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Abstract. This work focuses on nonsquare matrix pencils A − λB, where A,B ∈ Mm×n and
m > n. Traditional methods for solving such nonsquare generalized eigenvalue problems (A−λB)v =
0 are expected to lead to no solutions in most cases. In this paper we propose a different treatment:
We search for the minimal perturbation to the pair (A,B) such that these solutions are indeed
possible. Two cases are considered and analyzed: (i) the case when n = 1 (vector pencils); and
(ii) more generally, the n > 1 case with the existence of one eigenpair. For both, this paper proposes
insight into the characteristics of the described problems along with practical numerical algorithms
toward their solution. We also present a simplifying factorization for such nonsquare pencils, and
some relations to the notion of pseudospectra.
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1. Introduction.

1.1. Pencils and nonsquare pencils. The term “pencil” used in linear algebra
is well known and refers to the expression A− λB, where both A and B are typically
square n × n matrices, and λ is a complex scalar. Of special interest are the values
that reduce the pencil rank, namely, the λ values satisfying (A− λB)v = 0 for some
nonzero vector v. Then the problem is defined as the generalized eigenvalue problem,
where the scalars λ are the generalized eigenvalues, and their corresponding vectors v
are the generalized eigenvectors.1

In recent years several different fields of research have led to the generalized
eigenvalue problem involving a nonsquare pencil, where A and B are rectangular m×n
matrices and m > n [2, 12, 22, 25]. In many of these applications, the pencil involved
becomes rectangular due to additional measurements—each new set of measurements
constructs a new row in the pencil. Clearly, more measurements (and thus more rows)
imply better possible estimation, though it is not clear how this additional information
can be exploited. Also, in most applications the content of the pencil involves noisy
measurements. Theoretically, in the noiseless case it is known that n (or possibly
fewer) solutions reducing the pencil rank exist. However, after the perturbation these
solutions may be elusive. It is this very property of the noiseless solvable case that
leads us to a different perspective in treating the nonsquare generalized eigenvalue
problem.
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1If B is invertible, one immediately sees the relation to the regular eigenvalue problem because

(A− λB)v = 0 implies B−1Av = λv.
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1.2. Problem formulation. Removing the application details, we can cast the
eventual problem in the following form: Given the matrix pair (A,B) ∈ Mm×n where
m > n, we assume that these matrices originated from the pair (A0, B0) ∈ Mm×n

by perturbation (additive noise). We further assume that for the original pair there
exist n distinct eigenpairs of the form (A0 − λkB0)vk = 0, k = 1, 2, . . . , n. Therefore,
given the measured pair (A,B) we search for both the eigenpairs {λk, vk}nk=1 and the
original pair (A0, B0). Clearly, even if m = n, there may be some situations when
there are not n solutions. Similarly, in the general case of m > n, there may not
be any solution to the pencil (A − λB)v = 0, and we are searching for the minimal
perturbation such that a rank-reducing solution exists. We will assume hereafter
that the perturbed matrices A and B are full rank (i.e., n). More formally, we are
interested in solving the following optimization problem:

Given A,B, find min
A0,B0,{λk,vk}n

k=1

‖A0 −A‖2
F + ‖B0 −B‖2

F(1)

subject to
{
(A0 − λkB0)vk = 0, ‖vk‖2

2 = 1
}n

k=1
.

The Frobenius norm is used to measure the perturbation, entrywise, between the
original pair and the estimated pair. This proposed formulation coincides with the
maximum-likelihood description if the perturbation is assumed to originate from an
additive white and zero mean Gaussian noise.

It should be noted that in many cases there is a need to constrain the solution
to have a specific structure (e.g., Hankel/Toeplitz). In this work we neglect this
option and leave this topic for future research. We note, however, that exploiting
such additional information should lead to a more satisfactory solution. Similarly, in
the spirit of generalizing the above problem we might be interested in adding weights
to the computed Frobenius norm in order to emphasize some of the entries, or to
cover cases when some of the entries are exact (e.g., fixed zeros). Again, we leave this
weighted form of the problem for future research.

1.3. Relation to previous work. Several previous papers already addressed
the treatment of perturbed rectangular pencils. However, all these contributions con-
centrate on theoretical analysis, proposing extensions based on perturbation theory,
and forming bounds on the error measure we defined in (1) as our minimization goal.
In contrast, this paper discusses a numerical algorithm for finding the eigenvalues and
the matrix pair (A0, B0).

Demmel and K̊agström [4] suggested a treatment for nonsquare pencils based on
the Kronecker canonical form (KCF). Under the assumption on the regularity of
the KCF, the spectrum of the perturbed pencil (A + E) − λ(B + F ) is considered
and compared to the spectrum of the original pencil A − λB. Later work by Edel-
man, Elmroth, and K̊agström and Elmroth, Johansson, and K̊agström extends this
work, suggesting a geometric interpretation of the above perturbation results [6, 8, 9].
Bounds are obtained for the distance from the pencil A− λB to A0 − λB0. A similar
approach and treatment is found in [2, 22]. Again, lower and upper bounds on the
distance to a solvable pair of matrices are developed.

Another line of research relevant to this work is the study of pseudospectra for
rectangular pencils (see the paper by Wright and Trefethen [25] on this topic). Most
of the contributions in this field refer to the square pencil case [23, 11, 24]. When
treating a rectangular nonsolvable pencil, we see that its pseudospectra is most likely
to be empty for very small distances. As this distance grows, at some point the
pseudospectra becomes nonempty. This is exactly the distance to which our solution
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should point. More on the relation of pencils to pseudospectra will be mentioned in
section 5.

In this work we focus on the minimal perturbation that guarantees a solution.
However, we concentrate on a practical numerical scheme that finds the optimal (in
the maximum-likelihood sense) eigenpairs, and also leads to the perturbed pair that
guarantees a solution. We find a set of eigenvalues that minimizes the distance and
we find the matrices that are the closest.

