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be suitable for sub-Gaussian sources, is inconsistent for some of such
sources (wherein 3:3567 < a < 3:7352). With the only exception of
'

0(s) = jsj3sign(s), whose consistency is always determined by the
sign of kurtosis excess, other QML estimators require more delicate
analysis in order to determine whether they are suitable or not for esti-
mation of super- or sub-Gaussian sources. Generally, the answer is dis-
tribution-dependent. The main conclusion from this correspondence is
that the nonlinear functions 'i(s) should be chosen with more caution.
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On the Resolvability of Sinusoids With Nearby
Frequencies in the Presence of Noise

Morteza Shahram and Peyman Milanfar

Abstract—This correspondence develops statistical algorithms and per-
formance limits for resolving sinusoids with nearby frequencies in the pres-
ence of noise. We address the problem of distinguishing whether the re-
ceived signal is a single-frequency sinusoid or a double-frequency sinusoid,
with possibly unequal, and unknown, amplitudes and phases. We derive
a locally optimal detection strategy that can be applied in a standalone
fashion or as a refinement step for existing spectral estimation methods to
yield improved performance. We further derive explicit relationships be-
tween the minimum detectable difference between the frequencies of two
tones for any particular false alarm and detection rate and at a given SNR.

Index Terms—Kullback–Leibler distance, MUSIC, Rayleigh limit reso-
lution, resolution detection, spectral estimation, subspace.

I. INTRODUCTION

Spectral estimation has a long history and significant applications
in signal processing. In many areas of application, including the vast
body of knowledge in array processing [1], resolving sinusoidal signals
with nearby frequencies has been of special interest. In particular, the
problem in array signal processing arises in several contexts, including
direction-of-arrival estimation, when two incoherent plane waves are
incident on a linear equispaced array of sensors [2]. In the past, the
vast majority of the techniques in this area have been based on matrix
decomposition methods. Notable instances of the relevant literature are
found in [2]–[7].

These approaches are based principally on second-order statistical
analysis, which relies on the covariance structure of the measured
signal. Extensive work has been done to determine the performance of
such methods [2], [8]–[15].

A common question in this area has been to investigate the relation-
ship between resolution and SNR. Nearly all papers that have addressed
this question, either directly or in a related framework, have been fo-
cused on the celebrated MUSIC algorithm [16] or its variants (e.g.,
root MUSIC [17]). The earliest related work was done by Kaveh and
Barabell [2] to determine the (minimum) threshold SNR required to
resolve two equipowered sinusoids in the asymptotic regime. In the
context of array processing, recent work has employed Cramér–Rao
bound analysis to investigate the relationship between resolvability and
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signal-to-noise ratio (SNR) [18]–[20]. While the methods employed
are somewhat different, the results obtained are consistent both with our
earlier work on establishing detection and estimation-theoretic bounds
for resolution in imaging systems [21]–[23] and with the results re-
ported in this paper.

Without being limited to subspace methods or to asymptotic regimes,
a relatively similar question interests us in this paper. We employ a local
model-based hypothesis-testing approach to determine the limits to the
resolution of frequencies of nearby tones in signals measured in the
presence of noise and over short observation intervals. Our approach
is to precisely define a quantitative measure of resolution in statistical
terms by addressing the following question: ”What is the minimum
separation between two frequencies of nearby tones (maximum attain-
able resolution) that is detectable at a given SNR and for pre-specified
probabilities of detection and false alarm (Pd and Pf )?”

As we will demonstrate, in the process of addressing the above ques-
tion, the machinery of the analysis will also suggest a corresponding
detection strategy that can be applied in practice. In other words, the
final computed performance limit is simply the result of employing
these locally, uniformly, most powerful detectors. In order to illustrate
the relevance of the results, we present comparisons against the gen-
eral class of subspace methods (in particular, the MUSIC algorithm),
which is perhaps the most commonly used subspace-based technique
in practice. We demonstrate that the proposed detectors yield signifi-
cantly improved performance in distinguishing frequencies of nearby
tones.

We begin by defining the signal of interest as

s(x; �1; �2) = a1 sin (2�(fc � �1)x+ �1)

+a2 sin (2�(fc + �2)x+ �2) (1)

in the range x 2 [�B=2; B=2], where for convenience, we consider
the two frequencies fc � �1 and fc + �2 to be around a “center” fre-
quency1fc. The measured signal is a sampled and noise-corrupted ver-
sion of (1) as follows:

f(k; �1; �2) = s(k; �1; �2) + w(k) (2)

= a1 sin 2� (fc � �1)
k

fs
+ �1

+ a2 sin 2� (fc+�2)
k

fs
+ �2 +w(k) (3)

where the sampling frequency is fs (Hz), which is assumed to be suf-
ficiently high to avoid aliasing, and the integer index k is in the range
k 2 f�(N � 1)=2; . . . ; (N � 1)=2g, where N = Bfs. The term
w(k) is assumed to be a zero-mean Gaussian white noise process with
variance �2.

