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Abstract. We address the problem of reconstructing a planar shape from a finite number of noisy measurements
of its support function or its diameter function. New linear and non-linear algorithms are proposed, based on
the parametrization of the shape by its Extended Gaussian Image. This parametrization facilitates a systematic
statistical analysis of the problem via the Cramér-Rao lower bound (CRLB), which provides a fundamental lower
bound on the performance of estimation algorithms. Using CRLB, we also generate confidence regions which
conveniently display the effect of parameters like eccentricity, scale, noise, and measurement direction set, on the

quality of the estimated shapes, as well as allow a performance analysis of the algorithms.
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1. Introduction

This paper is motivated by the problem of reconstruct-
ing an unknown planar shape from a finite number of
noisy measurements of its support function or its di-
ameter function. Given a measurement direction (i.e., a
unit vector, or angle), the corresponding support func-
tion measurement gives the (signed) distance from
some fixed reference point (usually taken to be the
origin) to the support line to the shape orthogonal to
the direction (see Fig. 2). The corresponding diameter
function measurement provides the distance between
the two support lines parallel to this direction (see
Fig. 3). We shall refer to support and diameter func-
tions collectively as support-type functions. In view of
the data, it is natural to focus on convex bodies.

*Supported in part by U.S. National Science Foundation grants CCR-
9984246 and DMS-0203527.

Support function data arise in a variety of physi-
cal experiments and therefore have been studied by
researchers with diverse interests. Prince and Willsky
[22] used such data in computerized tomography as a
prior to improve performance, particularly when only
limited data is available. Lele et al. [13] applied sup-
port function measurements to target reconstruction
from range-resolved and Doppler-resolved laser-radar
data. The general approach in these papers is to fit
a polygon to the data, in contrast to that of Fisher
et al. [2], who use spline interpolation and the so-
called von Mises kernel to fit a smooth curve to the
data. This method was taken up in [9] and [18], the
former dealing with convex bodies with corners and
the latter giving an example to show that the algo-
rithm in [2] may fail for a given data set. Support
function data has also featured in robotics via the no-
tion of a line probe; however, the focus here has been
on algorithmic complexity issues under the assump-
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Figure I.  Two-step procedure for shape from support-type measurements.

tion of exact rather than noisy data (see, for example,
[15] and [24]).

Diameter measurements can be obtained using an
instrumented parallel-jaw gripper and shape from di-
ameter has been studied by researchers in the robotics
community. Rao and Goldberg [23], observing that
shape cannot be uniquely recovered even from exact
diameter measurements (see Section 2.1), used them to
recognize a shape among a known finite set of shapes.
Li [14] found the precise number of (exact) diameter
measurements which together with location informa-
tion allow one to reconstruct a polygon with a known
number of edges.

There is a more general and much-studied form
of data called the brightness function, the 2-D case
of which is just the diameter function. For an n-
dimensional body, brightness function measurements
give the (n — 1)-dimensional volumes of its orthogonal
projections onto hyperplanes (i.e., areas of shadows).
The problem of reconstruction from brightness func-
tion data is important in geometric tomography, the
area of mathematics concerning the retrieval of infor-
mation about a geometric object from data about its
sections or projections (see [3]). Algorithms for re-
constructing an object from noisy measurements of its
brightness function were introduced by Gardner and
Milanfar [5, 6]. Moreover, convergence of the princi-
pal algorithms has been established in this setting (see
[4] for details).

One contribution of the present paper (see Sections 2
and 3) is a new approach to support function mea-
surements that employs the Extended Gaussian Image
(EGI). This encodes a convex polygon that approxi-
mates the shape in terms of the lengths a; of its edges
and their outer normal angles ;. The EGI is a suit-
able parametric model enabling a systematic statisti-
cal analysis of shape estimation from support func-
tions. Moreover, for the diameter function, the EGI is
the most natural and convenient parametrization (see
Section 2.2). There is therefore the added advantage
of a uniform treatment of both support and diameter
functions.

Regardless of the underlying true shape, our method
always produces a convex polygon that approximates
it. The reconstruction problem is solved in two steps
(see Fig. 1). In the first step, the noisy data are used
to estimate the EGI of the unknown shape; we obtain,
in fact, the EGI of the approximating convex polygon.
The second step produces a Cartesian representation
of this polygon from its EGI.

Another contribution of this paper is a systematic
statistical analysis (see Section 4) of the problem of
reconstructing a planar shape from noisy support or di-
ameter function measurements. The approach involves
the derivation of the constrained Cramér-Rao lower
bound (CCRLB) on the estimated parameters. Using
the CCRLB and following the approach employed in
[27] and [28], local and global confidence regions can
be calculated corresponding to any preassigned con-
fidence level. These form uncertainty regions around
points in the boundary of the underlying object, or
around its whole boundary. Such confidence regions
are tremendously powerful in displaying visually the
dependence of measurement direction set, noise power,
and the eccentricity, scale, and orientation of the under-
lying true shape on the quality of the estimated shape.
They also allow a performance analysis of our algo-
rithms, carried out in Section 5, where experimental
results can also be found.

Support and diameter functions are typically mea-
sured using electronic sensor devices such as a cam-
era, robot tool, grippers, etc., so the noise corrupt-
ing the measurements is generally the electrical noise
coming from the sensors. This noise arises during
data acquisition (readout noise) and can be approx-
imated by a Gaussian distribution. Throughout the
paper, therefore, the noise is modelled as Gaussian
white noise. Two remarks about this are appropri-
ate. Firstly, this model makes natural the use of least
squares algorithms (see Section 3). However, since
such algorithms are sensitive to outliers, one could,
if the data were thought to contain many outliers,
use instead L, norm minimization for an appropri-
ate p € [1,2]. Secondly, the CRLB analysis could
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Figure 2. The support function.
if necessary be carried out for different noise stati-
stics.