1.4. This paper’s contribution and content. Solving the optimization prob-
lem in (1) is the challenge of this paper. We open the discussion with an effective
method for visualizing the problem at hand. Then we present an analysis and insight
for the following two simplified variations of the problem posed in (1):

1. We assume n = 1, so that A = a and B = b. For this case we show that the
defined problem leads to a closed form solution. We also show equivalence to
the total least squares (TLS) method (cf. [13, p. 595]).

2. We assume n > 1 and search for a single eigenpair {λ, v}. For this more com-
plicated problem, a stable and convergent numerical algorithm is proposed.

This paper is organized as follows. In the next section we present a method
for visualizing the behavior of such nonsquare pencils as a function of the scalar λ,
and this way get a better understanding of the features of the problem at hand.
In section 3 we show how the nonsquare pencil is solved analytically for the case
of n = 1; i.e., the matrices A and B are single vectors. Through this solution we
obtain a better understanding of the solution mechanism for the more general case.
Section 4 treats the more general case with n > 1, but with the simplifying assumption
that only one eigenpair is sought. A highly effective numerical method is proposed
and analyzed. In section 5, we discuss the relationship between our work and the
notion of pseudospectra, showing the similarities and the differences between these
two approaches toward the issue of analyzing rectangular pencils. In section 6, we
present a new factorization for the rectangular pencil, and through it an analysis of our
initialization choice in the numerical algorithm. We conclude this paper in section 7
and summarize its contribution, list some open questions we have not treated, and
outline future research directions.

The problem is wide and complicated. We regard this contribution as a first stage
in a sequence of activities made to encompass its various aspects.

2. Visualizing nonsquare pencils. In order to gain insight into the treatment
of such nonsquare pencils, let us look at a related function

f(λ) = σmin (A− λB) = min
v | ‖v‖2=1

‖(A− λB)v‖2.(2)

The notation σ(X) designates the singular values of the matrix X and σmin is the
smallest singular value. It is interesting to note that this function is used often for the
construction of the pseudospectra of square matrices [25, 23]. This function describes
the constraints in (1) as a penalty term, and it has several interesting properties that
may help us visualize the behavior of the nonsquare pencil. This function is a mapping
from the complex plane (values of λ) to the real and nonnegative numbers, because
f(λ) is nonnegative by the definition of the singular values. For a solvable pair of
matrices A and B (i.e., a pair that has a rank-reducing solution λ0), the value of the
function at this λ0 value is exactly zero. This is trivial since, if the pencil A − λ0B
is rank deficient, it must have zero as its smallest singular value (and may have more
than one zero singular value). For such a solvable pair the eigenvalues are the local
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Fig. 1. A plot of the level curves of f0 = σmin (A0 − λB0), built using the unperturbed pair
(A0, B0).

minimum points of this function. This is easily seen since, if λ0 is perturbed, we get
a full rank pencil that leads to a strictly positive minimal singular value and, in the
case of a nonsolvable pair A and B, the function is strictly positive for all λ. However,
the local minimum of this function may still help in finding a solution to (1).

Due to the first property, it is quite easy for us to visualize this function and learn
about its behavior. Let us describe a simple example: We start by creating a pair
of 5 × 5 random matrices, denoted as Ã and B̃. The entries are drawn from a zero
mean Gaussian distribution with standard deviation σ = 1. We verify that this pair
has five distinct generalized eigenvalues denoted as {αk}5

k=1. Let Q be an arbitrary

full rank matrix of size 50 × 5; we create the pair A0 = QÃ and B0 = QB̃. This pair
of matrices is made up of rectangular 50 × 5 matrices. It is clear that they represent
a solvable pair since, for all k,

Rank(Ã− αkB̃) = 4

=⇒ Rank(A0 − αkB0) = Rank(QÃ− αkQB̃) = Rank(Q(Ã− αkB̃)) = 4.

Given this rectangular pair, Figure 1 shows the 2D function f0(λ) ≡ σmin (A0 −λB0).
The exact eigenvalues {αk}5

k=1 are overlaid (represented by “+” signs), and the min-
imum points of f0 match exactly the location of the eigenvalues.

We proceed and define A = A0 +NA and B = B0 +NB , where both NA and NB

are of size 50 × 5 with entries drawn from a Gaussian white noise distribution with
σ = 0.1. In Figure 2 we describe the function f(λ) = σmin (A − λB) for the noisy
version of the original pair. As can be seen, there are still five local minima. However,
relative to the location of the true eigenvalues, the local minima points are slightly
deviated.

To conclude this experiment, we present in Figure 3 yet another function f(λ),
built using a perturbed pair A and B but with much stronger noise σ = 5. We see
that all the local minima points vanished and there is a single minimum point near
the origin. This demonstrates the difficulty we will be facing when the perturbation
is relatively great.

Figure 4 shows an intersection of these functions with the real axis. As can be
seen, for f0 the values at the minimum are exactly zero, as expected.2 As we go to the

2Since this function was sampled uniformly, near zero values are obtained.
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Fig. 2. A plot of the level curves of f = σmin (A−λB), built using a moderately perturbed pair
(A,B) (σ = 0.1).
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Fig. 3. A plot of the level curves of f = σmin (A − λB), built using a strongly perturbed pair
(A,B) (σ = 5).

function f with the moderate noise, we get that the minimum points’ height is above
zero, though they exist and are close to the true points. The case of strong pertur-
bation seems to appear as a unimodal function with one minimal point at the origin.