According to the so-called Rayleigh criterion [10], the two peaks in
the frequency domain corresponding to fc� �1 and fc + �2 are barely
resolvable if

�1 + �2 =
1

B
: (4)

In this correspondence, we are interested in studying the scenario in
which the two frequency components are, in this “classical” sense, un-
resolvable. In practice, this corresponds to the situation in which the
main-lobe of the Fourier transform of the (sum of) two sinusoids is lo-
cated in the same FFT bin. Therefore, in this context, what we mean
by ”signals with short observation interval” is simply those signals in
which the values ofB, �1, and �2 satisfy the inequality �1+�2 < 1=B.

1We note that this center frequency can be assumed to be known or estimated
(see Appendix B), or the detection procedure can be repeated at various candi-
date center frequencies.

With the above framework in place, we treat the problem of resolu-
tion by formulating a hypothesis test. In particular, the corresponding
hypotheses for this problem are

H0 : �1 = 0 and �2 = 0

H1 : �1 > 0 or �2 > 0
(5)

where H0 embodies the case where only one spectral component is
present, whereas H1 captures the case where two distinct frequencies
are present.2 We note here that in this framework, we consider �1 and
�2 to be unknown to the detector; therefore, this is a composite hy-
pothesis testing problem. Our approach in this work will be to take
advantage of the small separation between the frequency components
to effect an approximation that will yield a detector that is locally uni-
formly most powerful. Notably, this analysis will enable us to explicitly
compute the relationship between minimum detectable frequency sep-
aration and SNR. We should note that the methodology we present here
is quite similar to an approach we have recently advocated for deter-
mining resolution limits in optical imaging [21]–[23].

The organization of the paper is as follows. In Section II, we in-
troduce our approach by first treating the special case of known and
equal amplitudes and phases for the two sinusoids. Having conveyed
the basic ideas and intuition, in Section III, we present the most general
case, where the amplitudes and phases are unequal and unknown to the
detector. In this section, we also develop the corresponding detection
strategies and characterize their performance. Section IV presents some
comparisons of the proposed method with existing subspace methods.
Finally, in Section V, we summarize the results and present some con-
cluding remarks.

II. CASE OF EQUAL AND KNOWN AMPLITUDE AND PHASE

To gain maximum intuition and perspective from the foregoing anal-
ysis, we first consider a simple case with the following assumptions.

• a1 = a2 = 1.
• �1 = �2 = 0.
• �1 = �2 = �.

In this case, the measured signal model is given by

f(k; �)=s(k; �) + w(k) (6)

= sin 2�(fc��)
k

fs
+ sin 2�(fc+�)

k

fs
+w(k): (7)

Since the range of interest for the values of � is small (� < 1=2B) (these
representing one wide peak in the frequency domain), it is quite appro-
priate for the purposes of the our analysis (even in the more general
case treated in the next section) to consider approximating the model
of the signal around � = 0. The Taylor expansion of (6) about � = 0,
with all other variables fixed, is

s(k; �) = h0(k) + �2h2(k) +O(�4) (8)

where

h0(k) = 2 sin
2�fck

fs
(9)

h2(k) = �
4�2k2

f2s
sin

2�fck

fs
: (10)

By ignoring the O(�4) terms in (8), the approximate measured signal
model can then be written as

f(k; �) = h0(k) + �2h2(k) + w(k): (11)

It is worth noting that in the above approximation, we elect to make
explicit use of terms up to order 2 of the Taylor series since no linear

2Note that the hypothesis test in (5) is a one-sided test.
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term in � appears in the approximation. By neglecting higher order
terms (O(�4)), the hypotheses in vector form will be

H0 : f = h0 +w

H1 : f = h0 + �2h2 +w
(12)

where

f = f �
N � 1

2
; . . . ; f

N � 1

2

T

(13)

andh0,h2, andw are similarly defined. Sinceh0 is a common (known)
term in both hypotheses, we may simplify further:

H0 : y = w

H1 : y = �2h2 +w
(14)

where we have defined y = ~f � h0, and the parameter � is unknown.
This is a problem of detecting a deterministic signal with an unknown
parameter (�2). The general structure of composite hypothesis testing
is involved when unknown parameters appear in the hypotheses
[25, p. 186]. The Generalized Likelihood Ratio Test (GLRT) is a
well-known approach to solving these types of problems. The GLRT
uses the maximum likelihood (ML) estimates of the unknown pa-
rameters to form the standard Neyman–Pearson (NP) likelihood ratio
detector. The (unconstrained) ML estimate for the parameter �2 is
given by [24]

�2 = (hT2 h2)
�1
h
T
2 y (15)

which leads to the following GLRT detector:

T (y) =
�2

2

�2
h
T
2 h2 =

1

�2
(hT2 h2)

