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In this paper a description is given of a computationally efficient algorithm, based on the two-dimensional fast
Fourier transform (FFT), for the estimation of multiple translational motions from a sequence of images. The
proposed algorithm relies on properties of the projection (Radon) transform to reduce the problem from three
to two dimensions and is effective in isolating and reliably estimating several superimposed motions in the
presence of moderate levels of noise. Furthermore, the reliance of this algorithm on a novel array processing
technique for line detection allows for the efficient estimation of the motion parameters. It is shown that
while the technique presented herein is not expected to exhibit the same performance as that of comparable
techniques based on the three-dimensional FFT, it is an attractive alternative that makes modest sacrifices in
performance for gains in computational complexity. © 1996 Optical Society of America.
1. INTRODUCTION

The estimation of image motion finds applications in a
wide variety of areas ranging from machine vision to tar-
get detection and tomography. In some machine vision
applications the apparent relative motion between a
scene and a camera is captured within an image se-
quence, and the aim may be ultimately to recover the
three-dimensional (3-D) motion, and even the shape, of
the scene. This process typically involves the computa-
tion of estimates of motion vectors on a fine grid from a
sequence of images.1 In particular, the estimation of
multiple superimposed motions such as those found in
specular and film transparencies is important in a variety
of applications.2–4 Aerial or spaceborne photography and
videography are practical examples in which the need for
fast, real-time, multiple-motion estimation is great. The
application areas are numerous and include meteorologi-
cal monitoring of clouds and storms from satellite imag-
ery and detection and tracking of dim airborne or ground-
based targets from down-looking imaging sensors. In
such applications the image sequence is acquired from a
moving platform, while the targets of interest may be
moving along various directions. Simultaneously, mul-
tiple layers of cloud cover, moving in yet other directions,
may occlude the target by transparently adding to the im-
age. Furthermore, in such applications, the energy of the
motion signal in the cloud component is typically quite
different from that corresponding to the targets or the
ground because of different texture patterns found in
these images. Hence the strongest motion signal may oc-
clude or mask the weaker signals and render these imper-
ceptible. In this paper a fast algorithm for multiple-
motion estimation is provided that takes these issues into
account, and its effectiveness is demonstrated on simu-
lated and real sequences of aerial imagery.
The wide set of applications encompassing the motion

estimation problem has resulted in much research work
in the past two decades. Most available algorithms deal-
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ing with motion estimation can be roughly categorized as
belonging to one of two general classes. The first in-
volves motion estimation directly in the image domain.5

These algorithms include the celebrated Horn and
Schunk1 algorithm for optical flow and the many variants
of this work that have been introduced since. The es-
sence of this algorithm is the assumption that, locally, the
motion within an image can be described by one simple
translational component if the local neighborhood is suf-
ficiently small.3 When this single-component local veloc-
ity assumption is violated, as is the case in transparent
motion of two overlapping patterns in the same scene,
other image-domain algorithms have been developed to
isolate each of the velocities.3,6,7

The second class of motion estimation algorithms con-
sists of frequency-domain approaches. The basic premise
of these techniques is the idea that if a sequence of im-
ages, thought of as a 3-D function [in two-dimensional
(2-D) space and time], contains a uniformly translating
pattern or object, then the energy of the 3-D fast Fourier
transform (FFT) of this function will be mostly concen-
trated along a plane through the origin whose orientation
is related to the velocity of the moving pattern.8–10

Hence, by computing the 3-D FFT and then finding one or
more planes with strong energy concentration, one can es-
timate the desired velocity.9 An important advantage of
this technique is that because of the linear superposition
of the Fourier transform, the existence of multiple super-
imposed motions will be manifested in the FFT magni-
tude simply as energy concentrations along more than
one plane through the origin.
Even though the 3-D FFT approach is computationally

simpler than most image-domain algorithms, the next
step of finding planes with dominant energy, which typi-
cally involves matched filtering with a bank of directional
filters,9,10 is not simple, particularly if multiple motions
are present. While these 3-D spectral techniques have
been shown to be effective, they still involve a significant
amount of computation, in addition to heuristic reason-
© 1996 Optical Society of America
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ing, in deciding on a particular detection criterion. Other
techniques have also been developed that combine fre-
quency and spatiotemporal analysis11 in improving com-
putational complexity and resolution of the existing tech-
niques.
In this paper a novel (2-D) algorithm for projection-