From this experiment it is clear that the function f(λ) = σmin (A − λB) could
be beneficial in obtaining a good guess for the required eigenvalues. In the small
perturbation case this idea seems to work quite well. We also see that in solving the
problem presented in (1) we actually create a new pair of matrices that reduce the
height of the function f(λ) to zero at the local minima. It is not clear how we can
refine the eigenvalues to compensate for the induced shift due to the perturbation.
Lastly, we see that strong perturbations may lead to numerical problems if n distinct
eigenvalues are sought.

3. Solving the n = 1 case. In this section, we redefine the problem described
in (1) while assuming n = 1, and show that this case is analytically solvable.

3.1. Analysis.
Theorem 1. Given any pair of vectors a and b, a unique global solution of the

minimization problem given (1) always exists, and is given by

a0 = a− (a− λb)

1 + |λ|2 , b0 = b +
λ∗(a− λb)

1 + |λ|2 ,(3)
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Fig. 4. A 1D intersection along the center horizontal axis (the real values) of the 2D functions
described in Figures 1, 2, and 3.

where λ is the (+)-root3 of the quadratic equation

0 = λ2aHb + λ(bHb− aHa) − bHa.(4)

Proof. As this theorem is a particular case of a more general theorem presented
in the next section, the proof will be given in section 4.

Next, we find an equivalent constraint-free optimization problem that eases the
overall solution. Notice the close resemblance to the objective function used in the
previous section for visualization.

Theorem 2. The optimization problem posed in (1) is equivalent to the opti-
mization problem

min
{λ}

=
‖a− λb‖2

2

1 + |λ|2 .(5)

The optimal solutions are given by the former theorem.
Proof. This theorem is also a particular case of a more general theorem presented

in the next section, and again, the proof will be given later in section 4.
It is interesting to note that the observation made above, about the equivalence

between the original optimization problem and the one posed in (5), implies that
a function closely related to the one presented in the previous section (see (2)) is

3For a quadratic equation αx2 + βx + γ = 0, the (+)-root is given by (−β +
√
β2 − 4αγ )/(2α).
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minimized, but there is an additional term that moves the eigenvalue solution away
from the origin. From Figures 2 and 3, it is clear that such a force is desired to better
allocate the eigenvalues as the local minimum points of the treated function. As it
turns out, this term in the denominator is quite commonly seen with respect to TLS
(cf. [13, p. 595]). We next show that there is a close relation between our problem
and TLS.

3.2. Relation to TLS. Here we show that the case of n = 1 actually forms a
classic TLS problem. This strengthens our claim about the existence of a closed form
solution for the n = 1 nonsquare pencil. However, as we shall see, this equivalence to
TLS does not generalize to the n > 1 pencils.

Theorem 3. Given any pair of nonzero vectors a and b, a unique global solution
of the minimization problem posed in (1) is given by the singular value decomposition
(SVD) of the matrix [a b] by replacing the smaller, second singular value by zero.

Proof. Writing (1) differently, we obtain a classic TLS formation

min
a0,b0

‖[a0, b0] − [a, b]‖2
F subject to Rank ([a0, b0]) = 1.(6)

The optimal solution for this problem can be obtained by the SVD on [a, b] (cf. [13,
p. 70]). Writing UDV T = [a, b], we have that U is an m × 2 unitary matrix, V is
a 2 × 2 unitary matrix, and D is a diagonal 2 × 2 matrix containing the singular
values of [a, b] in descending order. The optimal solution is obtained by replacing
the second singular value by zero, and the solution becomes [a0, b0] = d1,1U1V

H
1 ,

where U1 and V 1 are the first columns of U and V , respectively, and d1,1 is the larger
singular value.

This analogy between the pencil problem and the TLS holds only for n = 1 and
cannot be employed for larger n. An attempt to rewrite (1) as a TLS problem appears
as

min
A0,B0,V

‖[A0, B0] − [A,B]‖2
F subject to

{
Rank ([A0V,B0V ]) = n,

Rank(V ) = n

}
,

where V is a matrix containing all the eigenvectors. Clearly, this is not a classic
TLS formulation and its solution can no longer be applied using the SVD since V is
involved. This explains our interest in the simpler solution for n = 1.

3.3. Squaring effect. Looking back at (3) and (4), it can be shown that

bH0 (a− λb) =

(
b +

λ∗(a− λb)

1 + |λ|2

)H

(a− λb) =
(bH + λaH)(a− λb)

1 + |λ|2 = 0.(7)

This implies that

λ =
bH0 a

bH0 b
.(8)

Similarly, if we repeat all the above analysis starting with (1) and using the constraint
b0 − αa0 = 0, where α plays the role of 1/λ, we get a dual solution

aH0
b− αa

1 + |α|2 = 0 =⇒ λ =
1

α
=

aH0 a

aH0 b
.(9)
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These two results imply that to find the optimal eigenvalue we square the rectangular
pencil by multiplication on both sides by either a0 or b0. Of course, these vectors
are not known and we have to go through a process as described above to find them.
However, an approximate alternative to the above process could be an application of
these squaring processes using the measured matrices instead of the estimated ones,
that is,

λ̂ =
bHa

bHb
or λ̂ =

aHa

aHb
.(10)

Then two different candidate solutions may be obtained as before. To choose between
them, the corresponding a0 and b0 need to be computed. This could be done by
solving the optimization problem given by (1), while assuming that λ is known. It is
not hard to see that the solution is the one proposed in (3). As before, after computing
a0 and b0 for the solutions of λ we may choose the one which leads to the smallest
perturbation.4 Note that this approximate solution is expected to be close to the
optimal solution if a small perturbation is assumed. We shall use this squaring idea
for the general (n > 1) case.