�1
h
T
2 y

2

(16)

where we decide H1 if the statistic exceeds a specified threshold
T (y) > 
1. It is worth noting that T (y) is in fact a quadratic form
in a rank-one projection. While it may seem troublesome to use the
unconstrained ML estimate to form the GLRT, in fact, due to the
(known) positivity of �2, the detector structure is effectively producing
a one-sided test and, hence, is in fact a Uniformly Most Powerful
(UMP) detector [25, p. 194], [26, p. 124]. The detector can therefore
be described simply as a normalized matched filter (hT2 y), giving the
best detection rate for a given false alarm rate and for all small values
of �2. Hence, we can write

T
0(y) = T (y) =

1

�2
(hT

2
h2)�1 h

T
2 y : (17)

For any given data set y, we decideH1 if the statistic exceeds a speci-
fied threshold3

T
0(y) > 
: (18)

The choice of 
 is motivated by the level of tolerable false alarm (or
false-positive) in a given problem, but is typically kept very low. For
this matched filter structure, the detection rate (Pd) and false-alarm rate
(Pf ) are related as

Q(Pd) = Q(�2� + 
) = Q �
2
� +Q

�1(Pf) (19)

3Due to the known positivity of � , the threshold (
) should be positive.
In fact, as one reviewer suggested, another way of writing the GLRT is
maxf� ; 0g(h h =� ) > 
 . This will result in deciding H for any
negative estimate of � (i.e., h y < 0).

where

� =
hT
2
h2

�2
(20)

Q is the right-tail probability function for a standard Gaussian random
variable (zero mean and unit variance), and Q�1 is the inverse of this
function. From (19), we can write

�
2
� = Q

�1(Pf)�Q
�1(Pd): (21)

The above expression is key in illuminating a very useful relation-
ship between the SNR and the smallest �, which can be detected with
very high probability and very low false alarm rate. To see this, it is
convenient to define the output (total) SNR as follows:

SNR =
kh0 + �2h2k

2

�2
: (22)

Using (20) and (22), the relation between minimum resolvable � (i.e.,
�min) and the required SNR can be made explicit. Namely, SNR can
be computed as

SNR =
kh0 + �2h2k

2

kh2k2
� �

2
: (23)

By substituting the required value of � from (21), we have

SNR=(Q�1(Pf)�Q
�1(Pd))

2 hT0 h0

hT
2
h2

1

�4
+2

hT2 h0

hT
2
h2

1

�2
+1 : (24)

This is a fundamental relationship relating minimum resolvable � to
SNR. To make the expressions more explicit, the energy terms in (24)
can be approximated by4

h
T
0 h0 � 2N

h
T
2 h2 �

�4N5

10f4s
=
�4NB4

10

h
T
0 h2 � �

�2N3

6f2s
= �

�2NB2

6
: (25)

With these approximations, it is readily seen that for the range of
2�B < 1, the relation (24) can be properly summarized by

SNR �
320

�4
(Q�1(Pf)�Q�1(Pd))

2

(2�B)4
: (26)

A plot of (24) and its approximation (26) are shown in Fig. 1. The re-
sult clearly shows that the minimum resolvable separation is essentially
proportional to the inverse of the SNR to the fractional power of 1/4 for
the range of 2�B < 1. Note that the frequencies here are separated by
2�.

Looking at (24) or (26), one may study the effect of sampling rate
on these relationships. It should be mentioned that the sampling rate is
embedded inside the “SNR” on the left hand side of (24) and (26). For
instance, for resolving a particular frequency separation (2�), doubling
the sampling rate does not change the required SNR but, rather, implies
that the same detection performance can be achieved with twice the
noise variance as compared with the original sampling rate.

III. GENERAL CASE

With the results of the previous section in place, we now follow a
similar analysis and extend the results in this section to the general
signal model of (3) with unknown amplitudes, phases, and unknown

4See Appendix A for a justification of these approximations.
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Fig. 1. 2�B versus required SNR.

frequency parameters �1 and �2.5 The second-order Taylor expansion
of the signal model around (�1; �2) = (0; 0) is

s(k; �) � �0p0(k) + �0q0(k) + �1p1(k)

+�1q1(k) + �2p2(k) + �2q2(k) (27)

where

pi(k) =
k

fs

i

sin 2�fc
k

fs
(28)

qi(k) =
k

fs

i

cos 2�fc
k

fs
(29)

and

�0 = a1 cos(�1) + a2 cos(�2)

�0 = a1 sin(�1) + a2 sin(�2)

�1 =2�(a1�1 sin(�1)� a2�2 sin(�2))

�1 =2�(�a1�1 cos(�1) + a2�2 cos(�2))

�2 = � 2�2(a1�
2
1 cos(�1) + a2�

2
2 cos(�2))

�2 = � 2�2(a1�
2
1 sin(�1) + a2�

2
2 sin(�2)): (30)

Rewriting (27) in vector form will result in

s � �0p0 + �0q0 + �1p1 + �1q1 + �2p2 + �2q2: (31)

Now, the hypotheses in (5) appear in the following form:

H0 : z = �0p0 + �0q0 +w

H1 : z=�0p0+�0q0+�1p1+�1q1+�2p2+�2q2+w
(32)

where z denotes the approximate measured signal model. Equation
(32) leads to a linear model for testing the parameter set � defined as
follows:

z =H��� +w (33)