based multiple-motion estimation is described. The pro-
posed algorithm can efficiently estimate several velocities
in batch or in an ordered (sequential) fashion similar to
that of Ref. 6 and is robust in the presence of moderate
levels of noise. Beginning with a sequence of frames, the
algorithm first projects each frame along two linearly in-
dependent directions. Then, 2-D FFT’s are applied to the
resulting collection of projections. Next, a line detection
algorithm estimates the component velocities, and, fi-
nally, the component velocities are matched to produce
the motion vectors.
As compared with existing techniques for (transla-

tional) motion estimation, several aspects of the present
approach are novel. In contrast to iterative techniques
such as those in Refs. 3 and 6, which can estimate up to
two motions from up to three frames, the proposed algo-
rithm is noniterative and, given sufficiently many frames
of images, can estimate as many superimposed velocities
as the resolution of the data will allow.
Various researchers have studied the use of 2-D FFT’s

in various forms for estimating motion.11–16 However, no
investigators have, to date, applied their techniques to
the estimation of multiple superimposed motions. In a
technique12 related to that of the present paper the au-
thors use projections along the x and y directions only
and compute 2-D FFT’s, but rather than finding a line in
the 2-D FFT’s, they estimate velocities from a single peak
in one row (spatial frequency bin) of the spectrum. The
present 2-D technique follows from the observation that
any pair of linearly independent components of a velocity
vector [in particular, the horizontal (x) and vertical (y)
components] can be estimated independently. This fol-
lows from a well-known property of the Radon transform
that will be described in Section 2.
While I do not expect the performance of the proposed

2-D algorithm to match that of the corresponding algo-
rithms based on 3-D FFT’s and matched filtering, I will
demonstrate that it offers an attractive alternative for the
estimation of superimposed motions with high quality,
but at potentially significant computational savings.
To this end, I have also adopted a recently published tech-
nique for the estimation of lines in images.17,18 This
technique (called SLIDE, for subspace-based line detec-
tion) is based on a clever analogy between lines and
propagating wave fronts and employs efficient array pro-
cessing algorithms. Subsequent to the submission of this
paper, I was made aware that in Ref. 19 the authors had
independently suggested the use of projection followed by
(subspace-based) line fitting for motion estimation.

2. PROBLEM FORMULATION AND
SOLUTION OUTLINE
Assume that a uniformly sampled sequence of frames
f(x, y, t), where all three arguments are discrete and
range over 1 < x, y < N and 0 < t < T 2 1, is given.
For the moment a single displacement vector v
5 (vx , vy)

T is assumed unknown. Writing f(x, y, t)
5 f(x 2 tvx , y 2 tvy , 0), we define the difference
frames d(x, y, t) for 1 < t < T 2 1 as

d~x, y, t ! 5 f~x, y, t ! 2 f~x 2 vx , y 2 vy , t 2 1 !.
(1)

The least-squares (LS) error approach to estimating the
displacement20 vector v is to minimize the following cost
function of vx and vy :

J~vx , vy! 5 (
t,x,y

d2~x, y, t !. (2)

Pixel-domain techniques known as optical flow
techniques1 assume that the displacements are suffi-
ciently small across consecutive frames so that d(x, y, t)
can be approximated by a truncated Taylor series. Dif-
ferentiation of the resulting approximate expression for
the cost, with respect to the unknown displacements,
yields the optical flow equations:

vx ( S ]f
]x D

2

1 vy ( S ]f
]x

]f
]y D 5 2(

]f
]x

]f
]t
, (3)

vx (
]f
]x

]f
]y

1 vy ( S ]f
]y D

2

5 2(
]f
]y

]f
]t
.

(4)

Solving these equations for vx and vy gives the esti-
mated displacement vector v̂. Iterative improvements to
the resulting estimates can be obtained as described in
Refs. 3 and 21.
On the other hand, from Parseval’s relation we can

write the right-hand side of Eq. (2) in the frequency do-
main as follows:

J~vx , vy! 5 c (
vt ,vx ,vy

uD~vx , vy , v t!u2

5 2 (
vt ,vx ,vy

uF~vx , vy , v t!u2

3 @1 2 cos~vxvx 1 vyvy 1 v t!#, (5)

where c is a constant and capital letters refer to the dis-
crete Fourier transform of the corresponding lowercase
variables. From Eq. (5) one can immediately see that the
minimum of the cost function (50) is attained when
1 2 cos(vxvx 1 vyvy 1 vt) 5 0, which yields the funda-
mental solution

vxvx 1 vyvy 1 v t 5 0. (6)