2. Support-Type Functions and the EGI
2.1. Background

If K is a convex body in the plane %? and v is a unit
vector, the support function hg (v) of K is

hg (V) = sup xv. (D)
xekK

Then &g (v) is the (signed) distance from the origin 0
to the support line

Lv)={xe R |x'v=hgw)

to K orthogonal to v. A convex body is completely
determined by its support function; see [25, p. 38].

The most useful metric for calculating the distance
between convex bodies can be defined by means of the
support function. The Hausdor{f distance between two
convex bodies K and M is

(K, M) = |lhx — hulloo 2

where || - || o is the infinity norm.

It is often convenient to write the unit vector v =
[cosw, sina]”. Then the support function hg(v) =
hg(a) is continuous and periodic with period 2.
Closely related to the support function is the diameter
function bk (v) of K, given by

b (v) =bg(a) = hg(a +7/2) + hg(a —7/2).  (3)

The diameter function is continuous and periodic with
a period of m, and bg(v) = bk () is the distance
between the two supporting lines L(« & 7 /2) parallel
to v (see Fig. 3).

L(o-m/2
( \)

\

~N
b(a) L(ow1t/2)

Figure 3. The diameter function.

Figure 4.

Sets of convex bodies with equal diameter functions.

The diameter function does not determine a convex
body, even up to translation, and even if the body is a
polygon (see Fig. 4, left) or a disk (see Fig. 4, right). In
fact, for each convex body there is an origin-symmetric
convex body with the same diameter function. (An
origin-symmetric body is one equal to its reflection in
the origin.) However, any two origin-symmetric con-
vex bodies having the same diameter function must
be equal. This is a very special case of Aleksandrov’s
projection theorem [3, Theorem 3.3.6]. For detailed
discussions, see [3, Chap. 3] and [6].

Underlying our whole approach is the idea of param-
eterizing a shape using its Extended Gaussian Image
(EGI), which effectively encodes the shape in terms of
the curvature as a function of the normal to its bound-
ary. When K is a convex polygon, its EGI is simple
to describe. For an N-sided polygon whose kth edge
has length a; and outer unit normal vector uy, the EGI
can be represented by the N vectors a;uy (see the left
two pictures in Fig. 5), or, if uy = [cos 6, sin 017,
by the set {aj,...,an,0;,...,0y}. This provides a
convenient set of parameters we shall often use later.
The EGI has the desirable property that it determines a
convex body, up to translation. We refer the reader to
[3, 10, 25] for more details.

The important question naturally arises as to which
sets {ay, ...,ay,01,...,0y} of 2N real numbers cor-
respond to the EGI of a convex polygon. The follow-
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aguy

A convex polygon EGI vectors

Figure 5.

ing necessary and sufficient conditions are intuitively
obvious:

a >0 fork=1,...,N 4)

and the EGI vectors sum to zero, that is,

N N N r
Zakuk = |:Z a cos b, Zak sin@k:| =1[0,0]".
k=1 k=1 k=1

5

This observation is a very special case of Minkowski’s
existence theorem (see [3, p. 356] or [25, p. 390]).

2.2. Geometry from the EGI

Suppose that we have the EGI {ay, ..., ay, 6, ..., 60y}
of a convex polygon K. Clearly K is uniquely deter-
mined, up to translation. It is then possible to obtain its
diameter function, and, if the position of K is specified,
its Cartesian representation and its support function.
We now obtain the corresponding formulas, begin-
ning with the diameter function. By Cauchy’s projec-
tion formula (see [3, p. 361]), the diameter of K in the

direction v = [cos e, sina]” is

1 N
bi(@) =5 Y arl cos(a — ). ©6)
k=1

The formula becomes transparent on observing that
ai|cos(a — 6;)| is the diameter in the direction v of the
kth edge of the polygon, a line segment of length a;
with normal angle 6;.

The simplest way to reconstruct a translate of K from
its EGI is to arrange the vectors in counterclockwise
order, rotate each vector counterclockwise by 7 /2, and
place them so that the tail of each vector lies at the
head of the preceding vector (see Fig. 5 and [16]). Let

Rotated EGI vectors

// \\ 4
3¥ N

) 4~

N

-

Reconstructed polygon

Obtaining the Cartesian coordinate representation from the EGI.

i01+7/2) iy -+/2))T

r=1[r,....,r51¥ = [a1e ...,aye
list the rotated EGI vectors in complex form. Then,
if the tail of the first vector is at 0, the vertices of this
translate of K are represented by the complex numbers

O,ri,ri+ry,...,ri+r+---+ry_g. @)

In matrix-vector notation, the vertices in (7) are
given by Pr, where

000 00
1 0 0 00
p_|1 10 0 0] ®)
111 1 0]

For our purposes, however, this position of the re-
constructed polygon is not optimal, since it causes any
error in vertex positions to accumulate as the ver-
tex index ¢ increases from ¢ = 1 to N. This can be
avoided by positioning the reconstructed polygon so
that its vertices have their barycenter at the origin (see
Section 4.3.2). To obtain a formula for the latter, note
that the barycenter of the vertices in (7) is represented
by the complex number

O+rn+@i+r)+--+01+r+--
N -1 N -2
+ry-1))/N = N r+ N ro 4

+7ry_1 = (1/N)ee Pr, )

where e = [I,1,...,1]7 and where we used the
fact that Z?’:l rj = 0, by (5). Then the vertices
s; = [x;, y:]" of the translate of K whose vertices
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have barycenter at 0 are given by s = Dr, where
D=P—(1/N)ee’P; (10)

specifically,

N
s = [Z dyxay cos(Or + 7/2),

k=1

N T
D dua sin<9k+n/2>} . an

k=1

where d;; = D, is the (¢, k) entry of the matrix D.

