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Abstract. The demand for more effective compression, storage, and transmission of video data is ever increasing.
To make the most effective use of bandwidth and memory, motion-compensated methods rely heavily on fast and
accurate motion estimation from image sequences to compress not the full complement of frames, but rather a
sequence of reference frames, along with “differences” between these frames which results from estimated frame-
to-frame motion. Motivated by the need for fast and accurate motion estimation for compression, storage, and
transmission of video as well as other applications of motion estimation, we present algorithms for estimating affine
motion from video image sequences. Our methods utilize properties of the Radon transform to estimate image
motion in a multiscale framework to achieve very accurate results. We develop statistical and computational models
that motivate the use of such methods, and demonstrate that it is possible to improve the computational burden of
motion estimation by more than an order of magnitude, while maintaining the degree of accuracy afforded by the
more direct, and less efficient, 2-D methods.
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1. Introduction

A fundamental problem in both image sequence pro-
cessing and computer vision is that of estimating the
motion (or dynamics) in an image sequence. For in-
stance, in the field of computer vision, applications
of image registration include autonomous navigation,
industrial process control, 3-D shape reconstruction,
and automatic image sequence analysis. In the field
of video coding, the predictive power of accurate mo-
tion estimation is used to compress video sequences.
In image sequence processing, accurate motion esti-
mates are used to improve overall image resolution.
Disparate as they may be, these many applications
share one common thread: In all such applications, the
computational cost of performing accurate estimation

∗This work was supported in part by the National Science Foundation
under Grant CCR-9984246.
†To whom correspondence should be addressed.

of dynamics is typically very high, and this is often
the bottleneck for both performance and real-time im-
plementation. For instance, fast and accurate motion
estimation is critical for any real-time motion com-
pensating video encoder. In fact, most real-time video
coders require special hardware to achieve the neces-
sary motion estimation efficiency to support real-time
encoding.

Dynamic image sequences are modelled as a tempo-
rally evolving function f (x, y, t) where x and y rep-
resent the spatial coordinates in the image plane and t
is the time variable. Written with respect to a reference
frame chosen (without loss of generality) at t = 0, we
then have the model

f (x, y, t) = f (x − v1(x, y)t, y − v2(x, y)t, 0) (1)

where v1(x, y) and v2(x, y) denote the components of
the velocity (motion) vector field �v. This velocity vector
field is sometimes called the optical flow field referring
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to the apparent image motion as opposed to the actual
motion in the 3-D image scene. The objective of motion
estimation is to find the vector field �v, given the image
sequence f (x, y, t).

Motion estimation is a widely studied and applied
problem. Numerous researchers have developed di-
verse methods and several survey papers discuss the
relative merits of the various leading methods and com-
pare their performances [3, 7, 16, 23].

In this paper, we are concerned with estimating vec-
tor fields �v that are parameterized by an affine model.
Namely, the vector fields of interest are characterized
by

�v = �v0 + M

[
x

y

]
, (2)

where

�v0 =
[

v0x

v0y

]
, (3)

is a constant vector representing global translational
motion, and

M =
[

a b

c d

]
(4)

captures dynamics of rigid body motions as manifested
in the image plane.

While there are many methods for estimating affine
vector fields, we base our analysis on the popular
gradient-based optical flow method. The aim of this
paper is to show that these gradient-based methods
can be implemented in the Radon transform domain
to yield fast, and accurate, estimates of the motion pa-
rameters. The Radon transform (projection) of an im-
age is defined as line integrals across the image [10]. It
is well-known that pure translational motion in an im-
age results in translation of the projections [10] along
the direction of projection. This property has been used
successfully in the past to estimate motion using projec-
tions [1, 2, 8, 9, 15, 18, 20–22, 24–26]. More recently,
we have unified much of the (mostly ad-hoc) work in
this area and proposed a model of more general motion
vector fields in the Radon transform domain [19]. In
particular, it can be shown, as will be elaborated below,
that affine motion in the image leads to affine motion
in the projections as well.1 We will use this property to
derive efficient and accurate motion estimators using
projections.

We further demonstrate that multi-scale implemen-
tation of optical flow algorithms using projections
yields even more accurate and speedy estimates. The
ability to improve computational complexity by almost
an order of magnitude makes a compelling case for the
routine use of projection-based methods in motion es-
timation [18, 21, 25].

The paper is organized as follows. Section 2 intro-
duces the direct (2-D) gradient-based method used for
estimating affine motion. In Section 3 a novel method
for estimating affine motion indirectly using projec-
tions is presented. Section 4 describes the application
of this indirect (1-D) gradient-based approach in lo-
cal, global, and multiscale settings. We compare the
computational complexity for both the direct and indi-
rect motion estimators in Section 5. Section 6 contains
the experimental procedures and results comparing the
direct and indirect affine motion estimators. Finally, in
Section 7 we conclude with a summary and suggestions
for future work.

2. Direct (2-D) Gradient-Based Affine
Motion Estimation

A commonly used, and effective method for directly
estimating an optical flow field is the gradient based
approach. The gradient based methods or differential
techniques compute image velocity directly from the
image pixel intensities by expanding the right side of
(1) in a Taylor series to obtain

f (x, y, t) = f (x, y, 0) − v1t fx − v2t fy

+ higher-order terms (5)

Without loss of generality, we assume that we are ex-
amining a pair of images at times t = 0, 1 and truncate
the Taylor expansion to the first order thereby reducing
this expression to the well known gradient constraint
equation

− ft = ∇ f · �v, (6)

where ∇ f = [ fx , fy]T denotes the spatial gradient of
f and ft denotes the difference between two adjacent
frames f (x, y, 1)− f (x, y, 0). This constraint can also
arise from a more general assumption of intensity con-
servation where it is assumed that d f/dt = 0, or the
total derivative of the image brightness values does not
change over some interval of time. Under this intensity
conservation assumption, the model of (6) exactly char-
acterizes the optical flow in the image sequence. Under
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this assumption ft becomes the approximation of the
partial derivative of the image sequence with respect
to time. In general, as the spatio-temporal gradients
can be approximated from the given image data, one
is able to estimate the desired vector field by assum-
ing that the motion is small, and is constant in some
neighborhood. Thus, an overdetermined linear system
of equations for the unknowns v1 and v2 is arrived at,
which can be solved using least-squares or some variant
thereof [12].