This demonstrates that as a result of the displacement v
5 (vx , vy)

T, essentially all of the energy in the 3-D spec-
trum of f(x, y, t) will be concentrated along a plane given
by Eq. (6), which passes through the origin of the 3-D fre-
quency domain, and that the orientation of this plane
yields the LS estimate of the displacement vector.22

An equivalent way of describing the plane (6) is to
specify two independent vectors (lines) that span it.
These vectors can be given by considering the intersection
of Eq. (6) with two nonparallel planes, e.g., vx 5 0 and
vy 5 0. One attractive way to accomplish this and hence
reduce the dimensionality of the problem to two
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dimensions is to project each frame along a pair of inde-
pendent directions and then apply 2-D FFT’s. The cel-
ebrated projection slice theorem23 implies that the 2-D
FFT’s of the resulting projections are slices through the
3-D FFT ’s of the image sequence, where these slices are
taken along planes determined by the projection direc-
tions. In particular, when the projections are taken
along the rows and the columns of the images, the slices
are along the planes vx 5 0 and vy 5 0. Hence the en-
ergy of the resulting 2-D spectra will be concentrated
along lines instead of planes in 3-D processing.
Let us define the projections onto the x and y axes of

each frame, respectively, as follows:

p~x, t ! 5 (
y

f~x, y, t !, (7)

q~ y, t ! 5 (
x

f~x, y, t !. (8)

It then follows that p(x, t) undergoes a motion of vx
samples per frame and, similarly, q(y, t) undergoes a mo-
tion of vy samples per frame. This observation has been
made elsewhere in past motion estimation literature.12

A simple fact, not discussed before in the motion estima-
tion literature, is that this is a special case of a more gen-
eral (shift) property of the Radon (projection) transform.23

This property states that if f(x, y) is a 2-D image and
pu(s) denotes its projection onto an axis (s) forming an
angle u with the x axis, then the projection of a shifted
version of the image, f(x 2 vx , y 2 vy), onto the same
axis is given by pu(s 2 vx cos u 2 vy sin u). This funda-
mental property forms the basis of the present projection-
based algorithm.
The proposed algorithm for motion estimation involves

several simple steps, as raised in Section 1. These steps
are illustrated in Fig. 1. As mentioned in Section 1,
when multiple velocities are to be estimated, the ap-
proach allows for the estimation of one velocity at a time.

Fig. 1. Overview of the algorithm.
In particular, if this option is exercised, the stronger ve-
locity components (in terms of spectral energy) are esti-
mated and removed first. In this fashion the signal-to-
noise ratio (SNR) for weaker velocity components is
enhanced, and hence their detection is improved.
Referring to Fig. 1, the first step in the algorithm is

projection along two independent directions u1 and u 2 . If
we denote the velocity components in these directions as
vx(u1) and vy(u 2), respectively, then we have

S vx~u1!

vy~u 2! D 5 F cos u1
cos u 2

sin u1
sin u 2

G S vxvy D . (9)

For any nontrivial pair (u1 , u 2), once all velocity compo-
nents have been estimated in these directions and
matched (i.e., corresponding pairs have been identified),
the velocity components vx and vy can be uniquely com-
puted from vx(u1) and vy(u 2) by inverting Eq. (9).

24

3. VELOCITY ESTIMATION THROUGH LINE
DETECTION
Given the magnitude of the 2-D FFT’s of p and q, denoted
respectively by Ip(vx , v t) 5 uP(vx , v t)u and Iq(vy , v t)
5 uQ(vy , v t)u, we now effectively have a pair of images
in which we seek to detect one or more lines. Numerous
techniques have been introduced in the past to accom-
plish this task. Among these, the most popular and
widely used are based on the Hough transform.25–27

While the Hough transform technique is quite robust to
noise, it has significant drawbacks that limit its utility.17