Having established this formula for the Cartesian
representation of the translate of K whose vertices have
their barycenter at 0, we can also obtain its support
function at v = [cosc, sina]”. Indeed, choose ¢ so
that 6, < o < 6,,. Then, from (1) we have

hg(@) = hig)(@) =s! v =x,cosa + y, sina, (12)

so from this and (11), we obtain

N

hig(a) = Z dray cos(6r + mw/2)cosa
k=1

N
+ Z dyeay sin(6y + m/2) sina
k=1

N
=Y dyay sin(a — 6;). (13)
k=1

Note that (13) holds only for polygons whose ver-
tices have barycenter at 0 and when 6, < o < 6,4.

3. Algorithms for Shape from Support-type
Functions

3.1. Algorithms Using Support Function
Measurements

Throughout this section we consider an unknown pla-
nar convex body K with a finite number of noisy
support function measurements modelled by y(«,,) =
hg (o) +n(a,,) in fixed measurement directions v,, =
[cos oy, sina,]T, m = 1, ..., M. The noise n(w,,) is
assumed to be white Gaussian noise with variance 2.

In vector form, the measurements are

y=hg +n, (14)

where hxy = [hx(ay),..., hgx(ay)]T and n =
[n(ee)), ..., n(ap)].

3.1.1. Some Previous Algorithms. Following Prince
and Willsky [22], who dealt with the special case when
the measurement directions are equally spaced, Lele
et al. [13] proposed an algorithm for reconstructing a
shape from noisy support function measurements. This
algorithm solves the constrained linear least squares
problem

h = argmin |y — |, (15)
subject to the constraint
M(2)h > 0, (16)

where @ = [, ..., ay]" and M(R) is a certain ma-
trix depending only on 2. The constraint (16) is a
necessary and sufficient condition, essentially due to
Rademacher (see [25, p. 47]), for h to be consistent
with a support function of a closed convex set.

There will in general be many convex polygons P
with support function vector

hp(R) = [hp(ar), hp(aa), ..., hp(ay)]” =h.

A natural choice among these for an output polygon
is the largest such polygon P, obtained by intersecting
the half-planes defined by the corresponding M sup-
port lines. If h = [hy, ..., )7, this is given by

P={xe®W|x'v, <hp,m=1,...,M}. (17)

Lele et al. [13] also address the problem of recon-
structing an N-sided polygon K with prescribed outer
normal angles 6, ..., Oy from the M noisy measure-
ments (14).

3.1.2. Proposed Algorithms Using EGI Parametriza-
tion. As described in the introduction, we propose to
use the noisy support function measurements in (14)
to estimate the EGI of the true shape K by finding the
EGI of an approximating convex polygon. Once this is
done, the method described in Section 2.2 can be used
to construct this approximating polygon.

If we assume that K is an N-sided polygon whose
vertices have barycenter at 0 and which has prescribed
outer normal angles 6,k = 1, ..., N, then we proceed
as follows. For each measurement angle «,,, we find
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ty sothat 6, < o, < 6, 41 and then use (13) and (14)
to obtain

N

Ym) =Y dipay sin(cty, — 0¢) + n(ety),  (18)
k=1

where the unknowns are the edge lengths a;, k =
1, ..., N. In vector form this becomes

y = S(®)a +n, (19)

where y and n are as before, a = [a1, ..., ay]", © =
[01,...,0x]7, and the M x N matrix S(®) has entries
S@®) ik = dy i sin(a, — 6;). We can then solve the
constrained linear least squares problem

4 = argmin ||y — S(®)a||?, (20)
a

subject to (4) and (5). Note that these are linear con-
straints. Note also that since these constraints must
be satisfied by the output edge lengths and prescribed
outer normal angles, the resulting & is “valid” in the
sense that it corresponds exactly to the EGI of a con-
vex (approximating) polygon, which can then be re-
constructed by the method of Section 2.2.

The linear algorithm based on (20) is equivalent to
that of Lele et al. [13] described in Section 3.1.1; that is,
for a given input vector y and prescribed outer normal
angle vector @, the outputs of the two algorithms are
the same (provided both algorithms construct polygons
whose vertices have barycenter at 0). If we take N = M
and replace ® by 2, the algorithm based on (20) is
equivalent to that of Prince and Willsky [22].

In fact our approach allows treatment of a somewhat
more general problem. Suppose that the outer normal
angles are not known or prescribed, but that it is only
known, for each measurement angle «,,, the value of
ty for which 6, < a0, < 6,,41. This comprises weaker
prior information than that assumed by the algorithms
above. We may then solve the constrained non-linear
least squares problem

(4, ©) = arg min ||y — S(®)a]%, 1)
(a,0)

again subject to (4) and (5). This algorithm is actually
the maximum likelihood estimator (MLE) of the un-
known parameters a and @, due to the Gaussian noise
assumption (see [12, pp. 223—6 and 254-5] for further
details).

3.2. Algorithms Using Diameter Function
Measurements

The algorithms described in this section were intro-
duced by Gardner and Milanfar [5, 6]. In principle,
suitable versions of the algorithms operate equally well
in higher dimensions, when the diameter function is re-
placed by the brightness function.