Returning to the specific case of affine motion and
inserting the affine motion model (2) into (6), one ob-
tains a linear equation in the unknown affine motion
parameters:

− ft = v0x fx + v0y fy + a x fx + b y fx

+ c x fy + d y fy . (7)

To estimate the parameters of motion, we assume
that this motion model applies to a spatiotemporal re-
gion of the image sequence. Thus, by measuring the
gradients in this region (which may in fact be the en-
tire image) we generate a linear system of equations of
the form

−ft = H Ψ + e (8)

where ft denotes the (say raster-scanned) vector of im-
age frame differences measured in the spatio-temporal
region of interest, and e represents noise, or other depar-
tures from the assumed model. The matrix H contains
the corresponding spatial gradients at the same points
in the region under consideration, and the vector Ψ is
the vector of unknown parameters as follows:

H = [fx fy xfx yfx xfy yfy] (9)

Ψ = [v0x v0y a b c d]T (10)

In the above, the vectors xfx , xfy, yfx , yfy represent
the vectors of the raster-scanned values of the partial
derivatives fx , fy weighted by the x or y coordinates.
For the purposes of this paper, we assume e to be a
zero-mean white noise. Under this assumption, the best
(minimum variance) linear, unbiased estimate of the
parameters of interest is given by the least-squares ap-
proach [14]:

Ψ̂ = −(HT H)−1HT ft , (11)

Cov(Ψ̂) = (HT H)−1. (12)

The assumed noise model is reasonable under the in-
tensity conservation assumption. However, a departure
from this assumption can lead to a biased estimator. In
practice, even for a reasonably small region (10 × 10
pixels), this estimator usually provides quite accurate
estimates of the affine parameters of the vector field �v.
Indeed, the performance of this method and its vari-
ations has been studied at some depth in [4–6]. The
work of [4] originally outlined the methods for esti-
mating optical flow in a global parametric framework,
describing both the models used in this paper for the
global translational and global affine model as well
as other more complicated models. In [5], the authors
propose a region-based optical flow estimation scheme
where the blocks are assumed to contain affine mo-
tion. Furthermore, the work of [6] explores the use of
robust estimators within the context of gradient-based
optical flow estimation. While the methods contained
in these articles achieve high degrees of accuracy, the
computational complexity of the methods is often quite
high. The purpose of this paper is to introduce motion
estimation using tomographic projections. As we will
show, the use of tomographic projections can be incor-
porated into a variety of motion estimation schemes
to achieve substantial speedup with little or no loss in
performance. Specifically, we explore the use of pro-
jections in gradient-based motion estimation.

3. Using Projections to Estimate Affine Motion

Before we begin the discussion of the use of projections
in motion estimation, let us define the Radon transform.
The Radon transform [10] of an image f (x, y) is de-
fined as

g(p, θ ) =Rθ [ f (x, y)]

=
∫ ∫

f (x, y)δ(p − x cos θ − y sin θ ) dx dy

(13)

where δ is the Dirac delta function. A projection of the
image can be thought of as the Radon transform evalu-
ated at a particular projection angle θ . As an example,
Fig. 1 shows a pair of image projections at 0◦ and 90◦.
In this example, the projected image at 0◦ represents
the function created by summing all of the image in-
tensity values in each column of the image. Similarly,
the projection at 90◦ represents the summation of each
image row. In general, each point in the projection rep-
resents an integration along a line through the original
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Figure 1. Set of tomographic projections of the forest image.

image. From the definition we see that image projec-
tions are symmetric as g(p, θ ) = g(−p, θ + π ). We
note here that while the above definition represents the
model for the Radon transform of a continuous image,
we will in practice use a discrete version of the Radon
transform.

The use of projections to efficiently estimate motion
is not new. Very early works such as [2] use image pro-
jections at 0◦ and 90◦ to register translated images using
a relative phase approach. More recently [15, 25] have
incorporated projections into correlation-based block
motion estimators to speed up motion compensated
video coding. In these works, the projections used to
estimate translational motion were confined to 0◦ and
90◦. Similarly, in [8] the authors use correlation be-
tween pairs of image projections at 0◦ and 90◦ to again
register translated images. Furthermore, they find that
the use of projection effectively nullifies certain types
of pattern noise, yielding improved performance over
the direct methods. These works do not, however, ad-
dress the question of estimating more general image
dynamics such as affine motion.

A few researchers have utilized the Radon transform
to estimate various forms of affine image motion. The

authors of [1, 9, 22] use only a pair of image projec-
tions to accelerate motion detection and estimation of
a subclass of affine motions, for use in video sequence
processing and classification. They constrain the affine
motion to that of global magnification and global trans-
lation to extract camera movement in video sequences.
The work of [26] and [24] describes how the Radon
transform could be used to estimate global rotation and
translation in image sequences. In particular, [24] uses
a set of 360 half image projections or approximately
the set of projections at all angles to accurately esti-
mate global rotation and translation for manufacturing
process control.

The above methods have not addressed the perfor-
mance issues concerning the application of projections
in estimating both global and local motion, particularly
within a multiscale framework. The present work uni-
fies most, if not all the above proposed approaches in
a single framework, and establishes a theoretical foun-
dation for their use. In addition, to our knowledge, the
present work is the first to justify and use a gradient-
based estimation scheme using projections based di-
rectly on the analysis of performance vs. computational
complexity.
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3.1. Motion Under Tomographic Projection

To understand how to estimate motion parameters indi-
rectly using projections, we must first explore the rela-
tionship between motion in the original image sequence
and the “induced” motion or transformation in the pro-
jections. We begin our analysis for the simple case of
translational motion which is completely characterized
by the shift vector �v0. The simple relationship known
as the shift property of the Radon transform [10], re-
lates motion in images to the motion in projections
by

Rθ [ f (x − v0x , y − v0y)] = g
(

p − �vT
0 �w, θ

)
= g(p − u0(θ ), θ ), (14)

where �w = [cos(θ ), sin(θ )]T is a unit direction vector.
Intuitively, each projection at angle θ “sees” the com-
ponent of the vector �v0 in the direction of the vector
�w. Thus, a pure translation or shift given by �v0 in the
image domain results in a corresponding shift in the
projection given by u0(θ ) = �vT

0 �w.
The question of how general dynamics in image se-

quences behave under tomographic projection was ad-
dressed in [19], where it was shown that under certain
smoothness conditions on the image and the vector field
�v, for sufficiently small 
t , there exists a unique func-
tion u(p, θ ) such that

Rθ [ f (x − v1
t, y − v2
t)] = g(p − u(p, θ )
t, θ )

(15)

where

u(p, θ )
∂g(p, θ )

∂p
= Rθ [�vT ∇ f ]. (16)

As in [19], we refer to (16) as the Projected Motion
Identity (PMI). This relationship suggests that for small
transformations (where small depends on the product
of the magnitude of the displacement vector field and
the time elapsed 
t), the projections of a dynamic im-
age sequence evolve in a qualitatively similar fashion
as the original image sequence. That is, the projection
function g(p, θ ) evolves as a transformation or warping
of the domain coordinates p by the function u(p, θ ). It
is important to note here that while the PMI is valid for
“small” transformations of the image, it is more uni-
versally applicable when applied in a multiscale setting
where at coarse scales, large warpings of the image are

manifested as small transformations. We elaborate this
point further in Section 4.

