying Corollary 4.2 with this α, t0 = Rt6,
M2 = C̃6R

(n−1)α and G replaced by G̃, we conclude that, almost surely, there are
constants c0 = c0(σ,n, η) and n0 = n0(σ,n,R, (ui), η) such that∣∣h�K − h

Ẑk

∣∣
k ≤ c0R

(n−1)α/(2+α)k−1/(2+α),(65)

for k ≥ n0.
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The dependence on σ is dealt with by the device used in proving Corollary 5.7.
By using scaled measurements,

λyi = λbK(ui) + λXi = λh�K(ui) + λXi = h�(λ1/(n−1)K)(ui) + λXi,

replacing K , R and σ by λ1/(n−1)K , λ1/(n−1)R and λσ , respectively, and then
setting λ = 1/σ , we obtain from (65) the inequality∣∣h�K − h

Ẑk

∣∣
k ≤ c1σ

2/(2+α) R(n−1)α/(2+α)k−1/(2+α),(66)

which holds, almost surely, for some c1 = c1(n, η) and k ≥ n0.
By Lemma 3.3, we may apply Lemma 7.1, with K , L and R replaced by �K ,

Ẑk and κn−1R
n−1, respectively, to obtain �K, Ẑk ⊂ SB for all k ≥ N∗

0 , where

S = C∗
0
∣∣h�K − h

Ẑk

∣∣
k + 2κn−1R

n−1.(67)

In Lemma 5.2 we make similar substitutions and replace the set {u1, . . . , uk} by
{u∗

1, . . . , u
∗
2k}, to conclude that

δ2(�K, Ẑk) ≤ (2kω∗
k )

1/2(∣∣h�K − h
Ẑk

∣∣
k + 2�∗

kS
)
,

for all k ≥ N∗
0 . This, (66) and the fact that by Lemma 3.3 we have kω∗

k = O(1)

imply that there are constants C′ = C′(n, (ui), η) > 0 and N ′ = N ′(σ,n,R,

(ui), η) > 0 such that

δ2(�K, Ẑk) ≤ C′(σ 2/(2+α) R(n−1)α/(2+α)k−1/(2+α) + Rn−1k−1/(n−1))(68)

for all k ≥ N ′. For n ≥ 5 and large k, the second term dominates and (62) follows.
For n ≤ 4 and large k, the first term dominates; then (64) and (68) yield (60) for
n = 2 and (61) for n = 3 and 4. �

The next theorem gives rates of convergence for Algorithm NoisyBrightLSQ
in terms of the Hausdorff metric. For n ≥ 3, we omit the dependence on R be-
cause this is complicated by the use of Proposition 2.2; as we mentioned above, no
particular effort was made to obtain optimal results in the estimate (4).

THEOREM 7.6. Let σ > 0 and let K be a convex body in Rn such that
K ⊂ RB , where κn−1R

n−1 ≥ 215/2σ . Let (ui) be a sequence of directions in Sn−1

with �∗
k = O(k−1/(n−1)), and suppose that Q̂k is an output of Algorithm Noisy-

BrightLSQ as stated above. If n = 2, then, almost surely, there are constants
C10 = C10(σ, (ui)) and N10 = N10(σ,R, (ui)) such that

δ(K, Q̂k) ≤ C10R
7/15k−4/15,(69)

for k ≥ N10.
If n ≥ 3, suppose, in addition, that rB ⊂ K for some 0 < r < R. For

n = 3 or 4, there is a constant γ1 = γ1(n) > 0 such that if 0 < γ < γ1,
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then, almost surely, there are constants C11 = C11(σ,n, r,R, (ui), γ ) and N11 =
N11(σ,n, r,R, (ui), γ ) such that

δ(K, Q̂k) ≤ C11k
−(n+2)/(n(n+4)(2n+1))+γ ,(70)

for k ≥ N11.
If n ≥ 5 and γ > 0, then, almost surely, there are constants C12 = C12(σ,n, r,R,

(ui), γ ) and N12 = N12(σ,n, r,R, (ui), γ ) such that

δ(K, Q̂k) ≤ C12k
−2/((n−1)n(n+4))+γ ,(71)

for k ≥ N12.

PROOF. Suppose that n = 2. Then �K and �Q̂k are rotations about the origin
by π/2 of 2K and 2Q̂k , respectively. Then (69) follows directly from (60) and (1).