In view of the remarks on the lack of uniqueness in
reconstructing a convex body from its diameter func-
tion (see Section 2.1), there is no loss in restricting at-
tention to origin-symmetric convex bodies. Therefore
throughout this section we consider an unknown planar
origin-symmetric convex body K with a finite number
of noisy diameter function measurements modelled by
y(a,) = bg(ay) + n(ay,) in fixed measurement di-
rections v,, = [cos &, sina,,]T,m =1, ..., M. The
noise n(w,,) is assumed to be white Gaussian noise
with variance o2. In vector form, the measurements
are

y=bg +n, 22)
where by = [bx(ay),...,bx(ay)]’ and n =
[n(ay), ..., n(ay)]".

As in Section 3.1.2, the approach is that illustrated
in Fig. 1; the noisy diameter function measurements
are used to obtain the EGI of an approximating convex
polygon, and then the vertices of this polygon can be
calculated from (11). Using Cauchy’s projection for-
mula (6), we can rewrite (22) as

y = C(®)a +n, (23)

where y and n are as in (22),a = [a,...,an]", @ =
[04,...,0y]7,and the M x N matrix C(®) has entries
C(Q)m,k = | cos(at,, — Oi)l/2.

Since the unknown body K is origin symmetric, we
seek an approximating convex polygon that is also
origin symmetric, and hence has an even number N
of sides. Assuming N is prescribed, we may solve the
constrained non-linear least squares problem

a, ©) = arg min |1y - C(®)al?, (24)

subject to the non-negativity constraint (4), and the
constraints

A = AN /2+k fOI‘k=1,...,N/2, (25)

and

9k=9N/2+k +mx fork=1,...,N/2, (26)
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for origin symmetry. (Note that (25) and (26) imply
(5).) This algorithm is the maximum likelihood esti-
mator (MLE) of the unknown parameters a and ©.
However, the non-linear nature of (24) renders this
algorithm computationally very expensive. Without
adaptation, it is therefore of little practical use. One
possible adaptation is prompted by the observation
that the least squares problem (24) is of a special type
known as separable. It might then be feasible to use
the variable projection method of Golub and Pereyra
[7] where each of the unknowns a and © is treated
separately in each iteration.

Fortunately, there are other viable methods we can
employ. The outer normal angles can be prescribed,
for example by setting the angles in © to be «,, =7/2,
m=1,...,M,sothat N = 2M. The resulting linear
estimation algorithms were proposed by Gardner and
Milanfar [5, 6] (where versions are also given that allow
more generally the reconstruction of an n-dimensional
convex body from noisy measurements of its bright-
ness function; see [4] and [6] for an extensive analysis).
These algorithms construct an approximating origin-
symmetric convex polygon whose edges number up
to 2M. (Note that some of the optimal edge lengths
may be zero.) They are suitable for situations in which
the unknown body K is not itself a polygon, since the
number of edges of the output will generally increase
with the number of measurements. If, however, the
number of edges is to be prescribed, various pruning
methods can be considered. These are discussed in the
next section.

3.3. Pruning

The linear diameter function algorithm proposed in
[5, 6] constructs a polygon whose edges number up
to twice the number of measurements. Similarly, the
support function algorithm (15) can result in a poly-
gon with as many edges as the number of measure-
ments. Hence, an extra operation may be needed to
prune the edges of this polygon down to or below a
user-defined number. The challenge is to achieve this
while causing minimal change in the overall shape. We
have studied three approaches, namely, thresholding,
clustering (suggested to us by Gil Kalai), and decim-
ation.

In thresholding, we discard edges with lengths
smaller than a preset value and similarly discard ver-
tices if the difference between the normal directions
of its adjacent sides is less than another preset value.
This method can be used as a post-processing step af-

ter use of the linear diameter function algorithm, since
the origin symmetry then allows edges and vertices to
be discarded in antipodal pairs. Thus the constraints
(25) and (26), and therefore (5) remain valid, guar-
anteeing a convex polygon output. Without adapta-
tion, it is not suitable for the support function algo-
rithms, where the following two methods are prefer-
able. Note that even for the diameter function algo-
rithm, extra work would be needed to find the thresh-
olds that result in an output with exactly a given number
of edges.

Clustering is a method whereby the vertices of the
polygon are divided into a fixed number of disjoint
groups (clusters), using hierarchical or k-means clus-
tering algorithms asin [1] and [11], for example. A rep-
resentative vertex is chosen in each cluster, and these
representative vertices are the vertices of the output
convex polygon.

Decimation is used for polygonal mesh simplifica-
tion by the graphics community [17, 29]. Here we
iteratively delete the smallest edge of the polygon by
merging it with its adjacent edges. The merger affects
the EGI vectors of adjacent edges in a way depend-
ing on the geometry (contrary to thresholding, where
the length of the EGI vectors remains unchanged).
More details about decimation are provided in
[20].

Any of these three operations can be regarded as
an optional extra step in Fig. 1. The graphs in Fig. 6
show the effect of clustering and decimation in pruning
the edges in reconstructions of a regular polygon with
N = 16 edges from noisy measurements of its diam-
eter function from M = 45 equally spaced directions.
The clustering operation was performed using hier-
archical dendograms and single-linkage cost function
(see [1] for more explanation). The post-processing
operations were used to prune the number of edges
from (up to) 90 to exactly 10, and for reasons men-
tioned above thresholding is not convenient for this

0.2
0.15f
SH ‘‘‘‘‘‘
01— —No pruning
— Decimation
0.05 ‘ -+ + Clustering
0.15 0.25 0.35 0.45

(o}

Figure 6. Comparison of clustering and decimation methods.
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purpose. The graphs plot the average Hausdorff dis-
tance 6y between the input and output polygons ver-
sus the noise power ¢ in Monte Carlo simulation of
1000 runs.