In the specific case of affine motion, it is shown in
[19] that, an affine motion vector field �v under projec-
tion behaves as

u(p, θ ) ≈ �vT
0 �w + ( �wT M �w)p = u0(θ ) + α(θ )p.

(17)

This suggests that the projected motion u(p, θ ) is also
an affine function of the radial parameter p, and is
parameterized by u0(θ ) and α(θ ). We note that the
translational component of projected motion depends
only on the translational components of the original
affine vector field, and the pure linear term also has
a corresponding pure linear term in the projection do-
main. This is part of a more general set of interest-
ing properties of projected motion explored in detail in
[19].

For the sake of completeness, it is worth mention-
ing that the exact form of the affine apparent motion
in the projections is known and can be computed us-
ing properties of the Radon transform [10]. Namely,
the exact form of the projected motion function
is

uexact(p, θ ) = �vT
0 �w +

(
1 − |det(J )|

‖J T w‖2

)
p, (18)

where J = [ 1−d
c

b
1−a ] satisfying (I − M)−1 = 1

|det(J )| J .
Comparing (17) and (18), we observe that the only
difference appears in the second term. Indeed, as is
shown in Appendix B, the term α(θ ) in (17) can be
obtained by linearizing the term (1 − |det(J )|

‖J T w‖2
) in (18)

about M = [ 0
0

0
0 ].

In any event, the exact form of the projected motion
is highly nonlinear in the parameters of M , and is not
easy to use for motion estimation from projections. By
contrast, in our approach, we estimate the affine pa-
rameters in a linear estimation framework. Employing
this linear framework, as we will show, has the dual ad-
vantage of producing not only very fast, but also quite
accurate results.

It is instructive for the affine case to compare the
exact formulation to the PMI formulation for a few
specific cases:

1. Pure Scaling. For the case of pure scaling (e.g.
zooming magnification) the affine parameters will
have the form M = [ λ 0

0 λ
]. Using the exact form of
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the projected motion function we obtain

uexact(p, θ ) =
(

1 − |det(J )|
‖J T w‖2

)
p

=
(

1 − |1 − λ|2
(|1 − λ|)‖w‖2

)
p

= (1 − |1 − λ|)p

On the other hand, using the linear form of (17) we
obtain

u(p, θ ) = (wT Mw)p = (
w2

1λ + w2
2λ

)
p = λp

(19)

We observe that for values of λ less than 1, the two
equations are equivalent.

2. Pure Rotation. For the case of pure rotation by
angle φ the affine parameters will have the form
M = [ 1−cos φ − sin φ

sin φ 1−cos φ
]. Thus, the exact form of the

projected motion function is

uexact(p, θ ) =
(

1 − det(J )

‖J T w‖2

)
p =

(
1 − 1

‖w‖2

)
p

= 0.

This indicates that pure rotation, even in the ex-
act formulation, conveys no information in a single
projection. Meanwhile, the PMI approximation
yields

u(p, θ ) = (wT Mw)p = (1 − cos φ)p (20)

Here we see that the approximation is close to the
exact expression for small angles of rotation φ. We
will again later elaborate on the difficulty of estimat-
ing rotation using projections and how this difficulty
may be overcome.

3.2. Estimating Projected Motion Parameters

We have just shown that the motion in the projections,
or the projected motion, is accurately characterized by
the function u(p, θ ) which, in turn, is parameterized by
u0(θ ) andα(θ ). We now present a method for estimating
the projected motion parameters u0(θ ) and α(θ ) from
projections at a fixed angle θ over time based on a one-
dimensional analog of the optical flow method.

As we did in the derivation of the direct gradient-
based estimator, we expand the right side of (15) in a
Taylor series truncated to the first order to obtain

−gt = gp u(p, θ ). (21)

where gp denotes the partial derivatives of g(p, θ, t)
with respect to the location variable p and gt =
g(p, θ, 1) − g(p, θ, 0).2 Interestingly, a corollary of
the result (15), proved in [19], is that if the intensity
conservation assumption d f/dt = 0 is invoked in the
image domain, the corresponding constraint holds in
the projection domain: dg/dt = 0. As before, this as-
sumption implies that the model of (21) exactly de-
scribes the relationship between image derivatives and
image motion. Again, in the context of this assumption
gt refers to the partial derivative of the projected image
sequence with respect to time.

Similar to the 2-D case, inserting the affine model
(17) into (21) we obtain

−gt = u0(θ )gp + α(θ )gp p (22)

As in the direct method, we assume the flow applies
over some region of the projection, thereby generating
an overdetermined system of linear equations,

−gt (θ ) = H1Ψ1(θ ) + ε(θ ) (23)

where gt (θ ) is the a vector containing the temporal
differences of g(p, θ, t) over the area of interest for
a particular θ , the matrix H1 contains the projection
spatial derivative information, and the vector Ψ1 is the
vector of unknown parameters as follows:3

H1 = [gp pgp] (24)

Ψ1(θ ) = [u0(θ )α(θ )]T (25)

Again, the notation of pgp refers to the vector of the
projection partial derivatives weighted by the location
indices, and gp refers to the vector of unweighted partial
derivatives gp(p). Here, the calculation of the partial
derivatives gp(p) is done in a special fashion that takes
into account the geometry of the image region. The
discussion of this calculation is presented in Appendix
A. It is worth noting here an interesting relationship
between the noise e in the image domain formulation
of (8) and the noise ε(θ ) in the corresponding projec-
tion domain (23). The noise term ε(θ ) is a projection
of the random field e, and as such will still be assumed
to be zero-mean. However, assuming the random field
comprising the error term e to be white, with variance
σ 2, the noise vector ε(θ ) will have a diagonal covari-
ance matrix Qθ = σ 2 diag[S−1(θ )], where the function
S(θ ) reflects geometry of the random field region (see
Appendix A for further details).
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Thus, solving Eq. (23) in a weighted least squares
sense we obtain:

Ψ̂1(θ ) = −(
HT

1 Q−1
θ H1

)−1
HT

1 Q−1
θ gt (θ ) (26)

Cov(Ψ̂1(θ )) = (
HT

1 Q−1
θ H1

)−1
(27)

As before, under the intensity conservation assump-
tion and the zero mean white noise assumption for the
original image, (26) is the best linear unbiased estima-
tor for u0(θ ) and α(θ ).