Now suppose that n ≥ 3. We have sB ⊂ �K ⊂ tB , where s = κn−1r
n−1 and

t = κn−1R
n−1. Note that (61) (for n = 3 or 4), (62) (for n ≥ 5) and (1) imply that,

almost surely, there is a constant N13 = N13(σ,n, r,R, (ui)) such that (48) holds
for all k ≥ N13. As in the proof of Theorem 7.2, we can conclude that

r0B ⊂ K,Q̂k ⊂ R0B,(72)

for k ≥ N13, where r0 and R0 are given by (50). The desired results, (70) for
n = 3 or 4 and (71) for n ≥ 5, now follow from Proposition 2.2 (with L = Q̂k) and
Theorem 7.5. �

The use of Proposition 2.2 in the previous theorem introduces a factor that wors-
ens the convergence rates considerably. For example, when n = 3, we obtain a
convergence rate of approximately k−1/30!

8. Monte Carlo simulations. The theory of empirical processes that under-
lies our theoretical results suggests that the rates of convergence obtained in Corol-
lary 5.7, for support function estimation with respect to the pseudonorm | · |k , are
suboptimal for n ≥ 5 (cf. page 162 of [32]). However, for n ≤ 4, we expect them to
be optimal, and this should carry over to the (identical) rates for Algorithm Noisy-
SupportLSQ with respect to the L2 metric, given in Theorem 6.2, as well as to the
rates obtained in connection with Algorithm BrightLSQ, given in Theorem 7.5. On
the other hand, we cannot expect the rates given in Theorems 6.2 and 7.6 involving
the Hausdorff metric to be optimal, in view of the use of (1) (and, in the case of
Theorem 7.6, the use of Proposition 2.2).

Extensive Monte Carlo simulations were run. The simulations are restricted to
the case n = 2, since there does not appear to be a fully satisfactory implemen-
tation of Algorithm NoisySupportLSQ in higher dimensions (see the remarks in
Section 6) and our present implementation of Algorithm NoisyBrightLSQ is too
slow to allow enough iterations (we hope to improve this in the near future). In
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each simulation, a polygon was reconstructed 1000 times from noisy measure-
ments of its support function or brightness function, using our implementations of
Algorithm NoisySupportLSQ or Algorithm NoisyBrightLSQ, respectively. We de-
veloped the computer programs with the help of Chris Eastman, Greg Richardson,
Thomas Riehle and Chris Street (work done as Western Washington University
undergraduates) and Amyn Poonawala (at UC Santa Cruz).

Before describing the results of the simulations, we need to clarify the role of R

and the assumption in the above theorems about its relation to the noise level σ .
For example, the inequality R ≥ 215/2σ is often assumed in order to prove that
d(K, P̂k) ≤ CσaRbfn(k), where d is the pseudometric | · |k , the L2 metric or the
Hausdorff metric. To test the dependence on k or on σ over any fixed range σ0 ≤
σ ≤ σ1, we can obviously choose R large enough so that K ⊂ RB and R ≥ 215/2σ1
is satisfied. We claim that the condition R ≥ 215/2σ also does not play any essential
role in testing the dependence on R, and that we can view R as a scaling factor
of K . To see this, suppose K , σ and a range 0 < λ0 ≤ λ ≤ λ1 of scaling factors
are given. Choose R0 large enough so that K ⊂ R0B and λ0R0 ≥ 215/2σ . Then
λK ⊂ (λR0)B and λR0 ≥ 215/2σ for λ ≥ λ0. Replacing K and R in our theorems
by λK and λ0R0, respectively, we obtain

d
(
λK, P̂ (λ)k

) ≤ Cσa(λR0)
bfn(k) = CσaRb

0λbfn(k) = C′λbfn(k),

where P̂ (λ)k is the output polytope for input λK and where C′ does not depend
on λ. Thus, the exponent for λ is the same as that for R above, proving the claim.