Figure 6 demonstrates that the pruning operations
perform well and that decimation seems to perform
better than clustering.

4. Statistical Analysis

4.1. The (Unconstrained) Cramér-Rao Lower
Bound

The Cramér-Rao lower bound (CRLB) provides the
theoretical lower bound on the variance of any un-
biased estimator and hence can be used to study the
fundamental limits of parametric estimation problems;
see, for example, [12, pp. 27-35]. Since no unbiased
estimator can have lower variance than the CRLB, it
provides a convenient benchmark for comparison in
the performance of a specific estimator.
Consider a measurement vector y given by

y = f(¥)+n, 27)

where W = [y, ..., ¥p]” is the vector of parameters
to be estimated and n is the noise. Let W be the vector
of estimated parameters and denote by J(¥) the P x
P Fisher information matrix (FIM), whose entries are
given by the following expression involving the joint
probability density function (p.d.f.) p(x; ¥) of the ob-
served data:

2 .
9 In p(x; \Il)) 28)

J@, ) =J"),;=—FE ( 0w,

fori,j =1,..., P, where E(-) denotes the expected
value.

The CRLB (see [12, pp. 30-44]) states that the co-
variance matrix Cov(\il) satisfies

Cov(¥) > J71(W). 29)

We first apply this bound to the problem of recon-
structing from noisy support function measurements.
Note that the definition (1) of the support function uses
the supremum function and so is not as convenient for
the statistical analysis as the formula (13) based on the
EGI parametrization. Therefore the support function
measurements are modelled by (19), with the assump-
tions behind (21) stated in Section 3.1.2. Recall that the
noise is Gaussian with variance 2. The measurement

vector is y = [hg(ay), ..., hg(ay)]” and the param-
eter vector is ¥ = [ay, ..., an,01,...,60x5]", so that
P = 2N. It follows from (18) that the joint p.d.f. for
the support function data is

Pr(y: ¥) ﬁ L oxp| = (e
5 - Y U
! ey V2mo? 202\"°

N 2
= dy,vag sin(o, — 9@) } (30)

k=1

The FIM will be a 2N x 2N matrix consisting of four
N x Nblocks J1, J2, J3, and J4. Specifically, for i, j =
1,..., N, we have

921 ]
NG, ) = 3G, ) = — ((Lnp¥)
8a,~8aj
1 M
= =5 D duyidyy S n. ). 31)

m=1

921 S\
Yo ) = 3G, j+N) = —E (ﬂ)

8(1,‘891‘

M
a;
= E dyidy, jSmi Cm,j (32)
m=1

9% In p(y; ¥)
D JGAN. e F
B D= I ND < 9010 )
a M
= =5 D duyidy,jSm.j Cnis (33)

m=1

and

21 -\
JaG, ))=JG+N,j+N)=—-E (%)

36,00,
a;a; M
= 5" D duidsjCni Cnj. (34)

m=1

where ¢, = cos(o, —6;) and sy, ¢ = sin(,, —6;). For
details, see [20]. Thus J is a function of the EGI vector
parameters and the set of measurement directions.
For diameter functions, we need to calculate
the CRLB for only half the number of parame-
ters, due to the origin symmetry of the reconstruc-
tion; the other parameters are then defined by (25)
and (26). Thus the measurement vector is y =
[bx (1), ..., bx(ay)]” and the parameter vector is
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v = [ay, ...,aN/z,Hl,...,GN/2]T, so that P = N.
Also, (22) can be written (compare (23)) in the form

y =2C(®)a + n, (35)

where now a = J[aj,...,anp] and O =
[01, ..., 0n/2]. By (35), the joint p.d.f. for the diameter
function data is

Po(y; W) ﬁ L e e
5 = = 5 Ay
b 11 27‘[0‘2 20_2 K n

NJ2 2
— D ailcos(auy —9k>|) } (36)

k=1

and the FIM is an N x N matrix consisting of four N/2
x N/2 blocks we will again label Jq, J2, J3, and J4.
Specifically, fori, j = 1,..., N/2, we have

921 i\
I, ) =16, j)=—E (w>

aaiaa_,-
1 M
== D _lemillem . (37)
m=1
0% 1n p(y; ¥
Lol )= 3G, j+ N2y = — (Z10pe:¥)
861,‘89]
a; U
= 0_12 X_} [Cm,il Sm, j Sgn(cm’j), (38)
3%1n ;U
s, )= 3G + N2, jy = —E (2 npe W)
89,~8aj
oM
= 0_12 Z [Cm, j | Sm.i sgN(Cm,i), 39)
m=1
and
JaG, ) =JG+N/2,j+N/2)
_ g (i)
06;00;
aia; &
= % Z Sm.i Sm, j Sgn(cm,,-) sgn(cm’j), (40)
m=1

where ¢, r = cos(a,, — k), Smx = sin(a, — 6;), and
sgn( f) returns +1 or —1 according to whether f takes
positive or negative values, respectively. For details,
see [20].

For diameter function measurements, the lower
bound on the variance of the estimated shape pa-
rameters for any input polygon can be obtained from

(29) and the inverse of the FIM from (37)—(40). How-
ever, for support function measurements, the FIM from
(31)—(34) is singular with rank (2N — 2), yielding
an infinite lower bound. The reason for this behav-
ior is that the equality constraint (5) has not been
taken into account. For diameter function measure-
ments, only the inequality constraint (4) comes into
play, in view of the formulation in (35), where (25)
and (26) guarantee that (5) holds. Such inequality con-
straints induce open subsets in the parameter space
without any isolated boundaries and so do not af-
fect the CRLB; see [8] for more details. On the
other hand, equality constraints can reduce the dimen-
sion of the parameter space and cannot be ignored
in the calculations. The next section addresses this
issue.