3.4. Examples. We now give several examples to see the behavior of the above
results.

Example 1. Assume a = b �= 0. This case is solvable without any perturbation
and it is clear that the proper eigenvalue should be 1.
The quadratic equation (4) becomes λ2aHa−aHa = 0, leading to the possible
solutions {λ1 = 1, λ2 = −1}. Using (3) we get, for λ1 = 1, a0 = a and b0 = b,
and thus the perturbation is 0. For the other solution λ1 = −1, we obtain
a0 = 0 and b0 = 0, and the perturbation is ‖a‖2 + ‖b‖2, and so clearly the
(+)-root is the desired solution.
Using the approximate method in (10) we get that the two solutions are equal:
λ = bHa/bHb = aHa/aHb = 1. Using (3), we obtain the optimal results that
lead to no perturbation.

Example 2. Assume that aHb = ε2 → 0, ‖a‖2
2 = 1, and ‖b‖2

2 = 0.5. In this case
the minimal perturbation zeros one of the vectors, and replaces the vector of
smallest norm by zero. This leads to the optimal result (in our case it is b
that should be nulled).
The quadratic equation in (4) becomes 0 = λ2ε2−0.5λ−ε2, and the solutions
are {λ1 = ∞, λ2 = 0} for ε → 0. The (+)-solution leads to a0 = a and b0 = 0
as required, and the second solution is similar but nulls a instead, which is
incorrect.
Approximating the solution by λ = bHa/bHb = 0 gives the wrong solution,
and using λ = aHa/aHb = ∞ leads to the optimal solution.

Example 3. Assume that for ε → 0 we have a = [1, 0]T and b = [1, ε]T . Clearly,
if we replace ε by zero, we get the case described in Example 1. Thus, a
perturbation of ε2 in the �2 norm could lead to a possible solution. However,
moving an ε/2 from b to a also causes a = b and leads to a better solution
since the perturbation in this case is 0.5ε2.
From (4) we get 0 = λ2 + λε2 − 1. The solutions are {λ1 ≈ 1, λ2 ≈ −1}.
The first result is the correct one and the perturbed solution is given by (3):

4In this approximate approach we found that there is no solution that was consistently better.
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a0 = [1, ε/2]T and b0 = [1, ε/2]T , as required, and the obtained perturbation
is ε2/2.
Using the squaring approximation, one solution is given by λ being bHa/bHb =
1/(1+ ε2). Then the minimal perturbation is roughly 3ε2. The other solution
λ = aHa/aHb = 1 leads to the optimal solution as before.

Example 4. Since in all the previous examples the approximate method gave the
optimal solution, this might lead to a wrong conjecture that it is always
equivalent to the optimal procedure. We give a counterexample, where this
approximation fails. Assume a = [0.5, 0.5]T and b = [0.5, −0.25]T . In this
case, by using the exact solver (or the TLS approach) it is easily verified
that the optimal solution is λ1 = 2, which is the (+)-root a0 = [0.6, 0.3]T and
b0 = [0.3, 0.15]T . Thus, the minimal perturbation is 0.25. The second solution
leads to λ2 = −1/2 and the implied perturbation turns out to be bigger.
Using the approximation method, we get two possible solutions λ1 = 0.4,
λ2 = 4, and clearly, both are wrong. It turns out that using the first, the
perturbation is 0.3879, and using the second, the perturbation is 0.2647, and
so we see that for both solutions the result is indeed suboptimal.

4. n > 1. The one-eigenvalue case.

4.1. Analysis. We analyze the n > 1 case by discussing a simplified problem,
where indeed n > 1 but only one eigenvalue is known to exist. The optimization
problem given in (1) simplifies in this case to

min
A0,B0,λ,v

‖A0 −A‖2
F + ‖B0 −B‖2

F(11)

subject to (A0 − λB0)v = 0 and ‖v‖2
2 = 1,

where A,B are given.
As we shall see, this case corresponds to the assumption that the perturbation on

the pair (A,B) is rank-one. Similar to the analysis for n = 1, we find an equivalent
constraint-free optimization problem that simplifies the overall solution.

Theorem 4. The optimization problem posed in (11) is equivalent to the opti-
mization problem

min
{λ,v}

‖(A− λB)v‖2
2

1 + |λ|2 subject to ‖v‖2
2 = 1.(12)

The optimal solution for A0 and B0 is obtained by a rank-one perturbation to the
original pair A and B:

A0 = A− A− λB

1 + |λ|2 vv
H and B0 = B + λ∗A− λB

1 + |λ|2 vv
H .(13)

Proof. To solve the optimization problem in (11), we express it by distinguishing
the real part (x-part) and the imaginary part (y-part) of each variable. We solve the
problem by the Lagrange multipliers method. We define a Lagrangian function

L{A0
x, A

0
y, B

0
x, B

0
y}

= 1
2 (‖A0

x −Ax‖2
F + ‖A0

y −Ay‖2
F + ‖B0

x −Bx‖2
F + ‖B0

y −By‖2
F )

+ γT
1
[(A0

x − λxB
0
x + λyB

0
y)vx − (A0

y − λyB
0
x − λxB

0
y)vy]

+ γT
2
[(A0

x − λxB
0
x + λyB

0
y)vy + (A0

y − λyB
0
x − λxB

0
y)vx]

+ δ(‖vx‖2
2 + ‖vy‖2

2 − 1).

(14)
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The vectors γ
x
, γ

y
and the scalar δ are the Lagrange multipliers of the constraints.

Taking derivatives with respect to A0
x, A0

y, B
0
x, and B0

y , we get

∂L
∂A0

x

= A0
x −Ax + γ

1
vTx + γ

2
vTy = 0,

∂L
∂A0

y

= A0
y −Ay − γ

1
vTy + γ

2
vTx = 0,

∂L
∂B0

x

= B0
x −Bx − λxγ1

vTx + λyγ1
vTy − λxγ2

vTy − λyγ2
vTx = 0,

∂L
∂B0

y

= B0
y −By + λyγ1

vTx + λxγ1
vTy + λyγ2

vTy − λxγ2
vTx = 0.