The first of these drawbacks concerns resolution limited-
ness arising from the discrete nature of the problem. An
additional drawback of the Hough transform is that the
search process for multiple peaks is not only computation-
ally burdensome but also hampered by local extrema.
Voting schemes aimed at extracting peaks of the Hough
transform also suffer from inherent bias as described in
Ref. 28. An attractive alternative to the Hough trans-
form is a recently introduced high-resolution technique
called SLIDE,17 which is based on a clever analogy be-
tween a line in an image and a planar propagating wave
front impinging on an array of sensors. This algorithm
provides a natural framework for estimation of multiple
motions and requires fewer computations than the Hough
transform. In fact, finding one line in an N 3 N image
by means of the Hough transform requires O(N3) compu-
tations, whereas the same task with the use of SLIDE re-
quires only O(N2) computations.
SLIDE begins with the assumption that in front of each

row (or, equivalently, column) of an image there is a hy-
pothetical receiver as shown in Fig. 2. Then each pixel in
a particular row (or column) of the image can be thought
of as contributing a received signal at the corresponding
sensor. The contribution can be thought of as simply a
phase delay if the pixel is regarded as a source of narrow-
band radiation that travels only toward the sensor. In
essence, the problem of detecting a line in an image is
then reduced to that of estimating the direction of arrival
of the wave front, or the phase delay between consecutive
sensors. Rather than describe the detailed derivation of
this technique, which is based on the total LS version of
ESPRIT,17,29 I simply state the steps required to arrive at
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an estimate of the slope of a line within an image. With-
out loss of generality, the algorithm is described in terms
of an arbitrary N 3 N image I(m, n).
The first step in SLIDE is the formation of the array

data vector z 5 @z(0), z(1), . . ., z(N 2 1)#T as follows:

z~n ! 5 (
m50

N21

h~m !I~m, n !, (10)

where for m 5 0, . . ., N 2 1 we define

h~m ! 5 exp~2jmm !. (11)

The parameter m (typically set to approximately unity) is
a constant (related to the speed of propagation) that can
be tuned to produce best performance.
The next step is the formation of the data matrix ZP as

follows:

ZP 5 F z~0 !

z~1 !

A
z~M 2 1 !

z~1 !

z~2 !

•••
z~M !

•••
•••
�

•••

z~N 2 M !

z~N 2 M 1 1 !

A
z~N 2 1 !

G ,
(12)

where the parameter M is chosen so as to yield the best
spatial smoothing.17

The data covariance matrix is then formed as

Rzz 5
1
P
ZPZP

H , (13)

where the superscript H denotes conjugate transpose.
The eigendecomposition of Rzz yields

Rzz 5 EsLsEs
H 1 EwLwEw

H , (14)

where the first term on the right-hand side corresponds to
the signal covariance and the second term captures the
noise covariance. Assuming that l signals are present in
the data, to apply ESPRIT, we let E1 denote the subma-
trix of Es formed by rows 1 throughM 2 1, and define E2
as the submatrix formed by the rows 2 throughM. Next,
the 2l 3 2l matrix U is formed:

U 5 SE1
H

E2
HD ~E1 E2!. (15)

The eigendecomposition of U yields

U 5 FLFH, (16)

Fig. 2. Interpretation of SLIDE (adopted from Ref. 17).
where F can be partitioned into l 3 l submatrices as

F 5 FF11

F21

F12

F22
G . (17)

For k 5 1, . . ., l the angles fk as shown in Fig. 2 are
then obtained from

fk 5 tan21F 1m ImS ln zk
uzku

D G , (18)

where zk are the eigenvalues of 2F12F22
21. Given the

angles fk , the slopes of the corresponding lines are easily
found. Note that when the relative difference in strength
between two motion signals is known to be large, the pro-
posed algorithm can estimate one velocity at a time.
Hence, if a total of l velocities are being sought, we would
use l 5 1 in each of l passes through the algorithm. In
this fashion multiple velocities are estimated sequen-
tially, with the strongest velocities (corresponding essen-
tially to the largest of the eigenvalues of Rzz) being ex-
tracted first. If the assumption of large relative
difference in the energy is not satisfied, then letting l
5 1 will yield a linear combination of the multiple signals
and the sequential approach is not appropriate. But
when this relative difference is sufficiently large, then
this linear combination is highly biased toward the stron-
ger of the two motion signals. In effect, the sequential
approach sacrifices some accuracy in the estimate of the
strongest motion signal in exchange for a better estimate
of the weaker signal.