4.2. The Constrained Cramér-Rao Lower Bound

In this section we use the results of Stoica and Ng [26]
for a constrained Cramér-Rao lower bound (CCRLB)
analysis with a singular FIM.

Let g(W) = 0,i = 1,...,0, where ¥ e %’
and Q < P, be equality constraints defined by con-
tinuously differentiable functions, and let g(¥) =
[gi(¥), ..., gQ(\Il)]T be the corresponding constraint
vector. The gradient matrix of g is a O X P matrix
defined by

ag(¥)
G(¥) = P
where G should have full rank. Let U be a P x
(P — Q) matrix with orthogonal columns in the
null space of G(¥). Then G(¥)U = 0. The analy-
sis in [26] shows that, under the given constraints,
the covariance matrix of the estimated parameters
satisfies

Cov(¥) > UUTJU)~'UT. 41)

As seen from (41), the lower bound is obtained by pro-
jecting the singular FIM onto the constraint subspace.

We are working with two equality constraints given
by (5), and the gradient matrix of these constraints is
the 2 x 2N matrix

G(¥) =
cos 0, cosfy —ajsin6; —ay sin By
|:sin 6, --- sinfy a;cosH ay cos Oy ]
(42)
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After carrying out the analysis discussed in this sec-
tion, we will be able to obtain the CCRLB for the
shape parameters. However, our final aim is to recon-
struct the 2-D shape from support-type function data
and not simply to find its EGI. Thus what we really
need is to find bounds with respect to the 2-D shape
and not just the parameters. Rather than the quality
of estimates of W, we need a global quality mea-
sure of the entire reconstructed boundary. This can be
achieved by developing asymptotic confidence regions
around the true shape, a topic introduced in the next
section.

4.3. Confidence Regions

4.3.1. Background. Asymptotic global confidence
regions are used to analyze and visualize the perfor-
mance of 2-D parametric shape estimators. Assuming
a maximum likelihood estimator (MLE) operating in
the asymptotic regime, the CRLB for the shape param-
eters can be used to define a confidence region around
the true boundary of the shape, as in [27]. Note that the
MLE is asymptotically normal, unbiased, and asymp-
totically attains the CRLB; see [12, pp. 164—167]. In
our analysis, we follow [27] (but using the CCRLB
instead of the CRLB for support function measure-
ments).
Consider a 2-D shape parameterization of the form

s(t; W) = [5,(t; W), s,(6; )],

where s, and s, give the x and y coordinates of a point
s on the object’s boundary, indexed by ¢t € [0, T],
and where ¥ is a P-dimensional parameter vector. At
each point along the boundary (i.e., for all # € [0, T'])
we determine a local confidence region Ug(?) C N2
centered at the true point s(z) = s(z; ¥) (see Fig. 7).
The size of the local confidence region depends on 8,
which in turn depends on the chosen local confidence
level n € [0, 1]; if §(¢) is estimated using an MLE
operating in the asymptotic regime, then

Pr{8(¢t) € Up(t)} = 1.
The first step towards generating the local confi-
dence region for a point s(¢; ¥) is to calculate the P

x P covariance matrix Cy = Cov(W¥). From this we
calculate the 2 x 2 matrix

Cy(t) = Vus(t; W)Cy [Vus(t; V)], (43)

Uy(0)

)

Figure 7. Local and global confidence regions.

where the 2 x P matrix Vys(t; ¥) is the gradient of
s(¢; W) with respect to W. The matrix Cg(¢) gives the
individual variances and the covariance between the
x and y coordinates of s(f) when estimated using the
MLE operating in the asymptotic regime. Next, a lo-
cal confidence level n € [0, 1] is selected. The local
confidence region Ug(t) for the point s(f) is

Ug(t) = {x € W : (x — s(1) Cs(1) " (x — s(1)) < B},
(44)

where 8 > 0 is calculated by assuming that the left-
hand side of the inequality in (44) is a Chi-square
random variable of degree 2 such that the probability
that it is less than or equal to B2 is 5. For each 1,
Ug(t) is an ellipse centered at s(¢), also referred to as a
local confidence ellipse, whose size depends on 7. An
asymptotic global confidence region Ug given by

Ug= | Us0) (45)

te[0,T]

can now be obtained by moving Ug(#) along the bound-
ary. This global confidence region (see Fig. 7) defines
an uncertainty band around the entire boundary of the
true shape, in which the estimated shape can lie.

4.3.2. Local Confidence Regions. Once the EGI of
the approximating polygon has been obtained from the
support-type function measurements, we may use (11)

to obtain
N

s(t; W) = [Z dyay cos(Oy + /2),

k=1

N T
> diaysin(@; + /2)} . (46)

k=1

where the discrete valuest = 1, ..., N of r each index
a vertex of the polygon. From this, we find the 2 x 2N
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gradient matrix Vys(#; ¥) to be

|:d,1 cos(0 + 1 /2)

d;1 sin(6) + 1 /2) diy sin(@y + m/2)

Using (43), (44), and (47), the asymptotic local con-
fidence ellipses Ug(f) can be calculated for + =
1,...,N.