3.3. Estimating Affine Motion Parameters
from Projected Motion Parameters

Having described the method for estimating the motion
parameters in the Radon transform domain in the pre-
vious section, we are now in a position to present the
final step in estimating the original parameters of the
affine motion model. Namely, the model (17), which
relates affine motion in the image domain to the mo-
tion in projections can now be invoked. By comparing
terms on the left and right-hand sides of (17), we can
directly observe that

u0(θ ) = �wT �v0, (28)

α(θ ) = �wT M �w (29)

This pair of identities allows the estimation of param-
eters of both the translational part v0 and the purely
linear part M of the vector field �v.

After the projected motion parameters have been es-
timated at a set of N angles θi , i = 1, . . . , N , we can
collect all such estimates and write




u0(θ1)
...

u0(θN )


 =




cos θ1 sin θ1

...
...

cos θN sin θN


 �v0 + ε0, (30)




α(θ1)
...

α(θN )


 =




cos2 θ1 sin2 θ1 2 cos θ1 sin θ1

...
...

...

cos2 θN sin2 θN 2 cos θN sin θN




×




a

d

c + b


 + εm, (31)

or equivalently,

u0 = W�v0 + ε0 (32)

m = A�µ + εm (33)

Because the noise terms ε0 and εα are in general cor-
related, we combine these estimates into one system of
the form
[

u0

m

]
=

[
W 0

0 A

][ �v0

�µ
]

+ ε or y = DΦ + ε

(34)

where the error vector ε is assumed to be zero-mean
with a banded covariance matrix R. The covariance ma-
trix R is constructed from the collection of covariance
matrices of (27).

We estimate Φ via weighted least squares:

Φ̂ = (DT R−1D)−1DT R−1y (35)

with corresponding covariance given by

Cov(Φ) = (DT R−1D)−1. (36)

Ultimately, we will compare the performance of this es-
timator with that of the original 2-D method presented
in Eqs. (11) and (12) of Section 2.

It is important to recall that a drawback of using a
projection-based estimator is the inability to directly
estimate all of the parameters of M uniquely. Namely,
we cannot estimate the component c − b under pro-
jection. While the c + b term represents a measure of
the shearing of the image sequence, the “missing” term
c−b corresponds to the curl of the motion vector field.
As we indicated earlier, this suggests that pure rotation
will not be distinguishable in a single projection even in
the case of the exact projected affine model of (18). At
first glance, it would appear that estimating rotational
motion is then not at all possible from projections—this
is not the case. Indeed, if the complete set of projections
of the images were computed, then the angle of rota-
tion could be easily determined by computing pairwise
correlation coefficients between a projection (at, say,
θ = θ0) and the many other available projections. The
angle of rotation is then determined by the difference
in the projection angles of the pair of projections with
highest spatial correlation coefficient. In our method,
in order to keep the computational complexity to a min-
imum, we deal with only a small number of projections
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(3 or 4) sampled sparsely in the range [0, π ], so that
the correlation approach is impractical.

Fortunately, our method can still be modified and
employed to estimate purely rotational motion. Though
we do not pursue this specific problem in this paper,
we shall indicate how this can be done by first recall-
ing an important property of projected motion. Let us
recall that it was proved in [19], and mentioned earlier
in this paper, that projected motion satisfies the a lin-
earity property so that translational motion maps to a
single component (u0) in the projections and the linear
part M maps to another separate component (α(θ )) in
the projections. This linearity idea can be further ex-
ploited to show that the complementary rotational and
irrotational components of motion are also separated in
the projections. The implication here is that if we sim-
ply ignore the fact there is a rotational component in
the vector field of interest, or equivalently, if we assume
that c−b = 0, then the resulting estimated motion vec-
tor field is purely irrotational. With this fact in mind,
given an arbitrary affine motion vector field, we can
proceed by first estimating the irrotational component
according to the projection-based approach described
above. The images can then be warped according to
this estimated vector field, and the resulting pair of
images will then be known to be related by a vector
field that is a combination of translational and purely
rotational components. While the rotation can not be
estimated using a global application of the projection-
based method, it is possible to estimate rotation by ap-
plying the method locally in smaller windows of the im-
age. It is true that in a window of fixed size, as we move
away from the center of rotation, the curl component
becomes increasingly small. Therefore, the component
of pure rotation in a window away from the center of
rotation is measured effectively as a translation. Com-
bining these local estimates with the knowledge that the
underlying motion field is purely rotational with an un-
known center of rotation (the translational component),
the curl component of the overall global vector field can
very likely be accurately estimated as well. The com-
putational complexity of the overall projection-based
method process is, of course, worsened if this addi-
tional rotational motion estimation is in fact carried
out. We leave further analysis of this problem for future
research.

In the present framework, in order to generate esti-
mates for all of the affine parameters, we assume that
c −b = ρ where ρ is some known curl value, typically
set to zero.

In closing this section, it is also worth observing that
we need at least two projection angles to determine
the shift vector �v0 and at least three projection direc-
tions to estimate all of the curl-free affine parameters
of M . Given an arbitrary affine vector field, we typi-
cally employ four projection angles at θ = 0, 45, 90,

and 135 degrees. The choice of these angles can also
be optimized as a function of the given image (spa-
tial frequency) content to produce the best possible
estimates—this is another interesting topic worthy of
future research.

4. Local, Global, and Multiscale Vector Field
Estimation

Until now, we have not specified the region of interest
where we apply the above estimators. In this section
we explain how the previously described models can
be applied to the image sequence in a global or local
fashion to estimate more diverse vector fields. Then,
we show how the estimators are embedded into a hi-
erarchical or multiscale framework to yield improved
performance as well as computational efficiency.

In earlier sections, estimators (35) and (11) were ap-
plied to an unspecified region in the image where the
affine motion model was assumed to characterize the
image dynamics. The simplest such region to apply the
estimator is the entire image. For this case, we obtain
parameters that describe the global motion. When the
motion model applies in the global sense, this form of
estimation usually produces a very good estimate as
often there are thousands of equations used to estimate
only six parameters. This model works well to capture
image dynamics produced by a moving camera or im-
ages of a large rigid object motion where the object fills
the camera’s field of view.