Two input polygons were used, the regular 11-gon and irregular 9-gon displayed
in Figure 1. Some results for the regular 11-gon are shown in Figure 2. Each
graph shows the results from 1000 iterations of Algorithm NoisySupportLSQ. The

FIG. 1. A regular 11-gon and irregular 9-gon.
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FIG. 2. Error against R and k for the regular 11-gon.

graphs are divided vertically into two groups of six graphs, corresponding to noise
levels 0.1 and 1. In the left-hand column, the error (i.e., the distance between
the input polygon and output polygon) is measured with the pseudonorm | · |k ,
while in the middle and right-hand columns, the L2 and Hausdorff distances,
respectively, are used instead. Each graph shows a curve giving the average er-
ror over all 1000 iterations, and points plotted above the curve giving the max-
imum error over the 1000 iterations. In each group of six graphs the top row
shows error against the scaling factor R varying from R = 0.2 to R = 6 in
steps of 0.2, where the support function is always measured in the 35 direc-
tions at angles 0,2π/35,4π/35, . . . ,68π/35. The second row in each group of
six graphs shows error against the number k of measurements [in directions at an-
gles 0,2π/k,4π/k, . . . ,2(k − 1)π/k] varying from 20 to 100 in steps of 5, with
the scaling factor R fixed at 1.

For each of the 12 graphs in Figure 2, we used standard software to fit a curve of
the form CRb or Ckc (for error against R or k, resp.) to the points representing the
averages over the 1000 iterations, and we repeated this for the points representing
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TABLE 1
Fit for average and maximum error against R and k (11-gon)

Average Maximum

Error | · |k L2 Hausdorff | · |k L2 Hausdorff

σ = 0.1 b 0.2020 0.2226 0.3248 0.1521 0.1567 0.2521
c −0.4006 −0.3593 −0.3052 −0.4415 −0.4468 −0.3262

σ = 1 b 0.1787 0.1684 0.2668 0.2771 0.2295 0.1686
c −0.4268 −0.4202 −0.3628 −0.5338 −0.5347 −0.4316

the maxima over the 1000 iterations. The corresponding values of b and c are
shown in Table 1.

The case n = 2 of Corollary 5.7 and Theorem 6.2 suggests that the appropriate
values are b = 1/5 = 0.2 and c = −2/5 = −0.4 when errors are measured with
| · |k and the L2 metric, and b = 7/15 = 0.4666 . . . and c = −4/15 = −0.2666 . . .

when errors are measured with the Hausdorff metric. Of course, these theorems
apply only for sufficiently large values of k depending on both the noise level σ

and the scale factor R.
Despite the varying values in Table 1, we believe that the results of our Monte

Carlo simulations are compatible with the expectations outlined in the first para-
graph of this section, except perhaps in the case of Hausdorff error against scale.
When the noise level is σ = 0.1, the values given in Table 1 for the | · |k error,
b = 0.2020 and c = −0.4006, for the average of the 1000 iterations are in very
close agreement with theory, and the agreement is only slightly worse for the other
metrics and at the high noise level σ = 1, except for Hausdorff error against scale.

Naturally, the results for the maximum of the 1000 iterations are more unreliable
due to the stochastic nature of the simulations. However, a poor fit does not neces-
sarily contradict Corollary 5.7 and Theorem 6.2 (note the words “almost surely” in
the statements of these theorems), especially for high noise levels. Better fits can be
expected for data representing 1 or 2 standard deviations, for example, above the
average for the 1000 iterations. For example, when σ = 1, the data representing 2
standard deviations above the average gives c = −0.4505, −0.4479 and −0.3745
for the | · |k , L2 and Hausdorff errors, respectively (compare the three numbers at
the right of the bottom row in Table 1).

In Figure 3 the three types of errors for the regular 11-gon are plotted against
noise level σ varying from σ = 0.02 to σ = 0.5 in steps of 0.02. Here the support
function is always measured in the 35 directions at angles 0,2π/35,4π/35, . . . ,

68π/35, and the polygon is unscaled (i.e., R = 1). As before, each graph shows
a curve giving the average error over all 1000 iterations, and points plotted above
the curve giving the maximum error over the 1000 iterations. The exponents a for
curves of best fit of the form Cσa are, for the average, a = 0.7894, 0.8038 and
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FIG. 3. Error against σ for the regular 11-gon.

0.7150 for the | · |k , L2 and Hausdorff errors, respectively. The corresponding ex-
ponents for the maximum error are a = 0.9286, 0.9346 and 0.7593. These are in
good agreement with the values a = 4/5 = 0.8 for the | · |k and L2 errors given
in Corollary 5.7 and Theorem 6.2. The less convincing agreement with the value
a = 8/15 = 0.5333 . . . for the Hausdorff error given in Theorem 6.2 is not surpris-
ing, since the discrepancy between L2 and Hausdorff errors that occurs via (1) is
smaller for the regular 11-gon than for a general polygon.