4. VELOCITY COMPONENT MATCHING
Let us assume that application of the steps in Section 3,
as depicted in Fig. 1, produces l horizontal and l vertical
velocity estimates. We can denote these as

Vx 5 $v̂x~1 !, v̂x~2 !, . . ., v̂x~l !%, (19)

Vy 5 $v̂y~1 !, v̂y~2 !, . . ., v̂y~l !%. (20)

We shall assume that the true velocity components do
not have any x or y components in common30 (i.e., none of
the v̂x’s are equal, and none of the v̂y’s are equal). We
need to obtain l displacement vectors v1 , v2 , . . ., vl by
matching elements of Vx to those of Vy .
Assuming a given measure L(i, j) for how well a pair

[ v̂x(i), v̂y( j)] match, we can proceed by first finding the
best match between every possible pair of candidate com-
ponent velocities. That is to say,

v̂1 5 @ v̂x~i1!, v̂y~ j1!#T, (21)

where for all 1 < i, j < l

L~i1 , j1! < ~i, j !. (22)

This requires that we compute exactly l2 values of L and
pick the minimum. Once this has been accomplished,
v̂x(i1) and v̂y( j1) are removed from the sets Vx and Vy
and the next displacement vector v̂2 is obtained as

v̂2 5 @ v̂x~i2!, v̂y~ j2!#T, (23)

where

L~i2 , j2! < L~i, j ! (24)
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for all 1 < i, j < l with i Þ i1 and j Þ j1. Note that
this second optimization requires no more computations
of L, since the same values computed in arriving at v̂1 are
used again. Proceeding in this fashion, we find that the
process of matching the horizontal and vertical velocities
involves only l2 computations of the measure L. Once
these values are found, to obtain v̂k , one picks the mini-
mum value among the remaining (l 2 k 1 1)2 values of
L.
By appealing to the LS formulation introduced in Eq.

(2), we choose L to be a quadratic error function. Akin to
the definition of J(vx , vy) in Eq. (2) the average per pixel
error L is defined as

L~i, j ! 5
1
K (

t51

K

d2@x, y, t, v̂x~i !, v̂y~ j !#/N
2, (25)

where d is defined in Eq. (1) and 1 < K < T 2 1. Note
that K is allowed to be smaller than the total number of
given difference frames. I have observed that the above
criterion works quite well in matching velocities, even if
K is only a fraction of the available total number of dif-
ference frames (T 2 1), while incurring a much smaller
computational cost than that if all the available frames
are used.

5. PERFORMANCE
In this section the performance of the proposed algorithm
is assessed by way of computing approximations for the
error variances of the estimates under high-SNR and
small-motion assumptions.
First, without loss of generality, let us consider the case

in which Gaussian white noise corrupts the frames. The
measured image frames are

u~x, y, t ! 5 f~x, y, t; v ! 1 w~x, y, t !, (26)

where v 5 (vx , vy)
T and w(x, y, t) denotes joint spa-

tiotemporally white noise with zero mean and finite vari-
ance s 2. The resulting projections calculated from the
noisy frames are given by

pu~x, t ! 5 p~x, t; vx! 1 w1~x, t !, (27)

qu~ y, t ! 5 q~ y, t; vy! 1 w2~ y, t !, (28)

where p(x, t) and q( y, t) are defined in Eqs. (7) and (8).
The variables w1 and w2 are then Gaussian with zero

mean and variance Ns 2. Furthermore, w1(x, t) and
w2( y, t) are both white in the spatial and temporal vari-
ables on account of the whiteness of w(x, y, t). In fact,
for a fixed t0 , w1(x, t0) and w2( y, t0) are essentially un-
correlated in the spatial variables. This follows from
the observation that the sums w1(x, t0) 5

(y50
N21 w(x, y, t0) and w2( y, t0) 5 (x50

N21 w(x, y, t0) have
only (exactly) one term in common for each pair (x, y). A
simple calculation shows that the (spatial) correlation of
w1 and w2 is 1/N, which diminishes with large N.