H = [p0 j q0 j p1 j q1 j p2 j q2] (34)

��� = [�0 �0 �1 �1 �2 �2]
T (35)

5Another more general and perhaps more practical problem would be to con-
sider the case where � is also unknown. This is clearly a more complicated
scenario, and we have addressed it in [28].

where H and ��� are an N� 6 matrix, and a 6� 1 vector, respectively.
The corresponding hypotheses are6

H0 : A� = 0

H1 : A� 6= 0
(36)

where

A =

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

: (37)

The GLRT for (36) will be

T =
1

�2
�
T
A

T
A H

T
H

�1

A
T
�1

A� (38)

where

� = H
T
H

�1

H
T
z: (39)

From (38), the performance of this detector is characterized by

Pf =Q� (
) (40)

Pd =Q� (�)(
) (41)

� =
1

�2
�
T
A

T
A H

T
H

�1

A
T
�1

A� (42)

where Q� is the right tail probability for a Central Chi-Squared PDF
with 4 degrees of freedom, and Q� (�) is the right tail probability for
a noncentral Chi-Squared PDF with 4 degrees of freedom and noncen-
trality parameter �. For a specific desired Pd and Pf , we can compute
the implied value for the noncentrality parameter from (40) and (41).
We call this value of the noncentrality parameter �(Pf ; Pd) and ex-
plicitly denote it as a function of desired probability of detection and
false alarm rate. Meanwhile, similar to the simpler case in the previous
section, the SNR in this case is given by

SNR =
�THTH�

�2
: (43)

Together, the above yield the relation between the parameter set � and
the required SNR as follows:

SNR=�(Pf ; Pd) �
T
A

T
A H

T
H

�1

A
T
�1

A�

�1

�
T
H

T
H�:

(44)
It is instructive to simplify (44) by approximating the elements of the
matrix HTH. These approximations (again, justified in Appendix A)
yield

H
T
H�

N

2
0 0 �N

4
� N

24f
0

0 N

2
�N

4
� 0 0 N

24f

0 �N

4
� N

24f
0 0 �N

16
�

�N

4
� 0 0 N

24f
�N

16
� 0

N

24f
0 0 �N

16
� N

160f
0

0 N

24f
�N
16

� 0 0 N

160f

6Two inequalities constrain the values of the parameters in (35): � � � 0

and � � � 0. For the detector development in Section III, we have ignored
these constraints. We note that ignoring these constraints will still yield a de-
tector, whereas invoking the constraints will yield (slightly) better detection per-
formance. At an operating point where very highP and lowP are considered,
the performance of the detector will not be affected much at all by applying these
constraints. Indeed, in such cases, the implied high value of SNR will effectively
enforce the constraints with very high likelihood. In other words, for high SNR
cases, the probability of violating these inequality constraints is negligible.
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where � = cos ((2�fc=fs)N))=sin (2�fc=fs). With this approxima-
tion, after some algebra and replacing N=fs by B, (44) will result in

SNR � �(Pf ; Pd)
E1 +E2�+ E3B

2 + E4B
2�+ E5B

4

F1B2 + F2B2�+ F3B4
(45)

where

E1 =16(�20 + �20)

E2 = � 16(�0�1 + �0�1)

E3 =
4

3
�21 + �21 + 2�0�2 + 2�0�2

E4 = � 4(�1�2 + �1�2)

E5 =
1

5
�22 + �22

F1 =
4

3
�21 + �21

F2 =
�8

3
(�1�2 + �1�2)

F3 =
4

45
�22 + �22 : (46)

It is useful to note that for the case where �1 � �2, the first two terms
in the numerator of (45) dominate its size for small �1 and �2 (i.e., �1,
�2 � 1=B), as the other terms are O(�21) and O(�22). Hence, (45) can
be further approximated to

SNR � �(Pf ; Pd)
E1 + E2�

F1B2 + F2B2�+ F3B4
: (47)

To gain further insight, we can consider yet another special case. By
assuming a1�1 � a2�2, which results from a proper choice of the
center frequency fc (see Appendix B), the values E2, F1, F2 are also
negligibly small, and we have

SNR��(Pf ; Pd)
E1

F3B4
(48)

=�(Pf ; Pd)
16(�20 + �20)

4

45
(�22 + �22)B

4
(49)

=
45

�4
�(Pf ; Pd)

B4

a21+a
2
2+2a1a2 cos(�1��2)

a21�
4
1+a

2
2�

4
2+2a1a2�21�

2
2 cos(�1��2)

:

(50)

A plot of (50) is shown in Fig. 2 for the case of equal amplitude and
for the case of a1 = 4a2. (In either case, the amplitudes and phases are
not known to the detector.) As expected, the case of equal amplitudes
produces better detection performance.