From this equation, we can deduce that

A0 = A− γvH , B0 = B + λ∗γvH ,(15)

with γ = γ1+iγ2. These expressions validate our claim regarding the rank-one update.
Using the constraint (A0 − λB0)v = 0, we obtain

0 = (A0 − λB0)v = (A− λB) v −
(
γvH + |λ|2γvH

)
v

= (A− λB) v − (1 + |λ|2)γ,

where we have used the constraint ‖v‖2 = 1. Thus,

γ =
(A− λB) v

1 + |λ|2 .(16)

Using this in (15), we get

A0 = A− A− λB

1 + |λ|2 vv
H and B0 = B + λ∗A− λB

1 + |λ|2 vv
H .(17)

For an eigenpair {λ, v} we may compute A0 and B0 using this equation, and the
perturbation can be derived easily, leading to

‖A0 −A‖2
F + ‖B0 −B‖2

F =

∥∥∥∥A− λB

1 + |λ|2 vv
H

∥∥∥∥
2

F

+

∥∥∥∥λ∗A− λB

1 + |λ|2 vv
H

∥∥∥∥
2

F

(18)

=

∥∥(A− λB)vvH
∥∥2

F

1 + |λ|2 =
‖(A− λB)v‖2

2

1 + |λ|2 .

Here we used the property ‖u zH‖2
F = ‖u‖2

2 · ‖z‖2
2 and the fact that ‖v‖2

2 = 1.
Note that, as in the n = 1 case, we get a similar relation to the heuristic function
‖(A− λB)v‖2 described in section 2, but there is an additional force that moves the
eigenvalue away from the origin.

Finally, it is clear that minimizing this function with respect to λx, λy, vx, vy leads
to the optimal solution of both problems posed in (11) and (12), as claimed.

For n = 1 we have that v is a scalar of unit norm. Thus vvH = vHv = 1, and
from (13) and (12) we obtained the results stated in (3) and (5).

This suggests that, instead of solving the problem given by (11), finding optimal
A0, B0, λ, and v, one can solve the problem presented in (12) and find optimal values
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for λ and v only. These optimal values can be used in (13) to obtain optimal A0

and B0 as well.
An interesting consequence of the above result is that evaluation of pseudospectra

for nonsquare pencils can be performed using the function σmin (A− λB)/
√

1 + |λ|2.
This is a generalization of the function σmin (A−λI) used for the square pseudospectra
case.

In case there are several such candidate eigenpair solutions, one could check each
by computing the perturbation obtained and choose the solution that leads to the
smallest value. This perturbation is given simply by ‖(A − λB)v‖2/

√
1 + |λ|2. In

fact, multiple solutions for (12) may lead to the solution of the more general case of
having more than one eigenpair.

The problem of finding the optimal eigenpair remains. We next show the necessary
conditions on {λ, v} for both optimization problems.

Theorem 5. The necessary conditions on {λ, v} to solve both optimization prob-
lems posed in (11) and (12) are given by

vH(BH + λAH)(A− λB)v = 0,(19)

(A− λB)H(A− λB)v = αv(20)

for the real and positive scalar α = vH(A− λB)H(A− λB)v.
Proof. Returning to the Lagrangian function in (14) and taking derivatives with

respect to λx, λy, we get

∂L
∂λx

= −γT
1
B0

xvx + γT
1
B0

yvy − γT
2
B0

xvy − γT
2
B0

yvx = 0,

∂L
∂λy

= γT
1
B0

yvx + γT
1
B0

xvy + γT
2
B0

yvy − γT
2
B0

xvx = 0.

In fact, we have

vHBH
0 γ = 0 or 0 = vH

(
BH + vvHλ

AH − λ∗BH

1 + |λ|2

)
(A− λB) v

1 + |λ|2

= vH
(
BH + λAH

)
(A− λB)

(1 + |λ2|)2
v.(21)

The denominator may be discarded since 1 + |λ|2 ≥ 1. The resemblance to (4) is
evident. Note also that for n = 1 this immediately leads to (4). To validate our claim
in Theorem 1 that the (+)-root is the proper solution, we take the second derivative
of (5) with respect to λ (done properly, with real and imaginary parts separated) and
show that this derivative is negative for the (+)-root. The function we refer to is

f(λ) =
‖a− λb‖2

2

1 + |λ|2 =
‖ax − λxbx + λyby‖2

2 + ‖ay − λxby − λybx‖2
2

1 + |λx|2 + |λy|2
.(22)

We skip the algebraic steps of the derivative, as those are elementary (and tedious).
It can be shown that the second derivative is indeed negative. Equation (4) will be
shown as a consequence of the next theorem.

Returning to the n > 1 case, we see that any nontrivial solution (i.e., ‖v‖2
2 = 1)

for the equation

vH
[
λ2AHB + λ(BHB −AHA) −BHA

]
v = vH

(
BH + λAH

)
(A− λB) v = 0(23)
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is a candidate for the minimum point of the problem in (11). Another constraint on
the solution is given by taking a derivative of the Lagrangian in (14) with respect to
vx, vy. In this way we get

∂L
∂vx

= (A0
x − λxB

0
x + λyB

0
y)

T γ
1

+ (A0
x − λyB

0
x − λxB

0
y)

T γ
2

+ 2δvx = 0,

∂L
∂vy

= −(A0
y − λyB

0
x − λxB

0
y)

T γ
1

+ (A0
x − λxB

0
x + λyB

0
y)

T γ
2

+ 2δvy = 0.

Joining these together, we obtain

0 = (A0 − λB0)
H
γ + 2δv(24)

=

[
(A− λB) −

(
1 + |λ|2

) (A− λB)

1 + |λ|2 vvH
]H

(A− λB)v

1 + |λ|2 + 2δv

=

(
I − vvH

)
(A− λB)

H
(A− λB) v

1 + |λ|2 + 2δv.