Simulations for the regular 11-gon at a low noise level, σ = 0.01, as well as for
the irregular 9-gon in Figure 1, were also compatible with theory. For the details,
see [11], Section 8.

Suppose that we attempt to reconstruct an origin-symmetric planar convex
body K , first with Algorithm NoisyBrightLSQ, using k noisy brightness function
measurements at angles 0, π/k, . . . , (k − 1)π/k, and then with Algorithm Noisy-
SupportLSQ, using 2k noisy support function measurements at angles 0,π/k, . . . ,

(2k − 1)π/k. The two output polygons will, in general, be different, but apart
from the noise, this is only because the two sets of measurements do not “match.”
Indeed, for any angle α ∈ [0,2π),

hK(α ± π/2) = bK(α)/2,(73)

in view of the origin symmetry of K . In fact, there is a very close relationship
between our implementations of Algorithms NoisySupportLSQ and Noisy-
BrightLSQ when n = 2. If we run Algorithm NoisyBrightLSQ with noisy bright-
ness function values yi measured at angles αi , i = 1, . . . , k, in the interval [0, π),
our implementation will produce an origin-symmetric output polygon Q̂k with
outer normals among the directions αi ± π/2, i = 1, . . . , k; see [13]. Using this
fact and (73), it is easy to prove that if we then run Algorithm NoisySupportLSQ
using yi/2 as noisy support function value at angle αi ± π/2, i = 1, . . . , k, the
output polygon will also be Q̂k . Thus, very similar results can be expected from
the two algorithms when n = 2 and K is origin symmetric, and we verified this
by performing simulations of 1000 iterations of Algorithm NoisyBrightLSQ for
a regular origin-symmetric 12-gon and an affinely regular origin-symmetric octa-
gon. We omit the details, noting only that values of a and b indicated by the case
n = 2 of Theorems 7.5 and 7.6 are the same as those above, and that the observed
agreement was similar in all respects to that detailed above for Algorithm Noisy-
SupportLSQ.
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9. Application to a stereological problem. In this section the convergence
results above are used to obtain strong consistency of an estimator for the direc-
tional measure of a random collection of fibers. Details about the following notions
can be found in Chapter 9 of [30]. A fiber is a C1 curve of finite length, and a fiber
process Y is a random element with values in the family of locally finite collec-
tions of fibers in Rn. We assume that Y is stationary (the term homogeneous is also
used), meaning that the distribution of Y is translation invariant. Suppose that A is
a Borel set in Rn with Vn(A) = 1 and E is an origin-symmetric Borel set in Sn−1.
Let µ(E) be the mean total length of the union of all fiber points in A with a unit
tangent vector in E. Due to the stationarity of Y , µ(E) is independent of A and
so this definition gives rise to a unique even Borel measure µ in Sn−1 called the
directional measure of Y . We also assume that, almost surely, the fibers of Y do
not all lie in parallel hyperplanes, so that µ is not concentrated on a great sphere.
The length density L = µ(Sn−1) is the mean total length of fibers per unit volume.
The probability measure µ/L, called the rose of directions, can be interpreted as
the distribution of a unit tangent vector at a “typical” fiber point, and hence, can
be used to quantify anisotropy of Y .

In applications, the fiber process Y often cannot be observed directly, but only
via its intersections with planes. Due to the stationarity, we can restrict our con-
siderations to hyperplanes containing the origin. For each u ∈ Sn−1, let γ (u) be
the mean number of points in Y ∩ u⊥ per unit (n − 1)-dimensional volume. The
function γ is called the rose of intersections of Y . It is well known that

γ (u) =
∫
Sn−1

|u · v|dµ(v)(74)

for all u ∈ Sn−1. As h(u) = |u · v|, u ∈ Sn−1 is the support function of the line
segment [−v, v], (74) shows that γ is the support function of a zonoid Z, called
the associated zonoid or Steiner compact of Y . Minkowski’s existence theorem
implies that there is a convex body K with surface area measure 2µ. As

1
2

∫
Sn−1

|u · v|dS(K,v) = h�K(u),(75)

for all u ∈ Sn−1 [see, e.g., [28], equation (5.3.34)], we have hZ(u) = γ (u) =
h�K(u), u ∈ Sn−1, and so Z = �K .