In order to compare (50) with (26), let us set �1 = �2 = �, a1 =
a2 = 1, and �1 = �2 = 0 to get7

SNR �
720

�4
�(Pf ; Pd)

(2B�)4
: (51)

As an example, let Pd = 0:99 and Pf = 10�2. Comparing (26) and
(51) shows that the required SNR for the second case (general case) is
increased by a multiplicative factor of 2.72.

IV. COMPARISON WITH EXISTING SUBSPACE-BASED METHODS

A very significant question is how the above results compare with
existing methods for spectral estimation. Since we claim that the pro-
posed detector structures are optimal, we expect that, at least for the
particular signal model studied here, we should observe improved per-
formance over existing subspace-based methods. As we demonstrate

7It should be noted that these parameter values are unknown to the detector
in the general case, and therefore, we expect poorer performance, as observed.

Fig. 2. (�1 + �2)B versus required SNR for equal and unequal amplitudes.

below, this is indeed the case. The subspace methods (e.g., MUSIC)
for spectral estimation are based on eigendecomposition of the auto-
correlation matrix into orthogonal signal and noise subspaces [7]. In
practice, however, since, typically, only the time series are available,
one uses an estimate of the autocorrelation matrix derived from the
signal samples.

In any event, much work has been done to study the performance and
sensitivity of subspace methods (specifically MUSIC) [2], [8]–[10],
[12]–[15]. Here, we make some comparisons to the existing methods.
First, we consider the general class of subspace methods, in which
we, very optimistically, assume that the exact autocorrelation matrix
is known to the subspace detector under both hypotheses. As we will
see, the proposed approach outperforms the subspace methods even in
this (unrealistic) situation. Next, we present a comparison to the per-
formance of the MUSIC algorithm in resolving sinusoids with nearby
frequencies.

Throughout this section, we assume that a1 = a2 = 1 and that
�1 = �2 = �. However, we will use our detector structure described in
Section III, where we assume that amplitudes, frequencies, and phases
in the signal model are unknown to the detector. Note that for subspace
detectors, the phase is typically assumed to be a uniformly distributed
random variable in [0; 2�]. Meanwhile, the ”required SNR” computed
in Section III is in general a function of the phases of the sinusoids.
Thus, in order to set up a fair comparison to the subspace method, we
perform the following averaging for the required SNR over the possible
range of �1 and �2:

SNRavg =
1

4�2

2�

0

2�

0

SNR d�1d�2 (52)

where subscript “avg” denotes the averaged value, and the integrand
(SNR) is the right-hand side of (44).

A. General Class of Subspace Methods; Completely Known
Autocorrelation Matrix

We first consider the most idealistic subspace detector structure, to
which the amplitudes a1 = a2 = 1 and frequency variables �1 =
�2 = � of the signal model f(k; �1; �2) in (3) are known, and where
�1 and �2 are assumed to be uniformly distributed random variables in
the range of [0; 2�]. To decide whether the received signal contains a
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Fig. 3. 2�B versus required output SNR for the subspace detector with
completely known autocorrelation.

single frequency component or two frequency components, we set up
the following hypothesis test:

H0 : f � N 0;R0 + �2I

H1 : f � N 0;R1 + �2I
(53)

where R0 and R1 are the autocorrelation matrices of the signal part in
(3)8

R0 =RE r(fc)r
H(fc) (54)

R1 =
1

2
RE r(fc + �)rH(fc + �)

+
1

2
RE r(fc � �)rH(fc � �) (55)

whereRE [�] denotes the real part, and r(�) is the vector form of

r(k; fc) = exp j2�fc
k

fs
:

An NP detector for (53) decides H1 if

Tc(f ) = f
T

R1 + �
2
I
�1

� R0 + �
2
I
�1

f > 
 (56)

where subscript “c” denotes the “completely known” case. The perfor-
mance of this detector can be calculated analytically [25] or through
Monte Carlo simulations, the result of which is shown in Fig. 3. For
the purpose of simulation, the performance of (56) was computed by
averaging over the possible range of �1 and �2 similar to (52). It is
observed that the required SNR of this idealistic subspace method is
generally between 5 and 10 dB higher than the required SNR for the
proposed GLRT detector in (38). An interesting analysis related to the
subspace framework is to compute the symmetric Kullback–Leibler
Distance (KLD) or Divergence (J(�)) [28, p. 26]. KLD is a measure
of difficulty in discriminating between two hypotheses and is directly
related to the performance figure of the subspace detector. More specif-
ically, let p(f ; 0) and p(f ; �) be the PDFs of the measured signal under

8Superscript “H” in (54) and (55) denotes conjugate transpose.

Fig. 4. 2�B versus required output SNR for the MUSIC algorithm.

hypotheses H0 and H1 in (53). Then, we will have (see Appendix C
for proof)

J(�) =
D

[p(f ; �)� p(f ; 0)] log
p(f ; �)

p(f ; 0)
df

�
�4

8
tr R1 + �

2
I
�1 @2R1

@�2
�=0

2

(57)

as � ! 0, where tr[�] is the trace operator, and D is the observation
(signal) space. We note that the KLD measure behaves as the minimum
detectable � raised to the power of 4 (confirming the power law we
have derived for the inverse of the required SNR in earlier sections).
A comprehensive analysis of the relationship between divergence and
resolution in a related framework can be found in [10].