Another popular approach for estimating more com-
plex vector fields is that of dividing the images into
small overlapping or non-overlapping regions. This
region-based approach assumes that the simple para-
metric model characterizes the motion present only in
a small region. The more complex vector field �v is
then approximated as a piecewise collection of sim-
pler parametric vector fields. These piecewise vector
fields are sometimes forced to satisfy some constraint
such as smoothness [13]. The simplest form of local
estimation is to find translational motion for small im-
age regions. The translational model of image dynam-
ics f (x − v0x , y − v0yt) is likely to be valid for small
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Figure 2. Region based vector field estimation.

spatio-temporal regions in the image sequence. The
vector field estimation process begins by estimating
the translational motion for each region in the image.
Then, these estimates are combined to generate an es-
timate of the vector field �v. The estimated translational
motion for each block represents a sample of the over-
all vector field. Thus, the dense vector field estimate �̂v
is usually generated by some form of interpolation of
these vector field samples. One such form of interpola-
tion is that of replication of the vector samples, where
the final vector flow field has regions of constant ve-
locity such as in Fig. 2. This approach is common in
video coding where the motions of each block are es-
timated using a variety of approaches. Some of these
approaches include matched filtering, correlation and
phase-based methods.

As shown in [23], this local vector field estimation
method can be understood as a special case of variable
size region-based motion estimation. Multiscale mo-
tion estimation attempts to estimate a vector field by
estimating the velocity components for variable sized
regions at different scales of image resolution. Basi-
cally, the multiscale framework estimates a vector field
by combining the coarse motion properties in large im-
age regions at low image resolution with the finer mo-
tion vector estimates estimated in smaller regions at
higher resolution.

To understand the utility of the multiscale frame-
work we first motivate the use of an iterative estima-
tion process. Recall from Sections 2 and 3 the trun-
cation of the Taylor series expansion to the first or-
der used to produce (6) and (21). This approximation
assumes a small motion vector �v (assuming unit time
between frames) and is not accurate for regions where

the velocity vector �v is large. The multiscale approach
attempts to remedy this inaccuracy by iterating over
scale. More specifically, the multiscale approach de-
composes the image sequence into a dyadic pyramid
of successive sequences of lowpass filtered and down-
sampled images. At each time (frame), this creates an
image pyramid with image sequences at the top having
the lowest resolution and size while the original image
sequence lies at the bottom. See Fig. 3. The motion
vectors describing the dynamics in the downsampled
images will necessarily be reduced in magnitude by
the downsampling ratio. This reduction in magnitude
improves the accuracies of the models (6) and (21) by
“shrinking” the magnitude of �v. Furthermore, the low-
pass filtering used to construct the image pyramid also
serves to regularize the optical flow estimation problem
[23].

When the assumption of intensity conservation is
violated in an image sequence, the estimates produced
by (11) and (35) are biased. The bias results essen-
tially from error in linearizing a nonlinear least squares
problem. To mitigate this error the equations of (11)
and (35) can be used to generate improved estimates
in a Gauss-Newton iterative scheme [4]. The perfor-
mance of the iterative nonlinear least squares estima-
tors depend on both the convexity of the objective
function (sum of the squared image differences) as
well as the accuracy of the relative estimate at each
iteration.

This Gauss-Newton nonlinear least squares estima-
tion can be combined with the multiscale framework.
The iterative multiscale estimation begins by estimat-
ing motion in the image sequence at the coarsest scale
(the top of the pyramid) denoted by f h(x, y, t) using
(11) or (35) (the superscript of f indicates the level of
the pyramid where h is the total height of the pyramid).
Because of the image downsampling, the velocity
vector x, y components in this image sequence are re-
duced in magnitude by 2h . After estimating the vector
field v̂1 at the coarsest level, the image sequence at the
next finer resolution level of the pyramid f h−1(x, y, t)
is warped according to 2× the velocity estimates v̂1

to create a warped image sequence f̌ h−1(x, y, t) with
the estimated coarse image motion removed from the
image sequence. Then, the residual motion v̂r is esti-
mated from this warped image sequence f̌ h−1(x, y, t)
and an updated velocity vector field is generated by
v̂2 = 2v̂1 + v̂r . This process repeats down the pyramid
iterating in a coarse to fine fashion. The multiscale
aspect of the iteration serves the additional role of



44 Robinson and Milanfar

Figure 3. Fake trees image at two pyramid resolutions and the corresponding projections.

reducing computation since the images at the coarsest
levels are downsampled (smaller). Thus, the computa-
tion time required to warp the image sequences as well
as the time required to estimate the residual motions is
reduced.

The multiscale iteration can be applied to both the
direct and projection based methods for estimating
vector fields. The use of multiscale iteration for di-
rect estimation has been shown to produce very ac-
curate results [4]. The multiscale iteration can also
be combined with projection based estimation to pro-
duce equally good results while realizing significant
computational savings. For example, Fig. 3 shows the
Fake Trees image at the coarsest resolution (h = 3)
and at the original image resolution. The correspond-
ing image projections are also shown and are used
to estimate global motion. Initially, the global mo-
tion parameters are estimated from the projections
(gh(p, θ, t)) of the coarsest image sequence. Again,
a warped image sequence at the next pyramid level
is generated f̌ h−1(x, y, t) using the estimates from the
projections of the previous level �v1. A new set of image
projections ǧh−1(p, θ, t) are then generated from the
warped image sequence f̌ h−1(x, y, t). As before, this
process repeats down the pyramid in a coarse-to-fine
fashion.

5. Computational Complexity

In this section we compare the computational complex-
ities of the direct and the projection-based estimators.
We will examine the computational cost of estimating
the parameters of affine motion between a pair of L ×L
images. We are not including any of the cost associated
with multiscale estimation as it will pertain to both es-
timators equally. We distinguish the original estimator
from the projection based estimator as being the 2-D
and 1-D methods respectively. We assume that N is
the number of projections used (typically 3 or 4). For
our evaluation of image gradients, we use convolution
kernels such that 10 multiplications and additions are
required to estimate the 2-D gradient at each pixel and
5 multiplications and additions are required to estimate
the derivative at each point in the projection. We obtain
the cost for motion estimation as a general cost of solv-
ing linear system from [11] where six parameters are
estimated in the 2-D case and two are estimated in the 1-
D case. Finally, we assume that N � L so that the final
cost of estimating the 2-D affine parameters from pro-
jected motion parameters, is negligible. This leads us to
a general overall computational complexity ofO(46L2)
for the direct 2-D estimation and O(NL2 + 9N ) for
the projection-based 1-D estimator (see Table 1).
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Table 1. Complexity of gradient-based direct and indirect methods.