Since γ (u) = h�K(u) = bK(u) for u ∈ Sn−1 and µ = (1/2)S(K, ·), the follow-
ing slightly modified version of Phase I of Algorithm NoisyBrightLSQ allows the
reconstruction of an approximation µ̂k to µ from noisy measurements of γ .

ALGORITHM NOISYROSELSQ.
Input: Natural numbers n ≥ 2 and k; vectors ui ∈ Sn−1, i = 1, . . . , k, that

span Rn; noisy measurements

yi = γ (ui) + Xi,(76)
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i = 1, . . . , k, of the rose of intersections γ of an unknown stationary fiber
process Y in Rn, where the Xi’s are independent N(0, σ 2) random variables.

Task: Construct a finitely supported measure µ̂k in Sn−1 that approximates the
directional measure µ of Y .

Action: Find a zonotope Ẑk ∈ Zn that solves the following least squares prob-
lem:

min
Z∈Zn

k∑
i=1

(
yi − hZ(ui)

)2
.(77)

Calculate the finitely supported surface area measure S(Q̂k, ·) of the origin-
symmetric polytope Q̂k satisfying

Ẑk = �Q̂k

and set µ̂k = (1/2)S(Q̂k, ·). �

As was remarked for Algorithm NoisyBrightLSQ after the statement of that al-
gorithm, Ẑk can be assumed to be a sum of line segments, each parallel to a node
corresponding to U = {u1, . . . , uk}, and only the lengths of these line segments
have to be determined. Applying the same observation leads to an output µ̂k that
is supported by the finite set of nodes corresponding to U . This implementation
of Algorithm NoisyRoseLSQ was suggested previously by Männle [23], who ob-
tained the following result.

PROPOSITION 9.1. Let Y be a stationary fiber process in Rn with directional
measure µ and let (ui) be a sequence in Sn−1 such that (u∗

i ) is evenly spread. If µ̂k

is an output from Algorithm NoisyRoseLSQ as stated above, then, almost surely,
µ̂k converges weakly to µ, as k → ∞.

Männle [23] obtained Proposition 9.1 using local Kuhn–Tucker conditions for
the solutions of a weighted least squares problem slightly more general than (77).
However, the result follows immediately from Theorem 7.2 on observing that the
map that takes K ∈ Kn to S(K, ·) is weakly continuous on Kn (see, e.g., [28],
page 205).

The remainder of this section is devoted to presenting a refinement of Propo-
sition 9.1 that provides rates of convergence of the estimators. This requires the
introduction of metrics on the cone of finite Borel measures in Sn−1 to quantify
the deviation of the estimator from the true directional measure. Details for the fol-
lowing definitions in the case of probability measures can be found in Section 11.3
of [7]; the extension to arbitrary (nonnegative) measures is not difficult.

Let µ and ν be finite Borel measures in Sn−1. Define

dD(µ, ν) = sup
{∣∣∣∣∫

Sn−1
f d(µ − ν)

∣∣∣∣ :‖f ‖BL ≤ 1
}
,(78)
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where, for any real-valued function f on Sn−1, we define

‖f ‖BL = ‖f ‖∞ + ‖f ‖L and ‖f ‖L = sup
u 
=v

|f (u) − f (v)|
‖u − v‖ .

It can be shown that dD is a metric, sometimes called the Dudley metric (though
he attributes its definition to Fortet and Mourier [9]) on the cone of finite Borel
measures, inducing the weak topology. Now define

dP(µ, ν) = inf{ε > 0 :µ(F) ≤ ν(F ε) + ε,

ν(F ) ≤ µ(F ε) + ε,F closed in Sn−1},(79)

where

Fε =
{
u ∈ Sn−1 : inf

v∈F
‖u − v‖ < ε

}
.

Then dP is also a metric, the Prohorov metric, that induces the weak topology. The
Dudley and Prohorov metrics are related, as we show below in Lemma 9.5.

The following proposition follows from a stability result of Hug and Schneider
[17] that generalizes one step in the proof of the version of Proposition 2.2 due to
Bourgain and Lindenstrauss [1].