Multiplying both sides by vH from the left and exploiting again the unit norm of v
yields

0 =
(
vH − vH

)
(A− λB)

H
(A− λB) v + 2(1 + |λ|2)δ = 2(1 + |λ|2)δ,(25)

implying that δ = 0. Thus (24) becomes

0 =
(
I − vvH

)
(A− λB)

H
(A− λB) v.

The matrix (I−vvH) is a projection matrix with a null space spanned by the vector v.
Thus, this leads to the requirement

(A− λB)
H

(A− λB) v = αv(26)

for the real and positive scalar α = vH (A− λB)H (A− λB) v. To conclude this part,
the optimal eigenpair λ, v should satisfy (23) and (26), as claimed by Theorem 5.
Note that these two requirements could be derived directly from (12).

The two proposed requirements on the optimal λ and v cannot be solved analyt-
ically. Instead, we propose a numerical algorithm for their solution, leading to the
minimization of the function given in (12).

4.2. Numerical algorithm. From our understanding gained in Theorem 4, and
the necessary conditions on λ and v in Theorem 5, we propose a numerical algorithm to
minimize (12). The algorithm requires a proper initialization guess for λ. Using (21),
we obtain vHBH

0 (A− λB)v = 0. This equation can be approximated by the solution
of BH(A−λB)v = 0, which is a square generalized eigenvalue problem and equivalent
to the problem (B†A−λI)v = 0, and this can serve for the computation of the initial
values.

Given an initial λ, the optimal v is obtained by the right singular vector corre-
sponding to the smallest singular value of (A− λB)H (A− λB), as suggested above.
Using this updated vector, from (19) we obtain a quadratic equation with respect
to λ. In the spirit of our discussion in section 3, we choose the (+)-root, leading to
the minimum of the function with respect to λ. This process is repeated, alternat-
ing between an updated λ and an updated v until convergence. Algorithm A is a
pseudocode description of this algorithm.
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Algorithm A. Numerical algorithm for the minimization of the n > 1 case with
one eigenpair.
Task: Minimize ‖(A− λB)v‖2

2/(1 + |λ|2) with respect to λ and v.
Initialization: Choose initial λ from (BHA− λBHB)v = 0.
Repeat until convergence:

• Update v: Compute v as the right singular vector corresponding to the
smallest singular value of the matrix A− λB.

• Update λ: Choose λ as the (+)-root of the scalar quadratic equation
vH (BH + λAH) (A− λB) v.

Finalize: With λ and v compute A0 and B0 using (17).

Theorem 6. Algorithm A is guaranteed to converge to a local minimum of the
function f(λ, v) = ‖(A− λB) v‖2

2/(1 + |λ|2).
Proof. For the case n = 1, the convergence is established in one step, since the

update of v is unnecessary, and the solution is given by solving the quadratic equation
for λ.

Let us look at the function f(λ, v) at the kth iteration and treat the general n > 1
case. For a current solution vk, we have two candidate solutions for λk+1 by solving
the quadratic equation (23). The solutions are

λ±
k+1 =

−vkB
HBvk + vkA

HAvk ±
√

(vkB
HBvk − vkA

HAvk)
2 + 4(vkA

HBvk)
2

2vkA
HBvk

.

It can be shown that the second derivative of f(λ, v) for fixed vk and the two solutions
for λk+1 are proportional to

∓
√

(vkB
HBvk − vkA

HAvk)
2 + 4(vkA

HBvk)
2.

Thus the (+)-root is the minimizer of f(λ, v), and we get that

f(λk+1, vk) ≤ f(λk, vk).

Given λk+1, we update vk+1 by choosing the rightmost singular vector of the matrix
A− λk+1B, and it immediately follows that

‖(A− λk+1B)vk+1‖2
2 ≤ ‖(A− λk+1B)vk‖2

2.

Thus we obtain

0 ≤ f(λk+1, vk+1) ≤ f(λk+1, vk) ≤ f(λk, vk),

which guarantees convergence.

4.3. Example. Theoretical analysis of the rate of convergence is difficult. Ex-
tensive experiments consistently show successful convergence at a rate similar to that
shown in the examples below. In those experiments we see a linear rate of convergence.
We define the rate of convergence as

r(k) =
f(λk+1, vk+1) − f(λ∞, v∞)

f(λk, vk) − f(λ∞, v∞)
.

Figure 5 presents a graph of r(k) as a function of k for a specific yet representative
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Fig. 5. Convergence of r(k) as a function of k for a 15 × 5 matrix with σ = 0.1.
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Fig. 6. The function f(λ) = σmin (A− λB) using σ = 0.1.

example. The pencil was chosen to be of size 15 × 5, generated similarly to those
described in section 2 and with σ = 0.1. We plotted the five different curves obtained
with different initial values chosen manually (such that they are far worse than the
ones found by the proposed squaring approach). As can be seen, r(k) tends to stabilize
to a constant value, indicating linear convergence.

In Figure 6, the function

f(λ) = min
v

‖(A− λB)v‖2
2

1 + |λ|2

is visualized, along with the iterative process using the same experiment mentioned
above with σ = 0.1 (note that this time we used complex entries so that the function
is no longer symmetric). The +’s mark the manually chosen initial points, and the
white points are the initial points that could have been obtained by the squaring
method (those points are much closer to the steady-state solution). The o’s mark the
true eigenvalues of the clear matrix pair (A0, B0). The black dots present the iterative
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Fig. 7. The function f(λ) = σmin (A− λB) using σ = 0.5.
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Fig. 8. The function f(λ) = σmin (A− λB) using σ = 1.0.

algorithm results. We can see that convergence to near optimal values is obtained,
especially for those eigenvalues near the origin.