Gradient-based estimators 2-D 1-D

Projection 0 NL2

Gradient 10L2 5NL

Motion estimation 36L2 4NL

Inverse estimation 0 36N 2

We find in practice that using N = 4 projection an-
gles to estimate affine motion requires at worst only
about 25 percent of the computational time required
by the 2-D method, thus realizing significant compu-
tational savings. It is important to note that the cost
of computing projections, which is the leading term
in the complexity of the 1-D method, involves only
additions, where as the leading L2 term in the direct
2-D method involves multiplications. Furthermore, we
point out that typically motion estimation methods em-
ploy some form of presmoothing of the images prior
to motion estimation. We have not included this pres-
moothing step in our analysis or experiments and we
have ignored its computational cost. But we mention
here that the computational cost of presmoothing is
again significantly lower if this operation is performed
on the projections instead of the images.

6. Experiments and Results

Here we present a set of experiments exploring the
performance of the direct and indirect methods for
estimating affine motion. We begin with experiments
estimating global affine vector fields for a set of images
in both a non-iterative and multiscale iterative frame-
work. Then, we compare the direct and indirect esti-
mation of affine vector fields using local estimation
methods. For our experiments, we use a combination
of well-known benchmark image sequences as well as
our own generated image sequences.

Figure 4. Experimental test images: Forest and Lab images.

6.1. Error Measures and Test Image Sequences

Following [3] we measured mean angular error be-
tween the correct motion vectors Vc in space-time and
the estimated motion vector in space-time Ve. Each
space-time velocity vector has the form V (x, y) =
(v1(x, y), v2(x, y), 1)T where v1, v2 are the velocities
in the x-y directions. Thus the motion vectors have unit
length in the time dimension. The mean angular error
between Vc and Ve is measured by:

ψang = 1

L2

∑
x,y

cos−1(Vc(x, y) · Ve(x, y)) (37)

where the sum is taken over all L2 pixels of interest. To
gather more information about the motion estimation
methods we also compute the mean magnitude error as:

ψmag = 1

L2

∑
x,y

‖�vc(x, y) − �ve(x, y)‖2 (38)

Again, this represents the average magnitude of the
error vector over all pixels in the image.

In our experiments, we evaluate the performance of
our projection based estimator for both well-known im-
age sequences and also our own synthetic image se-
quences. To generate a synthetic image sequence, we
warp an individual image according to the affine trans-
formation model of (1) to create an image pair. The
second image in the pair is a linearly interpolated ver-
sion of the reference image, where the interpolation is
based on a known motion vector field. We then estimate
this vector field from the image pair. The images we
used to generate synthetic image sequences are shown
in Fig. 4.

1. Forest. Picture of a forest contains similar image
statistics to those of a natural scene with rich tex-
tures. The image is 301 × 447 pixels.
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2. Lab. Picture from a webcam at the researchers’ of-
fice. The webcam was rotated about 45◦ so as to cre-
ate an image in which the majority of image texture
is not aligned at 0◦ and 90◦. The image is 240×320
pixels.

In addition to our own synthetic image sequences,
we follow the papers of [3, 16] and measure perfor-
mance on a well known set of benchmark image se-
quences from [3]. While these image sequences con-
tain many frames, we limit the image sequences to only
five frames. In practice, this represents a reasonable
number of frames as often in real image sequences the
vector field �v might only remain static for a short pe-
riod of time. The image sequences that we use are the
following:

1. Diverging Tree. The image sequence imitates a
camera zooming into scene creating a divergent
motion vector field.

2. Translating Tree. The image sequence contains
translational motion which is very close to global
translation arising from camera motion in the x-
direction.

Both of these image sequences are based on the image
shown in Fig. 10. We apply both the global and local
estimators to these benchmark sequences.

For each set of global estimation experiments we
added zero-mean Gaussian noise to produce the spec-
ified image signal to noise ratio (SNR).4 The motion
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Figure 5. Mean angular and magnitude error for the translating tree sequence.

vector fields were estimated from these noisy image se-
quences and the corresponding error measures for the
estimates were calculated. For each experiment, we re-
peated the estimation process 100 times at each SNR
and averaged the error values. We evaluate the per-
formance of the local estimation methods without any
additive noise so as to compare the results with those
of [3].

6.2. Global Vector Field Estimation

We begin our experimental performance analysis by
estimating global affine vector fields described by the
affine motion model of (2). As mentioned in Section 3,
the rotational component of the affine vector field can-
not be directly estimated using the global projection-
based estimator. Therefore, we first examine the perfor-
mance of the method in estimating affine vector fields
constrained to have no rotational component, and we
compare the results to the performance of the direct 2-
D method.5 We then extend the experiments to include
estimation of the general affine model to understand the
indirect estimator’s performance in the presence of im-
age rotation. For the projection-based estimation, we
use four projection angles of 0◦, 45◦, 90◦ and 135◦ in
each experiment.

We initially examine the performance of the projec-
tion based global estimator on the benchmark Trans-
lating and Diverging tree sequences, which contain no
rotational component. The plots of Figs. 5 and 6 show
the performance of the 1-D and 2-D methods using
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Figure 6. Mean angular and magnitude error for the diverging tree sequence.

no multiscale iteration (h = 1, dashed lines) and for
a multiscale pyramid of height h = 3 (solid lines).
The triangles indicate the error of the 2-D method
and the circles indicate the error of the 1-D projec-
tion based estimator. We follow this graphical format
for all of the experiments on global affine vector field
estimation.

From Figs. 5 and 6, we see that the projection-based
estimator outperforms the direct 2-D method when the
method is not iterated in multiscale, but the differ-
ence in performance shrinks as the SNR improves. For
both image sequences, when motion is estimated using
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Figure 7. Mean angular and magnitude error for the Forest image with constrained motion.

multiscale iteration, the performance of the direct and
projection based estimators are essentially equivalent.
Only for very poor SNR in the case of the Diverging
Tree sequence (Fig. 6) do we see a small performance
difference between the 1-D and 2-D methods.

To evaluate the performance of the projection-based
estimator more systematically using simulated motion,
we continue our experimentation using our synthetic
image sequences. Figure 7 shows the performance of
both the 2-D and 1-D methods in estimating the global
affine vector field with parameters M = [ .05 .01

.01 .06
] and

�v0 = [ .5
.5

] applied to the Forest image.
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Figure 8. Mean angular and magnitude errors for the lab image with rotation.