In the case of support function measurements, the
matrix Cy in (43) is estimated from the CCRLB given
by the right-hand side of (41). For diameter function
measurements, we can instead use the CRLB given by
the right-hand side of (29), but before doing so the N x
N FIM obtained from (37)—(40) must be inverted and
replicated to form a 2N x 2N matrix (see [20] for more
details).

Figure 8 shows the local confidence ellipses for a
polygon with N = 7 sides whose support function is
measured at M = 180 equally spaced angles. (Here
and below, the entire interval, [0, 277] in this case, is
divided into M bins of equal size and measurement
vectors are positioned at the center of each bin.) The
noise is Gaussian with power ¢ = 0.2 and the user-
defined local confidence level is n = 0.73. From (12)
we know that each measurement at an angle «,, lying
between adjacent outer normal angles 6, and 6, will
depend only on the position of the vertex of the polygon
between these two angles. Therefore the greater the
size of the interval [6;, 6,,], the more information we
have about the corresponding vertex of the polygon
and the smaller the local confidence ellipse will be.
This is illustrated by Fig. 8.

Figure 9 depicts the local confidence ellipses for an
origin-symmetric, regular polygon with N = 12 sides
whose diameter function is measured from M = 36
equally spaced viewing angles in the range [0, 7 ]. The

-2 -1 0 1 2
X

Figure 8.
function.

Local confidence regions for shape from support

diy cos(Oy +m/2) —dya; sin(0) + 7 /2)
diay cos(y + 1 /2)

noise power is 0 = 0.1 and the local confidence level
is n = 0.73. As expected from the symmetry of the

—diyay sin(@y + 7/2) @7
divay cos(Oy +7/2) |

polygon and measurement angles, the local confidence
ellipses are all congruent. (Note that had the vertices
of the output polygon been specified by (7) instead of
(11), the size of the local confidence ellipses would
have increased with the index #; see [20, 21].)

Decreasing the number of measurements provides
less information about the shape and leads to worse
shape estimates. This is illustrated by Fig. 10, obtained
using the same shape and parameters as in Fig. 8 ex-
cept that now M = 72 instead of 180. We observe that
the confidence ellipses in Fig. 10 are larger in size
compared to Fig. 8, illustrating the increased uncer-
tainty. An opposite effect is observed by increasing the
number of measurements.

In Fig. 11, the underlying polygon and parameters
are as in Fig. 9, but the M = 1000 measurement angles
are randomly drawn from the von Mises distribution
M(m/3,5) (see [19]) with mean 7/3 and concentra-

y o

-1 0 1
X

Figure 9.
function.

Local confidence regions for shape from diameter

-1

-2
-2 -1 0 1 2
X

Figure 10.  Effect of the number of support function measurements.
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yo

—1 0 1
X

Figure 11.
distribution.

Measurements angles sampled from a von Mises

Figure 12. Local confidence regions (equally spaced measurement
directions).

tion parameter k = 5. The high value of « leads to a
very heavy concentration of measurement angles near
/3. A diameter function measurement provides the
greatest information about the vertices of the polygon
contained in the support lines parallel to the measure-
ment direction. This explains the very different sizes
of the local confidence ellipses in Fig. 11, which are
largest at the vertices that lie in support lines parallel to
the relatively few measurement directions orthogonal
to /3.

Figure 12 is obtained using an affinely regular poly-
gon with N = 8 sides whose support function is mea-
sured at M = 72 equally spaced angles, with noise
power o = 0.1. The local confidence ellipses vary in
size, the largest occurring at vertices 1 and 5 where the
“curvature” is smallest. This is compatible with earlier
remarks. If the user has prior information about the
eccentricity of the input polygon, the distribution of
the measurement angles can be changed accordingly
to compensate; more measurements should be taken
in directions corresponding to low curvature. This is
demonstrated in Fig. 13, where a total of 72 measure-
ments are made in 12 equally spaced directions each
in the intervals [0, 7 /6), [7/6, 57/6) and [57/6, ),

-2 -1 0 1 2

Figure 13.  Local confidence regions with a better set of viewing
directions.

and the 36 antipodal directions. The local confidence
ellipses have become more nearly equal in size.

4.3.3. Global Confidence Regions. In the previous
section, local confidence regions were constructed only
at the vertices of the input polygon. This restriction,
a consequence of (46) being valid only for discrete
values of ¢, means that the formula (45) for global
confidence regions is not immediately accessible.

To deal with this difficulty, we define

s(t; W) = ([1] — 0)s(Lr]; W) + (2 — [t Ds([1 15 W),
(43)

forall 1 <t < N + 1, where, as usual, |¢] and [#]
denote the greatest integer less than or equal to ¢ and
the least integer greater than ¢, respectively, and where
t =landt = N + 1 both index the first vertex of the
polygon. From (46) and (48) we obtain

N
s(t; W) = |:Z d}ay cos(Ox + 7/2),

k=1

N T
> djaysin@, + 7 /2)} . (49

k=1

forl <t < N + 1, where

df/k = (I—I-I - t)d\_tjk +(f - LIJ)de

Using (49), we can obtain the local confidence region
Ug(t) for any point on the boundary of the polygon. A
global confidence region Uy is then defined by (45).
Figure 14 shows the global confidence region ob-
tained in the manner just described for the same poly-
gon and parameters as in Fig. 8. Local confidence el-
lipses for the polygon were generated for ¢ varying
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Figure 14.  Global confidence region for shape from support func-
tion.

-1

-1 0 1
X

Figure 15.
function.

Global confidence region for shape from diameter

from 1 to 9 in steps of 0.005, and a sample of these
ellipses is also depicted. Similarly, Fig. 15 shows the
global confidence region for the polygon and param-
eters used in Fig. 9, with ¢ sampled at steps of 0.005,
along with the local confidence regions at the vertices.