B. Comparison With Music

For further comparison, we simulated the behavior of the MUSIC
algorithm for resolving sinusoids with nearby frequencies. In simula-
tion of MUSIC, the signal is declared to be resolvable if the output
of MUSIC produces two distinct peaks within an interval around the
true frequencies (fc � �). The simulations for MUSIC are carried out
for cases in which either a single snapshot, or multiple snapshots, are
available. Naturally, we consider the output SNR in the latter case as
the sum of SNRs of each snapshot.

Here, we develop two different comparison procedures. First, we
compare the performance of MUSIC with the performance of the de-
tector in (38), where we assume that the center frequency fc, at which
we perform the hypothesis test, is known a priori. Since this might be
seen as an unfair comparison, we have put forward an alternative (per-
haps more practical) scenario as well. In this scenario, we first seek as-
sistance from MUSIC to estimate the center frequency and then apply
the proposed detector in (38) centered at the peak estimated by MUSIC.

The results of these experiments are shown in Fig. 4. First, we ob-
serve that the proposed detector significantly outperforms MUSIC in
both cases (using known or estimated center frequency). More inter-
estingly, we see that the result of the proposed detector with estimated
center frequency (provided by MUSIC) is very close to the perfor-
mance of the same detector with known center frequency, the latter
representing the ultimate performance bound. This implies that the
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MUSIC algorithm does a very promising job in locating the center fre-
quency (i.e., the candidate location where we can perform a refinement
step using our proposed approach). Intuitively, the reason for this be-
havior is that for the case where a high probability of resolution (0.99)
is considered, a fairly high value of SNR should be provided. This value
of SNR will effectively guarantee a condition under which the MUSIC
algorithm will produce the peak in its spectrum within the range of
[fc� �; fc+ �]. This observation is essentially in agreement with what
has been observed in the past about the stability of MUSIC for single-si-
nusoid signals.9 See, for example, [2] and [12].

V. CONCLUSION

In this correspondence, we have derived a performance bound for
the minimum resolvable frequency separation between two tones in the
presence of noise. We carried out the analysis in the context of locally
optimal detectors and developed corresponding detection strategies that
can in practice produce significant improvements over existing spectral
estimation methods. For the task of bounding performance, we have
answered a very practical question: “What is the minimum detectable
frequency difference between two sinusoids at a given signal-to-noise
ratio?” Equivalently: “What is the minimum SNR required to discrim-
inate these two sinusoids?”

Compared to existing spectral estimation method, the proposed lo-
cally optimal detectors yield significantly improved detection of very
nearby frequencies. It is worth noting that as a matter of implementa-
tion, one can always apply an existing method for spectral estimation
(such as MUSIC etc.) to the given signal and then apply the proposed
detector as a post-processing operation intended to further improve res-
olution. As discussed in Section IV-B, the application of such a de-
tector, which uses (for example) MUSIC to estimate the center fre-
quency as the test point, is nearly as effective as applying the proposed
detector with a known center frequency.

In closing, we mention that the strategy for the analysis of resolu-
tion we have put forward here is very generally applicable to other
types of signal models, such as damped sinusoidal signals. Once the
signal model is decided upon, the same line of reasoning including ap-
proximations, and the development of locally optimal detectors can be
carried out.

APPENDIX A
COMPUTING THE ENERGY TERMS

In this Appendix, we explain the general process for the approximate
computation of the energy terms. We will utilize the following identi-
ties for the calculation:

L

k=0

xk =
1� xL+1

1� x
(58)

L

k=0

kpxk=

p

m=1

xm
@m

@xm
1�xL+1

1�x
(59)

k

kp+1 sin (xk) cos (xk) =
1

2

@

@x
k

kp sin2 (xk) : (60)

9Although the signal in our case is a double sinusoid, since the frequencies are
very close and we expect MUSIC to produce one peak, this is indeed a similar
situation.

Instead of showing all the calculations, for the sake of brevity we dis-
cuss, as an example, the calculation of the term h

T
0 h0:

h
T
0 h0 =4

(N�1)=2

k=�(N�1)=2

sin2
2�fc
fs

k

=

(N�1)=2

k=�(N�1)=2

� exp j
2�fc
fs

k �exp �j
2�fc
fs

k
2

=

(N�1)=2

k=�(N�1)=2

2� exp j
4�fc
fs

k � exp �j
4�fc
fs

k

=2N � 2
1� exp j 2�f

f
(N + 1)

1� exp j 4�f
f

� 2
1� exp �j 2�f

f
(N + 1)

1� exp �j 4�f
f

+ 2

=2N + 2

�2
1�cos 4�f

f
+cos 2�f

f
(N�1) �os 2�f

f
(N+1)

1� cos 4�f
f

=2N � 2
sin 2�f

f
N

sin 2�f
f

C

: (61)

Since sin(x) � 1� j(2=�)x� 1j for 0 � x � �, and 2�fc=fs < �,
by upper and lower bounding the numerator and the denominator of
jCj, respectively, we have

jCj = 2
sin 2�f

f
N

sin 2�f
f

�
2

sin 2�f
f

�
2

1� 4f
f
� 1

: (62)

Thus, for the range of � � 2fc=fs � 1 � � (representing the range
of fs from just above the Nyquist rate (2fc) to 1=� times the Nyquist
rate), we will have jCj < 1=�, and therefore, for � < 5=N

h
T
0 h0 � 2N: (63)

A similar approach can be followed to compute other energy terms.