As a point of reference, for a particular realization
of noise at SNR of 5 dB, the 1-D estimator using mul-
tiscale (h = 3) iteration produces estimates of

M̂ =
[

.0484 .0079

.0079 .0382

]

and

v̂0 =
[

.3223

.4986

]

which corresponds to mean angular error of 1.8 degrees
and a mean magnitude error of 0.39 pixels. Using the
same data, the 2-D estimator produces

M̂ =
[

.0471 .0080

.0080 .0339

]

and

v̂0 =
[

.3885

.1760

]

which corresponds to a mean angular error of 3.19 de-
grees and a mean magnitude error of 0.68 pixels.

Again, we see the non-iterative projection based es-
timator outperforming the direct 2-D estimator. Using
the multiscale iteration, the 1-D projection based es-
timator continues to outperform the 2-D method. As
the SNR improves, both methods seem to converge
to similar performance. We present these results as a

representative sample of the many experiments we car-
ried out using other irrotational affine vector fields as
well as different reference images.

To analyze the performance for the case of general
affine motion, we estimate image dynamics for a vector
field containing nonzero curl. Figure 8 shows the errors
in estimating a vector field applied to the Lab image
with affine parameters

M =
[−.01 −.01

−.03 .02

]

and

�v0 =
[

.5

.5

]
.

As the plot indicates, without using multiscale it-
eration, the projection-based 1-D estimator again out-
performs the direct estimator. However, employing a
multiscale pyramid of height h = 3, the 2-D method
clearly produces better estimates of the vector field.
While the multiscale iteration does improve the pro-
jection based estimates, the iterations only improve the
estimate of the irrotational component of motion. For
example, at a SNR of 5 dB and multiscale height h = 3,
the projection based method produces affine parameter
estimates of

M̂ =
[−.0093 −.0238

−.0238 .0178

]
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Figure 9. Residual velocity vector field for projection-based esti-
mation of general affine vector field.

and

v̂0 =
[−.6807

.0944

]
.

The residual motion vector field �v − �̂v is shown in
Fig. 9. The figure shows that the residual motion not
captured by the projection based estimator is primarily
the rotational component of affine motion, though the
translational component seems to have been affected
as well. By contrast, the 2-D estimator for the same
image pair produces the estimates

M̂ =
[−.0106 −.0097

−.0294 .0188

]

and

v̂0 =
[−.5291

.4231

]
.

These experiments indicate that when the motion
is constrained such that there is no image rotation,
the 1-D method performs just as well if not better
than the 2-D method for global affine motion esti-
mation. The notion that the 1-D method can perform
better than the 2-D method in some circumstances
deserves a systematic and careful future study. The
previous figures also show that the multiscale iter-
ation can provide substantial improvements in per-
formance for both the non-iterative 1-D and 2-D
estimators.

6.3. Local Vector Field Estimation

Finally, we present experiments with the use of pro-
jections for estimating local motion in a block-based
scheme as outlined in Section 4. As mentioned earlier,
application of the direct gradient-based translational
estimation of Section 2 to small blocks in an image
sequence was first introduced by Lucas and Kanade
[17]. Here we compare the performance of an indi-
rect block based translational estimation scheme with
the direct method of [17]. The direct gradient method
consistently performs well as shown in most optical
flow estimation survey papers such as [3] and [16].
We will show that this performance also extends to the
projection-based method, while significantly improv-
ing the computational efficiency.

As indicated in Section 4, both the direct and indirect
techniques require choosing a set of operating param-
eters, ultimately affecting estimator performance. For
instance, both methods initially subdivide the image
into blocks for which a motion vector is estimated. The
choice of block sizes plays a critical role in determining
both the accuracy and the speed of the techniques. Fur-
thermore, depending on a desired density of the motion
vector field, the size of the blocks affects the amount
of block overlap. Both methods must choose a num-
ber of images to use in calculating one motion vector
field. Finally, each of the projection-based approaches
requires a pair of projection angles.

To improve the performance of the block based esti-
mators, we apply a weighting vector to the least squares
estimator which weights the pixels at the center of the
block more than the pixels at the periphery. We de-
note this weighting function w(x, y) for the direct es-
timator and w(p) for the indirect estimator. Applying
this weighting function to larger blocks will maximize
accuracy while minimizing the aperture problem. Ba-
sically, the weighting function forces the estimator to
estimate motion primarily from the pixels at the cen-
ter of the block but also allows pixels at the periphery
of the block to influence the estimate slightly. To sim-
plify the characterization of the weighting function, we
use Gaussian function w(p) = e−p2/γ . The weighting
function is parameterized by γ , or the variance of the
Gaussian function.

To directly compare the 1-D block based estimator
with the 2-D block based method in a fashion similar
to [3], we estimated the affine vector fields for Trans-
lating and Diverging tree sequences using a block size
of 30 × 30 pixels which appears to produce the overall
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Table 2. Results for all three sequence.

Estimation method 1-D Tran 2-D Tran 1-D Div 2-D Div

Mean angular error 11.385 14.108 5.888 6.112
(degrees)

Standard deviation 0.7064 0.6470 0.3325 0.3361

Mean magnitude error 0.574 0.778 0.153 0.169
(pixels)

Standard deviation 0.0269 0.0231 0.0094 0.0110

Cpu time (s) 1.920 23.880 1.930 24.030

best results for both methods. We then used both esti-
mators on each sequence using 15 frames and tabulated
the results in Table 2. The same table also includes
the computation time required to estimate the vector
fields.

From Table 2, we observe that the accuracy of the
1-D and 2-D methods appear to be statistically equiv-
alent. The computational complexity, however, is dra-
matically reduced in the projection-based approaches.
The 1-D method’s total computation time was on aver-
age about 90 percent better than the 2-D counterpart. As
a visual example, Fig. 10 shows the estimated motion
vector fields for the Diverging Tree image sequence
overlaid atop one image of the sequence. Note that the
motion vector fields are visually quite similar.

7. Conclusions and Future Work

In the paper we introduced a unified framework for
the estimation of affine motion using projections.

Figure 10. Motion vector field from 2-D (left) and 1-D (right) methods.

Previous attempts at the same were mostly ad-hoc
and, most importantly, did not address the question of
relative performance between the direct 2-D methods
and the proposed 1-D approaches. Here we have shown
that projection-based methods offer a computation-
ally very attractive alternative to the direct methods,
while in most cases maintaining or even improving
the level of accuracy. The idea that projection-based
methods can often display improved performance is
a theoretically intriguing one and deserves careful
study in the future. We have also shown that the
projection-based method can be combined with a mul-
tiscale iterative framework to provide further accuracy
in motion estimation while minimizing computation
time.