PROPOSITION 9.2. Let K and L be origin-symmetric convex bodies in Rn,
such that

r0B ⊂ K,L ⊂ R0B,

for some 0 < r0 ≤ R0. If 0 < b < 2/(n(n + 4)), there is a constant c′ =
c′(b, n, r0,R0) such that

dD
(
S(K, ·), S(L, ·)) ≤ c′δ2(�K,�L)b.(80)

PROOF. We refer the reader to Theorem 5.1 of [17]. In that result, more gen-
eral than the statement of our theorem, take µ = S(K, ·) − S(L, ·) and �(u · v) =
|u · v|, so that according to [17], equation (52),

(T�(µ))(u) = V (K|u⊥) − V (L|u⊥) = h�K(u) − h�L(u).

As is noted by Hug and Schneider [17], who assume throughout that n ≥ 3, we
may then take β = (n + 2)/2 in their Theorem 5.1. With these substitutions, our
theorem for n ≥ 3 follows immediately.

When n = 2, Theorem 5.1 of [17] is still valid (and our theorem follows as
before), but its proof requires an adjustment. One of the main steps is the approxi-
mation of a continuous function f by its Poisson integral

fr(u) = 1

Vn−1(Sn−1)

∫
Sn−1

1 − r2

(1 + r2 − 2ru · v)n/2 f (v) dv,
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where 0 < r < 1 is a parameter. The proof of Theorem 5.1 of [17] uses the estimate

‖f − fr‖∞ ≤ 2n+1 Vn−2(S
n−2)

Vn−1(Sn−1)
‖f ‖L(1 − r) log

2

1 − r
,(81)

for 1/4 ≤ r < 1, from Lemma 5.5.8 of [15], where the proof applies only when
n ≥ 3. However, when n = 2 it can be shown that

‖f − fr‖∞ ≤ 16
√

3

π
‖f ‖L(1 − r) log

2

1 − r
(82)

for 1/4 ≤ r < 1. Although this estimate is slightly weaker than (81), it is sufficient
to prove Theorem 5.1 of [17] for n = 2. For a proof of (82), see the Appendix
of [11]. �

Let D denote the set of degenerate finite Borel measures in Sn−1, that is, those
whose support is contained in a great sphere.

LEMMA 9.3. Let µ be a finite Borel measure in Sn−1 and let

dD(µ,D) = inf
ν∈D

dD(µ, ν).(83)

Then the infimum is attained and the mapping µ �→ dD(µ,D) is weakly contin-
uous. Consequently, the support of µ is not contained in any great sphere if and
only if dD(µ,D) > 0.

PROOF. For a ≥ 0, let

Da = {ν ∈ D :ν(Sn−1) ≤ 2a}.
If 0 denotes the zero measure, we have

dD(µ,D) ≤ dD(µ,0) = µ(Sn−1).

Therefore, if a ≥ µ(Sn−1), then

dD(µ,D) = inf
ν∈D,dD(µ,ν)≤a

dD(µ, ν) = inf
ν∈Da

dD(µ, ν),(84)

where the last equality comes from substituting f ≡ 1 in the definition (78) of
dD(µ, ν). It is easy to see that D is weakly closed and, hence, Da is weakly com-
pact, so the last infimum in (84) is attained.

Let (µk) be a sequence of finite Borel measures in Sn−1 converging to µ.
Choose a so that µk(S

n−1) ≤ a for all k. We know that there are measures ν ∈ Da

and νk ∈ Da , k = 1,2, . . . , such that

dD(µ,D) = dD(µ, ν) and dD(µk,D) = dD(µk, νk),
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for k = 1,2 . . . . The weak compactness of Da implies that a subsequence of (νk)

converges to a measure ν̃ ∈ Da . Then

dD(µ,D) ≤ dD(µ, ν̃)

= lim inf
k→∞dD(µk, νk)

= lim inf
k→∞dD(µk,D)

≤ lim sup
k→∞

dD(µk,D)

≤ lim sup
k→∞

dD(µk, ν)

= dD(µ, ν) = dD(µ,D).

Therefore,

lim
k→∞dD(µk,D) = dD(µ,D),

as required. �

The following refinement of Proposition 9.1 is phrased in terms of the Dudley
metric. For n ≥ 3, the extra condition that d ≤ dD(µ,D) for some d > 0 is needed.
It is a natural analog of the condition that rB ⊂ K for some r > 0 in earlier re-
sults, such as Theorem 7.6. Lemma 9.3 implies that such a lower bound d > 0
always exists due to our general assumption that the directional measure µ is not
degenerate.