APPENDIX B
IS a1�1 � a2�2 A REASONABLE ASSUMPTION?

Suppose that �1 � �2. Then, the magnitude of the discrete-Time
Fourier Transform of the signal is given by [29]

F (f;fc;a1;a2;�1;�2)=S(f; fc; a1; a2; �1; �2) +W (f) (64)

= a1
sin �N f � f ��

f

sin � f � f ��
f

+a2
sin�N f� f +�

f

sin� f� f +�
f

+W(f) (65)



2586 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 7, JULY 2005

whereW (f) is the Fourier domain representation ofw(xk). A reason-
able way to find a good candidate center frequency (fc), where we can
perform our test, is to compute the correlation of the signal with the
following window in the frequency domain:

G(f; fx) =
sin �N f � f

f

sin � f � f

f

(66)

and find the point where the correlation is maximum (this would yield
a point near the stronger of the two peaks). Consider

RSG(jfc � fxj; a1; a2; �1; �2)

=
+1

�1

[S(f; fc; a1; a2; �1; �2) +W (f)]G(f; fx)df

= a1RGG(jfc � �1 � fxj) + a2RGG(jfc + �2 � fxj)

+RWG(jfxj) (67)

where RSG, RWG, and RGG are the cross-correlation and autocorre-
lation functions defined as

RGG(jfc��2�fxj)=
+1

�1

G(f;fx)G(f;fc��2)df: (68)

RGG(jfc+�2�fxj)=
+1

�1

G(f;fx)G(f;fc+�2)df: (69)

RWG(jfc � �1 � fxj) =
+1

�1

G(f; fx)W (f)df: (70)

Since �1; �2 � 1=B and fx is expected to be close to fc, we can again
use the Taylor expansion for (68) around (fc��1+fx; fc+�2�fx) =
(0; 0)

RGG(jfc��1�fxj)� �0+(jfc��1�fxj)�1+(fc��1�fx)
2�2 (71)

RGG(jfc+�2�fxj)� �0+(jfc+�2�fxj)�1+(fc+�2�fx)
2�2 (72)

where �0, �1, and �3 are some constant coefficients of the above Taylor
expansion. In addition, it can be shown that �1 = 0. Therefore, we can
write (67) as follows:

RSG(jfc � fxj; a1; a2; �1; �2) � (a1 + a2)�0

+ a1(fc � fx � �1)
2 + a2(fc � fx + �2)

2 �2: (73)

Taking the derivative of the right-hand side of (73) with respect to fx
and setting it to zero will result in

(a1 + a2)(fc � fx) � a1�1 � a2�2: (74)

Hence, a proper selection of fc (by using the above correlation-based
approach) will lead to a1�1 � a2�2. It is worth noting that application
of any subspace-based method to the data will also provide a reasonable
candidate for the center frequency fc, as discussed in Section IV-B.

APPENDIX C
COMPUTING THE KULLBACK–LEIBLER DISTANCE IN (57)

Directly using the results in [28, p. 26], we can obtain the following
expression for KLD:

J(�) � �2I(0) (75)

where I(�) is the Fisher Information measure [24, p 40],

I(�) =�E
@2 ln p(f ; �)

@�2
=

1

2
tr R1 + �2I

�1 @R1

@�

2

(76)

whereE[�] is the expectation operator. However, for the hypothesis test
of interest in (53), I(0) is zero, and (75) is not directly applicable. Here,
we extend the approach in [28, p. 26] by considering higher order terms.
Consider the following Taylor expansion:

J(�) =
D

[p(f ; �)� p(f ; 0)] log
p(f ; �)

p(f ; 0)
df (77)

=J(0) + �
@J

@�
�=0

+
�2

2

@2J

@�2
�=0

+
�3

6

@3J

@�3
�=0

+
�4

24

@4J

@�4
�=0

+O(�6): (78)

Noting that10

@ip(f ; �)

@�i
�=0

= 0 i = 1; 3 (79)

we will have (80)–(84), shown at the top of the next page. As a result,
we can write (77) as

J(�) �
�4

4
D

@ p(f ;�)

@�

2

p(f ; �)

�=0

df : (85)

On the other hand, we see that we have (86)–(88), shown at the top of
the next page. Therefore

J(�) �
�4

8

@2I(�)

@�2
�=0

(89)

=
�4

16
tr

@2

@�2
R1 + �2I

�1 @R1

@�

2

�=0

(90)