5. Performance and Experimental Results

The optimal algorithm is the MLE operating in the
asymptotic regime, since it is normal, unbiased, and
attains the CRLB. Though the algorithms we have
considered above are not necessarily unbiased, their
performance can be measured effectively by compar-
ing them with the MLE operating in the asymptotic
regime, using the confidence regions developed earlier
for this algorithm. The performance analysis can be
carried out with the aid of both local and global confi-
dence regions. For local confidence regions we check
if each vertex of the estimated polygon is contained in
the corresponding local confidence ellipse; see [20] for
an analysis.

Here we present a performance analysis for the algo-
rithms from Section 3, using global confidence regions.
Let § be the estimated shape boundary resulting from
a given algorithm and define the corresponding error

0

10 ==
107
e N N R \,\‘\
107 B
--—- Linear algorithm
- - - MLE (non—asymptotic)
—3| — MLE (asymptotic)

Vo5 1 15 232.5 3 35

Figure 16.
rithm.

Performance evaluation of diameter function algo-

probability e = e(8) by
e=1—"Pr{§ € Ug}. (50)

Thus e is the probability that the estimated shape
boundary § does not lie completely inside the global
confidence region Ug. By Monte Carlo simulation, we
can compare performances of algorithms by plotting
for each the error probability for a range of values of
B. We use a log scale on the vertical axis for better
illustration.

Figure 16 provides a performance evaluation of the
diameter function algorithms, based on 1000 runs of
each algorithm for a regular polygon with N = 10
sides, M = 45 equally spaced measurement angles,
and noise power o = 0.04. The graphs give the rela-
tive performance of the linear diameter function algo-
rithm given in [5], the non-linear algorithm based on
(24) (MLE (non-asymptotic)), and the MLE (asymp-
totic). The latter is produced as follows. Since the
MLE is asymptotically normal, unbiased, and attains
the CRLB, we first draw an EGI sample from the nor-
mal distribution N (¥, Cy) where the matrix Cy is
as described in Section 4.3.2 for diameter function
measurements. This sample will always satisfy (5) be-
cause of the constraints imposed on Cy. However,
some of the edge lengths may be negative, in which
case the sample is discarded and a new sample is drawn.
From the EGI sample we obtain the estimated bound-
ary § by (46), and the value of e in (50) is estimated
from 1000 independent trials of this type.

Of course, in using the linear diameter function al-
gorithm instead of the non-linear one, the user pays a
price in terms of the quality of the estimates. This is
visible in Fig. 16. However, this figure also indicates
that the linear diameter function algorithm does a rea-
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Figure 19.  Shape from support function measurements.
16 — True
L - - - Noisy
1.4 L --—- Estimated

2
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y O
-1
-2
) -1 0 1
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Figure 17.  Underlying polygon used for the analysis in Fig. 18.
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Figure 18. Performance evaluation of support function algorithms.

sonably good job when compared to the optimal MLE
estimator.

Figure 18 provides a similar evaluation of the sup-
port function algorithms, based on 1000 runs of each
algorithm for a polygon with N = 5 sides, M = 72
equally spaced measurement angles, and noise power
o = 0.1. The underlying polygon has vertices with
barycenter at 0 as shown in Fig. 17. The graphs in
Fig. 18 give the relative performance of the algorithms
of Prince and Willsky (PW), Lele, Kulkarni, and Will-
sky (LKW), the non-linear algorithm based on (21)
(MLE (non-asymptotic)), and the MLE (asymptotic).
However, we stress that the comparison is not really
a fair one, since on the one hand the PW algorithm
produces outputs with outer normals in the measure-
ment directions, and on the other, the LKW algorithm
assumes, as prior knowledge, unknown outer normal
angles. In view of this it is hardly surprising that the
PW algorithm performs much worse, and the LKW
algorithm much better, than the MLE algorithms.

Figures 19 and 21 illustrate true (solid line) and es-
timated (dotted line) polygons resulting from the lin-
ear support function algorithm based on (15) and the

0.6
0 1.57 3.14 4.71 6.28
o
Figure 20.  True, noisy, and estimated support function measure-
ments.
Figure 21.  Shape from diameter function measurements.

linear diameter function algorithm from [5]. In each
case the noise power is 0 = 0.1 and local and global
confidence regions corresponding to local confidence
level n = 0.9 are shown for comparison. For Fig. 19
the true polygon has N = 8 sides with support func-
tion measured at M = 72 equally spaced angles. The
true polygon in Fig. 21 is an affinely regular poly-
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26 — True
--- Noisy
2.47 ---- Estimated
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Figure 22.  True, noisy, and estimated diameter function measure-
ments.

gon with N = 10 sides whose diameter function is
measured at M = 36 equally spaced angles; the extra
post-processing step of decimation described in Sec-
tion 3.3 was used to prune the number of edges down to
10. Figs. 20 and 22 depict the true, noisy, and estimated
measurements in each case.

6. Conclusion and Future Work

In this paper we discussed non-linear and linear al-
gorithms for estimating a planar convex shape from
finitely many noisy measurements of its support or
diameter function. We carried out a systematic statisti-
cal analysis of these algorithms via computation of the
Cramér-Rao lower bound on the estimated parameters.
Using this bound, we found local and global confidence
regions for the underlying shape, providing a valuable
visual demonstration of the effect of experimental pa-
rameters on the quality of estimated shape. Finally, we
presented a performance analysis of the linear algo-
rithm for shape from diameter functions that indicates
this algorithm operates reasonably well.
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