THEOREM 9.4. Let σ > 0. Let Y be a stationary fiber process in Rn with
directional measure µ and length density L = µ(Sn−1). Let (ui) be a sequence
of directions in Sn−1 with �∗

k = O(k−1/(n−1)) and let µ̂k be an output from
Algorithm NoisyRoseLSQ as stated above.

If n = 2 and β > 0, then, almost surely, there are constants C14 = C14(σ,L,

(ui), β) and N14 = N14(σ,L, (ui), β) such that

dD(µ, µ̂k) ≤ C14k
−2/15+β,(85)

for k ≥ N14.
For n ≥ 3, let 0 < d ≤ dD(µ,D). If n = 3 or 4 and β > 0, then, almost surely,

there are constants C15 = C15(σ, n,L,d, (ui), β) and N15 = N15(σ, n,L,d,

(ui), β) such that

dD(µ, µ̂k) ≤ C15k
−(n+2)/((n+4)(2n+1))+β,(86)

for k ≥ N15.
Finally, if n ≥ 5 and β > 0, there are constants C16 = C16(σ, n,L,d, (ui), β)
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and N16 = N16(σ, n,L,d, (ui), β) such that

dD(µ, µ̂k) ≤ C16k
−2/((n−1)(n+4))+β,(87)

for k ≥ N16.

PROOF. Let K and Q̂k be the origin-symmetric convex bodies with surface
area measures 2µ and 2µ̂k , respectively, and recall that Ẑk = �Q̂k .

Suppose that n = 2. According to [28], pages 290–291, the mean width

w(K) = 1

π

∫
S1

hK(u)du

of K satisfies πw(K) = S(K,S1) = L. Since K = −K , for each x ∈ K ,
[−x, x] ⊂ K and so

4

π
‖x‖ = w([−x, x]) ≤ w(K) = 1

π
L.

It follows that K ⊂ (L/4)B . By the case n = 2 of Theorem 7.5, with

R = max
{
L/4, (215/2σ/κn−1)

1/(n−1)},
almost surely, there are constants C17 = C17(σ,L, (ui)) and N17 = N17(σ,L, (ui))

such that

δ2(�K,�Q̂k) = δ2(�K, Ẑk) ≤ C17k
−2/5,

for all k ≥ N17. Inequality (80) with L = Q̂k now implies (85).
Suppose that n ≥ 3 and let 0 < d ≤ dD(µ,D), which is possible by Lemma 9.3.

Let M = M(L, d) be the set of all finite Borel measures ν in Sn−1 such that
ν(Sn−1) ≤ L and dD(ν,D) ≥ d . Then µ ∈ M and M is weakly compact by
Lemma 9.3. Using the equicontinuity of the family {fu :u ∈ Sn−1} of functions
defined by fu(v) = |u · v| for v ∈ Sn−1, we see that the map T :Sn−1 × M → R

defined by

T (u, ν) =
∫
Sn−1

|u · v|dν(v)

is continuous. Therefore, T attains its minimum r = r(n,L,d) at some point
(u0, ν0) in the compact set Sn−1 × M. Note that

r = T (u0, ν0) =
∫
Sn−1

|u0 · v|dν0(v) > 0,

as ν0 is not degenerate. Then T (u,µ) ≥ r for all u ∈ Sn−1, so by (75) and the fact
that S(K, ·) = 2µ, we have

h�K(u) =
∫
Sn−1

|u · v|dµ(v) ≥ r,
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for all u ∈ Sn−1. Therefore, rB ⊂ �K . On the other hand, (75) also im-
plies h�K(u) ≤ L = R. Summarizing, we have shown that there are constants
0 < r < R, depending only on n, L and d , such that

rB ⊂ �K ⊂ RB.

As in the proof of Theorem 7.2, we can conclude

r0B ⊂ K ⊂ R0B,

with positive constants r0 = r0(n, d,R) and R0 = R0(n, d,R). Theorem 7.5 can
now be applied with

R = max
{
R0, (2

15/2σ/κn−1)
1/(n−1)}.

Inequality (80) with L = Q̂k then yields (86) and (87). �

To obtain a version of Theorem 9.4 in terms of the Prohorov metric, the follow-
ing lemma is useful.

LEMMA 9.5. Let µ and ν be finite Borel measures in Sn−1 with m0 =
µ(Sn−1) 
= 0. If dD(µ, ν) ≤ 1, then

dP(µ, ν) ≤ (
1 + √

3 + m0
)
dD(µ, ν)1/2.