=
�4

16
tr 2

@R

@�

2

+
@2R

@�2
R+

@2R

@�2
R

�=0

(91)

where

R = R1 + �2I
�1 @R1

@�
(92)

@R

@�
=� R1+�2I

�1 @R1

@�

2

+ R1+�2I
�1 @2R1

@�2
(93)

@2R

@�2
=2 R1 + �2I

�1 @R1

@�

3

� 2 R1+�2I
�1 @R1

@�
R1+�2I

�1 @2R1

@�2
(94)

� R1 + �2I
�1 @2R1

@�2
R1 + �2I

�1 @R1

@�

+ R1 + �2I
�1 @3R1

@�3
: (95)

10p(f ; �) is an even (and differentiable) function around � = 0.
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J(0) = 0; (80)

@J

@�
�=0

=
D

@p(f ; �)

@�
log

p(f ; �)

p(f ; 0)
+ [p(f ; �)� p(f ; 0)]

@p(f ;�)
@�

p(f ; �)
�=0

df = 0 (81)

@2J

@�2
�=0

=
D

2 @p(f ;�)
@�

2

p(f ; �)
�=0

df = 0 (82)

@3J

@�3
�=0

=
D

6@p(f ;�)
@�

@ p(f ;�)

@�

p(f ; �)
�

3 @p(f ;�)
@�

3

[p(f ; �)]2

�=0

df = 0 (83)

@4J

@�4
�=0

=
D

8@p(f ;�)
@�

@ p(f ;�)

@�
+ 6 @ p(f ;�)

@�

3

p(f ; �)
�

18 @p(f ;�)
@�

2
@ p(f ;�)

@�

[p(f ; �)]2
+

8 @p(f ;�)
@�

4

[p(f ; �)]3

�=0
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=
D

6 @ p(f !;�)

@�

2

p(f ; �)

�=0

df : (84)

@2I(�)
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�=0
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@�2
D
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@�2
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�=0

df (86)
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D

@ ln p(f ;�)
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2
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�=0
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D
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3
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+

2 @p(f ;�)
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4

[p(f ; �)]3

�=0
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D

2 @ p(f ;�)

@�

2

p(f ; �)
�=0
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Finally, since

@i
R1

@�i
�=0

= 0 i = 1; 3 (96)

we will have

J(�) =
�4

8
tr R1 + �

2
I
�1 @2

R1

@�2
�=0

2

: (97)

As we see from (89) and (97), the divergence for the underlying hy-
pothesis testing problem is directly related to the second derivative of
the Fisher information matrix evaluated at � = 0.
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Nonlinear System Identification in Impulsive Environments
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Abstract—Nonlinear system identification has been studied under the
assumption that the noise has finite second and higher order statistics.
In many practical applications, impulsive measurement noise severely
weakens the effectiveness of conventional methods. In this paper, -stable
noise is used as a noise model. In such case, the minimum mean square
error (MMSE) criterion is no longer an appropriate metric for estimation
error due to the lack of finite second-order statistics of the noise. There-
fore, we adopt minimum dispersion criterion, which in turn leads to the
adaptive least mean th power (LMP) algorithm. It is shown that the LMP
algorithm under the -stable noise model converges as long as the step
size satisfies certain conditions. The effect of on the performance is also
investigated. Compared with conventional methods, the proposed method
is more robust to impulsive noise and has better performance.

Index Terms—Adaptive Volterra filter, -stable process, impulsive noise,
LMP algorithm, nonlinear system identification.

I. INTRODUCTION

System identification is an important subject that plays a central role
in many practical problems. In essence, one wants to establish a math-
ematical model for an unknown system through the input–output rela-
tionship. Linear system identification has been extensively studied for
several decades [1]. In the physical world, however, many systems ex-
hibit certain degrees of nonlinearity and are not well modeled as a linear
system. In such situations, nonlinear system identification is necessary
for further analysis.

Nonlinear systems are those that do not possess the superposition
property. Several types of nonlinear models exist in system identifica-
tion arena [1], [2]. Among them, the Volterra system [3] is one of the
most commonly used models due to its roots in Taylor’s series expan-
sion of nonlinear functions with memory. The Volterra system is also
known as the polynomial system and has applications in fields such as
communications [4], [5], speech processing [6], image processing [7],
and biomedical engineering [8].

An important issue in system identification is the effect of measure-
ment noise on the results. The measurement noise is often assumed to
be a random process with finite second-order statistics (SOS), making
the MSE an appropriate metric for estimation error. In some circum-
stances, however, the noise may have heavier tails and even may not
possess finite SOS. This is particularly true for impulsive noise, which
occurs frequently in applications such as seismology, geophysics and
astrophysics, biomedicine, communications, and underwater acoustics
[9], [10]. In such cases, identification methods based on the conven-
tional noise assumption have poor performance. Therefore, alternative
methods must be sought to identify nonlinear systems in impulsive
noise environments.

Many noise processes that are impulsive in nature can be modeled as
�-stable process [11], [12]. This is based on the Generalized Central
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