31 This
is, in fact, a special case of another interesting, deeper
property, which states that the Radon transform is a
whitening filter in the angular parameter when applied to
stationary random fields.26 That is to say, for a given
stationary random field, in the limiting case (N 5 `), ev-
ery pair of projections from nontrivial angles is statisti-
cally uncorrelated.
Since the temporal correlation of w1 and w2 is zero by

assumption, in general, we can effectively state that when
N is sufficiently large, the measurement equations (27)
and (28) are essentially statistically uncorrelated mea-
surements of functions of the corresponding components
of the velocities. Therefore we can view the optimal es-
timation of the velocities in these two directions as inde-
pendent estimation problems that can be solved sepa-
rately. Having stated this, we investigate the relative
performance of the optimum 3-D approach compared with
the projection-based approach.
The problem of estimating the motion vector

v 5 (vx , vy)
T from a sequence of noisy frames given in

Eq. (26) is, in general, a nonlinear estimation problem. If
we denote the probability-density function of the data u
by P[u(x, y, t); v], then the Cramér–Rao lower bound
(CRLB) for the variance of the estimate v̂ is given by32

cov~ v̂ ! > I21~v !, (29)

where I(v) is the Fisher information matrix for the data:

I~v ! 5 EXH ] log@P~u; v !#

]v JT H ] log@P~u; v !#

]v J C.
(30)

Noting that P is a Gaussian density with mean f and
variance s 2, and after some simplification, we have

I~v ! 5
1

s2 F (
x, y, t

S ]f
]vx

D 2
(
x, y, t

]f
]vx

]f
]vy

(
x, y, t

]f
]vx

]f
]vy

(
x, y, t

S ]f
]vy

D 2 G . (31)

For high SNR’s the CRLB is an accurate approximation of
the actual error covariance matrix. Unfortunately, the
above expression for the information matrix is not par-
ticularly illuminating, as we generally cannot compute
the derivatives. We can, however, approximate the
CRLB for small-motion vectors.
To obtain an approximation, we proceed by linearizing

the measurements about v 5 0. To this end, we first
write

f~x, y, t; v ! 5 f~x 2 vxt, y 2 vyt, 0!. (32)

The right-hand side can be expanded in a Taylor series
about v 5 0 to produce

f~x, y, t; v ! ' f~x, y, 0! 2 vxt
]f
]x

2 vyt
]f
]y

1 higher-order terms. (33)

Ignoring the higher-order terms and redefining the data,
we have

d 5
u~x, y, t ! 2 f~x, y, 0!

t

5 2F ]f
]x

]f
]yG S vxvyD 1 w~x, y, t !. (34)

It is noteworthy here that as t approaches zero, the left-
hand side of Eq. (34) is, in essence, a noisy measurement
of the partial derivative, with respect to time, of the mo-
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tion sequence, i.e., ]f/]t. With this in mind, we recognize
Eq. (34) as the measurement equation that leads to the
optical flow formulation. In fact, what we have now is a
linear estimation problem for v. The error covariance
matrix for this linear problem is given by

Q 5 s 2FDxx

Dxy

Dxy

Dyy
G21

, (35)

where

Dxx 5 (
x,y,t

S ]f
]x D

2

, (36)

Dxy 5 (
x,y,t

]f
]x

]f
]y

, (37)

Dyy 5 (
x,y,t

S ]f
]y D

2

. (38)

Not surprisingly, these entries coincide with the coeffi-
cients found on the left-hand side of the optical flow equa-
tions (3) and (4).
For small v, Q is an adequate approximation of the

lower bound in relation (29). In turn, the CRLB itself is
an accurate approximation of (or a tight bound on) the ac-
tual covariance for small noise variance s 2. Hence we
can use Q as a measure of performance for high-SNR sce-
narios and around v 5 0. For comparison with the 2-D
case the trace of Q (a scalar) is a useful measure. This is
given by

C3 5 Tr~Q ! 5 s 2S Dxx 1 Dyy

DxxDyy 2 Dxy
2 D . (39)

The derivation of the approximate variances for motion
estimates from projections is essentially similar, leading
to

var~ v̂x! '
Ns 2

dxx
, (40)

var~ v̂y! '
Ns 2

dyy
, (41)

where

dxx 5 (
x,t

S ]p
]x D2, (42)

dyy 5 (
y,t

S ]q
]y D2. (43)

We define the sum of these variances as an aggregate
scalar measure of 2-D performance (for high-SNR cases):

C2 5 Ns 2S 1
dxx

1
1
dyy

D . (44)

To bound the relative difference between C2 and C3 , we
begin by observing that

dxx < NDxx , (45)

dyy < NDyy . (46)

To see this, recall the definition of p(x, t) in Eq. (7).
From this it follows that33
]p
]x

5 (
y

]f
]x

. (47)