These results suggest much room for future re-
search in the area of estimating motion using pro-
jections. For instance, the gradient-based method of
estimating is only one method of many for esti-
mating motion using projections. Phase-based meth-
ods are another possibility that should be explored.
Improved performance may also be realized by us-
ing more sophisticated statistically robust methods in
place of the least squares approach presented in this
paper.

Finally, some of our preliminary experimentation
has indicated that the choice of projection angles
plays a fundamentally important role in the perfor-
mance of any projection based motion estimation
method. Adaptively identifying the optimal set of
projection angles, as a function of the given im-
ages, for best estimator performance remains an open
question.
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Appendix A. Calculating Derivatives
in Image Projections

Here we will introduce the intuitive reasoning for ap-
plying a weighting to the projection images prior to
calculating derivatives used in estimating projected
motion. We shall explain how this weighting acts as a
modification of the spatial derivative operator. Because
the image under projection is defined over a rectangular
region of samples, different points in the projection are
generated by integrating over lines of varying length. In
terms of image pixels, this means that different points
in the projection integrate different numbers of pix-
els in the original image. Thus, a rectangular constant
valued image on [−w/2, w/2] × [−h/2, h/2] would
not appear flat in the projection image but rather as a
piecewise linear function (see Fig. 11) given by

R[ f (x, y) = c]

=
∫ h/2

−h/2

∫ w/2

−w/2
cδ(p − x cos(θ ) − y sin(θ )) dx dy

=
∫ S+(p,θ )

S−(p,θ )
cds

= S+(p, θ ) − S−(p, θ ) = S( θ ) = g(p, θ ) (39)

where

S+(p, θ )

= min

[
p cot θ + w

2 sin θ
, −p tan θ + h

2 cos θ

]

(40)

Figure 11. Projection of a constant image

Figure 12. Integration region.

S−(p, θ )

= max

[
p cot θ − w

2 sin θ
, −p tan θ − h

2 cos θ

]

(41)

Here, the functions S+, S− come from the edges of the
rectangular image region. See Fig. 12. Thus, g(p, θ ) is
a piecewise linear function whose derivative will not
be zero. Of course, projections at 0 and 90 degrees do
not suffer from this anomaly. We propose to normal-
ize the projections such that the projection of a constant
image will produce a constant 1-D function. To accom-
plish this we use a normalized Radon transform of the
form

g̃(p, θ )

= R̃θ [ f (x, y)]

=
∫ ∫

f (x, y)δ(p − x cos θ − y sin θ ) dx dy∫ ∫
δ(p − x cos θ − y sin θ ) dx dy

(42)

After computing the normalized Radon transform,
we compute the derivatives of the projection at a spe-
cific angle θ by

gp(p, θ ) = g̃(p, θ ) ∗ K (p) (43)

where K represents the derivative convolution kernel.
This will ensure that the proper spatial derivatives are
calculated in the projection based motion estimators.
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Appendix B. Linearized Projected Affine Motion

In this section, we derive the Maclaurin series approxi-
mation of the exact form of the projected motion func-
tion u(p, θ ) for affine motion. From (18) we see that
the exact form of the affine motion under projection is

uexact(p, θ ) = �vT
0 �w +

(
1 − |det(J )|

‖J T w‖2

)
p (44)

We show how the coefficient of the second term in the
above expression can be linearized by expanding it in
a first order Maclaurin series. To begin, let us define

αexact(J ) = 1 − |det(J )|
‖J T w‖2

. (45)

Next, we rewrite (45) as a function of the four affine
parameters as follows

αexact(J )

= αexact(a, b, c, d)

= 1 − |1 − a − d + ad − bc|
[((1 − d)w1 + cw2)2 + (bw1 + (1 − a)w2)2]1/2

(46)

The first order Maclaurin series of α(a, b, c, d) will
have the form

αexact(a, b, c, d) = α(0, 0, 0, 0) + aαa(0) + bαb(0)

+ cαc(0) + dαd (0) (47)

To simplify the derivation, we write

αexact(a, b, c, d) = 1 − β(a, b, c, d)ζ−1/2(a, b, c, d)

(48)

where

β(a, b, c, d) = |1 − a − d + ad − bc| (49)

and

ζ (a, b, c, d) = ((1 − d)w1 + cw2)2

+ (bw1 + (1 − a)w2)2 (50)

Thus, from the chain rule we see that the partial deriva-
tives of αexact will have the form

αx = −
[
∂β

∂x
(ζ−1/2) −

(
β

1

2
ζ−3/2

)
∂ζ

∂x

]

=
[(

β
1

2
ζ−3/2

)
∂ζ

∂x
− ∂β

∂x
(ζ−1/2)

]
. (51)

Next, we note that αexact(0) = 0, ζ (0) = 1 and β(0) =
1.

We now compute the partial derivatives of β evalu-
ated at 0.

βa(0) = −1

βb(0) = 0

βc(0) = 0

βd (0) = −1

Likewise, we now evaluate the partial derivatives of ζ .

ζa(0) = −2w2
2

ζb(0) = 2w1w2

ζc(0) = 2w1w2

ζd (0) = −2w2
1

Finally, we see that the partial derivatives of αexact

are

αa(0) = 1 − w2
2 = w2

1

αb(0) = w1w2

αc(0) = w1w2

αd (0) = 1 − w2
1 = w2

2

Combining these calculations, we obtain the follow-
ing linearization of αexact:

αexact(a, b, c, d) ≈ aw2
1 + bw1w2 + cw1w2 + dw2

2

= �wT M �w (52)

This is the same form of projected affine motion ob-
tained using the PMI assumption, discussed in (17).
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Notes

1. As will be elaborated later, the the curl of the motion field, how-
ever, is not directly measurable in the projections.

2. We note here that g(p, θ, t) is the Radon transform of f (x, y, t)
for each fixed t .

3. We note that the subscript 1 on H1 and �1 refers to the 1-D nature
of the derived estimation problem.

4. Signal to noise ratio (SNR) is defined as 10 log10
σ 2

c
σ 2 where σ 2

c and
σ 2 are the variances of a clean frame and the noise respectively.

5. In the interest of fairness, the 2-D method employed in estimating
these irrotational vector fields employed constrained least squares
with the constraint that c − b = 0. The plots of Figs. 5–7 reflect
the use of this constraint in the 2-D case.
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