PROOF. We may assume that n0 = ν(Sn−1) 
= 0 and let µ1 = µ/m0 and ν1 =
ν/n0. For s, t > 0, the definition (79) of dP implies that

dP(sν, tν) = inf{ε > 0 : sν(F ) − tν(F ε) ≤ ε, tν(F ) − sν(F ε) ≤ ε,

F closed in Sn−1}
≤ inf{ε > 0 : sν(F ε) − tν(F ε) ≤ ε, tν(F ε) − sν(F ε) ≤ ε,

F closed in Sn−1}
≤ n0|s − t |,

while the definition (78) of dD (with f ≡ 1) yields

dD(µ, ν) ≥ |m0 − n0|.
Therefore,

dP(µ, ν) ≤ dP
(
µ, (m0/n0)ν

) + dP
(
(m0/n0)ν, ν

)
≤ dP(m0µ1,m0ν1) + n0|m0/n0 − 1|
≤ dP(m0µ1,m0ν1) + dD(µ, ν).

(88)

Let 0 < ε < dP(m0µ1,m0ν1). By (79), there is a closed set F in Sn−1 such that

µ1(F ) > ν1(F
ε) + ε

m0
or ν1(F ) > µ1(F

ε) + ε

m0
.
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Setting α = ε/m0 and β = ε in Proposition 3 of [6], we obtain

2

m0(2 + ε)
ε2 ≤ dD(µ1, ν1).(89)

By (79) again, we have dP(µ1, ν1) ≤ 1 and

dP(m0µ1,m0ν1) = inf
{
ε > 0 :µ1(F ) ≤ ν1(F

ε) + ε

m0
,

ν1(F ) ≤ µ1(F
ε) + ε

m0
,F closed in Sn−1

}
.

Therefore, if m0 ≤ 1, we have

dP(m0µ1,m0ν1) ≤ dP(µ1, ν1) ≤ 1,

while, if m0 ≥ 1, then

dP(m0µ1,m0ν1)

= m0 inf{ε > 0 :µ1(F ) ≤ ν1(F
m0ε) + ε,

ν1(F ) ≤ µ1(F
m0ε) + ε,F closed in Sn−1}

≤ m0dP(µ1, ν1) ≤ m0.

Thus, for any m0 > 0, we have ε < dP(m0µ1,m0ν1) ≤ 1 + m0. Substitution
into (89) yields

2

m0(3 + m0)
ε2 ≤ dD(µ1, ν1).

As ε < dP(m0µ1,m0ν1) was arbitrary, we conclude that

2

m0(3 + m0)
dP(m0µ1,m0ν1)

2 ≤ dD(µ1, ν1)

≤ dD(µ/m0, ν/m0) + dD(ν/m0, ν/n0)

≤ 1

m0
dD(µ, ν) + n0

∣∣∣∣ 1

m0
− 1

n0

∣∣∣∣
≤ 2

m0
dD(µ, ν).

Substituting this into (88), and using the hypothesis dD(µ, ν) ≤ 1, we obtain the
desired inequality. �

With Lemma 9.5 in hand, the estimates of Theorem 9.4 can be converted
to the Prohorov metric. Since this is routine, we shall only give one example.
By Lemma 9.5 and (86), under the hypotheses of Theorem 9.4 with n = 3,
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for all γ > 0, almost surely, there are constants C18 = C18(σ,R, (ui), γ ) and
N18 = N18(σ,R, (ui), γ ) such that

dP(µ, µ̂k) ≤ C18k
−5/98+γ ,

for all k ≥ N18. Thus, the exponent when n = 3 is approximately −1/20.
We close this section with a comment on the assumption in (76) that the errors

are normally distributed. In applications, the measurements yi come from counting
intersection points, so they are integer random variables. If L is large, our assump-
tion is appropriate. Otherwise, a model that allows only integer values for yi could
be more apt. For example, if Y is a Poisson line process (one of the most com-
mon models in stochastic geometry), then the number yi of intersection points
of its fibers with a unit window in u⊥ is Poisson distributed with mean γ (ui),
i = 1, . . . , k. Under this assumption on the distribution, the maximum likelihood
problem no longer corresponds to a quadratic program. Nevertheless, its solution
is a strongly consistent estimator for µ (see [20]), and the tools provided by van
de Geer [32] would still allow results giving rates of convergence.
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