Figures 7 and 8 present a similar simulation for stronger noise. Figure 7 corre-
sponds to σ = 0.5 and Figure 8 to σ = 1. As can be seen, the analyzed function’s
local minima points deviate gradually from the true values. As the noise gets stronger,
some local minima may vanish altogether.

The simulations of the proposed algorithm and the creation of all the figures were
performed using Matlab. A typical run-time of the algorithm for the matrix sizes
involved takes approximately 1–2 seconds for 20 iterations.

5. Relation to pseudospectra. For the regular eigenvalue problem with a
square matrix A, we define λ as the eigenvalues of A satisfying the condition (A −
λI)v = 0 for some nonzero n-vector v. We write also that λ ∈ Λ(A). Similarly,
λ ∈ Λ(A,B) refers to the generalized eigenvalues of the (possibly nonsquare) pen-
cil A − λB. A pseudospectra of a matrix extends the concept of eigenvalues and



THE GEP FOR NONSQUARE PENCILS USING AN MPA 597

generalized eigenvalues and considers their location due to perturbation of the ma-
trices involved [23] (see also [3, 15, 19, 18] for a relation of this concept to stability).
The notion of pseudospectra in general, and for rectangular pencils in particular, is
a relatively recent subject of research. The definition of pseudospectra for the square
case is given in [23]:

Λε(A) = {z ∈ Λ(A + E) : ‖E‖F ≤ ε}.

Many papers treat the square case [2, 11, 10, 24, 25]. For a comprehensive survey
see [23]. A treatment of the nonsquare pencil is addressed in [25, 11] by generalizing
the definition of Van Dorsselaer for pencils to5

Λε(A,B) = {z : ∃ u �= 0, (A + E)u = z(B + F )u ∀ ‖E‖2
F + ‖F‖2

F ≤ ε}.

Clearly, the resemblance to our problem is evident. Analysis of the pseudospectra
is primarily concerned with the patterns of eigenvalue location due to perturbation of
the involved matrices. The above definition creates a cloud of points that correspond
to all possible perturbation matrices E and F in the permissible range.

Referring to the above definition, our approach is similar and closely related. If we
apply this definition to a nonsquare pencil with more rows that columns, it is most
likely that this pseudospectra set will be empty. As we increase the perturbation
energy ε, at some point we hit a solvable pair for which there are eigenvalues and the
pseudospectra set is no longer empty. This is the solution of our proposed approach,
since we seek the closest solvable pair. Thus, for a given starting pair of matrices A,B
our method finds the minimal ε that leads to a nonempty pseudospectra. Moreover,
our approach yields the exact perturbation that gets such a set of eigenvalues, and
the eigenvalues themselves. In a way, we may refer to our approach as an inverse
pseudospectra analysis of the treated pencil.

As a last comment in this discussion, we note that pseudospectra for a square
matrix A is practically computed by studying the function f(λ) = σmin (A−λI) [23].
When we are working with matrix pencils, and allowing perturbation in both A and B,
this function needs to be changed to f(λ) = σmin (A − λB)/

√
1 + |λ|2. The close

relation between these two choices can be easily explained if one returns to Theorem 3
and discusses the maximum likelihood estimation of A0 in the case when B is chosen
to be fixed. Then, with the constraint B0 = B, we obtain a target function without
the denominator

√
1 + |λ|2. Indeed, in the case of B = I, we return to the original

function used by the pseudospectra.

6. A simplifying factorization. There are several ways to prefactorize the in-
volved matrices A and B to simplify their structure, prior to the application of the
numerical algorithm proposed here (see, for example, [21]). In this section we present
one such way, which serves two different objectives: (i) requiring less computation
in the iterative algorithm, and (ii) obtaining a bound on the error of the squaring
initialization method. The proposed algorithm is a combination of the QR transfor-
mation and the GSVD due to Van Loan (cf. page 465 in [13] and [20]). A similar
decomposition was given in [16, 17].

5The definition of pseudospectra used in [25] is actually slightly different, using separate and
independent bounds on the perturbation of each of the two matrices involved. We chose to describe
here a variant of their definition that aligns well with our point of view.
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6.1. The factorization. We start our description with the assumption that
m ≥ 2n (there are at least twice as many rows as there are columns in the pencil).
The general case will be treated later.

Theorem 7. Consider a rectangular matrix pencil, defined by the two matrices
A,B ∈ Mm,n. An m×m unitary matrix W and an n×n invertible matrix X can be
found such that

A = W

⎛
⎝ An

0
0

⎞
⎠XH , B = W

⎛
⎝ G

Bn

0

⎞
⎠XH ,

with An, Bn two diagonal matrices with nonnegative terms such that AT
nAn+BT

nBn =
In, and G is a full square matrix.6

Proof. First, apply a QR decomposition to the matrix [A B]. Consider the
obtained upper triangular matrices A1 = QA and B1 = QB. Applying the GSVD to
the matrices A1(1 : n, :) and B1(n + 1 : 2n, :), we obtain two n × n unitary matrices
U, V and an n× n invertible matrix X such that

A1 = UAnX
H , B1 = V BnX

H ,

with AT
nAn+BT

nBn = In. Defining the m×m unitary matrix W := Q(U⊕V ⊕Im−2n),
we obtain the desired result.

The next theorem extends the above result for the case n < m < 2n.
Theorem 8. Consider a rectangular matrix pencil, built of the two matrices

A,B ∈ Mm,n. An m×m unitary matrix U and an n× n invertible matrix X can be
found such that

A = Q

(
Am−n ⊕ I2n−m

0m−n,n

)
XH , B = Q

(
G

[Bm−n Om−n,2n−m]

)
XH ,

where Am−n, Bm−n are two (m − n) × (m − n) diagonal matrices with nonnegative
terms such that AT

m−nAm−n + BT
m−nBm−n = Im−n, and G is a full square matrix.

The proof of this theorem is omitted, as it immediately follows from the applica-
tion of the GSVD to two matrices with different number of rows. We should note that
we have found a speed-up factor of 2–3 for large matrices when using the factorization
before iterating.

6.2. Squaring method for initialization. As a last point in our discussions in
this section, we show that based on the factorization algorithm we are able to bound
the error induced by the squaring initialization algorithm, as presented in previous
sections.

Theorem 9. Consider a rectangular matrix pencil, built of the two full rank
matrices A,B ∈ Mm,n, and assume m > 2n. We denote the pair {λs, vs} as
the initialization pair, obtained by solving the square generalized eigenvalue problem
BH(A− λB)v = 0. Then, our target function

f (λ, v) =
‖(A− λB)v‖2

2

1 + |λ|2

6Note that X is the product of an upper triangular matrix with a unitary matrix, which is also
easily invertible.
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satisfies

f (λs, vs) ≤ ‖AnX‖2
2,

where An and X are matrices obtained by the factorization given by applying it on
the pair [B, A].

Proof. Using the factorization (note that we replaced the order of the treated
matrices) we get

A = W

⎛
⎝ G

An

0

⎞
⎠XH , B = W

⎛
⎝ Bn

0
0

⎞
⎠XH .

Thus,

f (λ, v) =
‖(A− λB)v‖2

2

1 + |λ|2 =

∥∥(G− λBn)XHv
∥∥2

2
+
∥∥AnX

Hv
∥∥2

2

1 + |λ|2 .(27)

On the other hand, when using the squaring method, we solve BH(A − λB)v = 0.
Using again the factorization, we get

BH(A− λB)v = XBH
n (G− λBn)XHv = 0.(28)

Since X is invertible, and since B is full rank, it implies that the multiplication
by XBH

n can be omitted from the above equation without affecting the solution.
Thus, the squaring method finds the pair {λs, vs} that solves (G− λsBn)XHvs = 0.
Substituting this relation in (27), we obtain

f (λs, vs) =

∥∥(G− λsBn)XHvs
∥∥2

2
+
∥∥AnX

Hvs
∥∥2

2

1 + |λs|2
=

∥∥AnX
Hvs

∥∥2

2

1 + |λs|2
(29)

≤
∥∥AnX

Hvs
∥∥2

2
≤

∥∥AnX
H
∥∥2

2
≤ ‖An‖2

2 ‖X‖2
2 ≤ ‖X‖2

2,

where we have used ‖vs‖2 = 1 and AT
nAn + BT

nBn = In.
Based on the above theorem we have that for the function f(λ, v) = ‖A −

λB‖2
2/(1 + |λ|2), we get the relation

0 ≤ f(λopt, vopt) ≤ f(λs, vs) ≤ ‖AnX
H‖2

2.(30)

This implies that from the computable bound we are able to evaluate the proximity
of our pencil pair (A,B) to a solvable pair. This result also implies that, while the
squaring method does not minimize our penalty function, it performs near-optimal
evaluation of the solution by concentrating on the easier part of the penalty, as can
be seen in (27).

7. Conclusions and future work. This work has addressed the nonsquare
generalized eigenvalue problem. In its general form, the problem we aimed to solve
was

min
A0,B0,{λk,vk}n

k=1

‖A0 −A‖2
F + ‖B0 − B‖2

F

subject to
{
(A0 − λkB0)vk = 0, ‖vk‖2

2 = 1
}n

k=1
.
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In this paper we treated two simplified variations of this problem. Starting with the
n = 1 case, we showed that it leads to a closed form solution. Then we treated the
n > 1 case with one eigenpair. For this more general problem we proposed a numerical
algorithm and demonstrated its behavior. We presented a new factorization of such
rectangular pencils, leading to a simplified implementation.

Work is underway to extend these results and treat the general problem with
n eigenpairs as proposed above. Our final goal is to propose a reliable numerical
method that can be extended to treat the structured pencil problem.
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[17] B. Kågström, RGSVD—An algorithm for computing the Kronecker structure and reducing
subspaces of singular A−λB pencils, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 185–211.

[18] R. Lippert and A. Edelman, The computation and sensitivity of double eigenvalues, in Ad-
vances in Computational Mathematics, Lecture Notes in Pure and Appl. Math. 202, Dekker,
New York, 1999, pp. 353–393.

[19] A. Malyshev, On Wilkinson’s Problem, Tech. report 140, Department of Informatics, Univer-
sity of Bergen, Norway, 1997.



THE GEP FOR NONSQUARE PENCILS USING AN MPA 601

[20] C. C. Paige and M. A. Saunders, Towards a generalized singular value decomposition, SIAM
J. Numer. Anal., 18 (1981), pp. 398–405.

[21] P. Spelluci and W. M. Hartmann, A QR decomposition for matrix pencils, BIT, 40 (1999),
pp. 183–189.

[22] G. W. Stewart, Perturbation theory for rectangular matrix pencils, Linear Algebra Appl., 208
(1994), pp. 297–301.

[23] L. N. Trefethen, Computation of pseudospectra, Acta Numer., 8 (1999), pp. 247–295.
[24] J. L. M. Van Dorsselaer, Pseudospectra for matrix pencils and stability of equilibria, BIT,

37 (1997), pp. 833–845.
[25] T. G. Wright and L. N. Trefethen, Pseudospectra of rectangular matrices, IMA J. Numer.

Anal., 22 (2002), pp. 501–519.
[26] T. G. Wright and L. N. Trefethen, Large-scale computation of pseudospectra using

ARPACK and eigs, SIAM J. Sci. Comput., 23 (2001), pp. 591–605.