Using this, we can write

dxx 5 (
x,t

S ]p
]x D2 5 (

x,t
S (

y

]f
]x D2 (48)

< (
x,t

FN (
y

S ]f
]x D 2G (49)

5 N(
x,y,t

S ]f
]x D

2

5 NDxx , (50)

where relation (49) is a consequence of the Cauchy–
Schwarz inequality.34 We similarly have dyy < NDyy .
Rewriting C3 and incorporating the above bounds, we ob-
tain
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which readily implies that

C3 2 C2

C3
<

Dxy
2

DxxDyy
. (54)

This indicates that, at least for small motions and large
SNR’s, the relative performance loss suffered in using a
projection-based approach as opposed to a 3-D approach
can be quite small if, for a given Dxy , there are suffi-
ciently large spatial gradients in the directions of projec-
tion, i.e., if the right-hand side of relation (54) is suffi-
ciently small. In particular, since the covariance matrix
Q is positive definite, the right-hand side of relation (54)
is always strictly less than unity. Similar statements
can be made for projections made along any pair of non-
trivial directions.
By way of reference, I mention here that CRLB’s for

translational motion estimates in highly textured images
have been derived in Ref. 35, where the author has taken
the measurement model for the motion signal to be the
output of spatiotemporal Gabor and difference-of-
Gaussian energy filters. The assumption of highly tex-
tured images in Ref. 35 is motivated by the fact that the
estimation error is smaller when higher (spatial) fre-
quency information is available in more of the image.
The present estimates of the error covariance matrices for
both the 3-D and 2-D cases support this assertion.

6. COMPUTATIONAL COMPLEXITY
In this section a computational budget is developed for
the proposed algorithm and compared with the computa-
tional complexity of a comparable algorithm based on the
use of 3-D FFT’s. To make a fair comparison with the
proposed algorithm, we consider the 3-D equivalent of
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this algorithm, where after the 3-D FFT is computed, ve-
locity vectors are computed by plane fitting with the use
of SLIDE. Note that this comparison will be a rather
conservative one, since this aforementioned (hypothetical)
3-D approach is apparently less computationally costly
than matched filtering in three dimensions with a bank of
directional filters [which, incidentally, requires O(N5) op-
erations].
Now suppose that a sequence of N frames of N 3 N im-

ages is given that contains exactly l distinct translational
motions. Then (the worst-case, sequential versions of)
the 2-D and 3-D algorithms will require the number of
computations outlined in Table 1.
The 3-D approach will require O(lN3 log2 N) computa-

tions, since one 3-D FFT will be required for each velocity.
For the 2-D approach, in the worst case, the process of es-
timating the velocity components is repeated l times;
also, matching of the velocity components, as described in
Section 4, requires O(l2N2K) operations, where K < N
2 1 is the number of frames used for matching, defined
in Eq. (25).
Note that the number of operations that we just com-

puted for the 2-D approach assumes that no reprojections
are necessary. As described in Section 4, we assumed
that no x components were identical in the set Vx (and
similarly for Vy). If this assumption is violated, then it is
necessary to choose new projection angles and repeat at
least some of the steps of the algorithm to resolve the am-
biguity. If the resolution of this ambiguity requires r re-
projections along pairs of independent directions, then
the number of computations for the 2-D approach will be
at most max[O(rl2N2K), O(rlN3)]. Even in this case,
the 2-D algorithm is more efficient for sufficiently large
N.

7. EXPERIMENTAL RESULTS
In this section the results are presented of two experi-
ments that examine the potential of the proposed algo-
rithm. The first experiment will demonstrate the esti-
mation of two superimposed (added) subpixel motions in a
simulated image sequence. The second will estimate the
dominant translational motion in a real aerial image se-
quence.

A. Simulated Example
To simulate the measured frames in this experiment, I
used a 475 3 720 aerial (ortho-) photograph of Washing-
ton, D.C., shown in Fig. 3. From this image 40 subim-
ages of dimension 256 3 256, each pair separated by 2

Table 1. Computational Budget

Operation 2-D 3-D

Projection 2N3 0
FFT 2N2 log N N3 log N
FFT Magnitude 6N2 3N3

SLIDE O(N2) O(N3)
Image Differencing O(N3) O(N3)
Matching O(N2K) 0
Total (l velocities) max$O(l2N2K), O(lN3)% O(lN3 log N)
pixels, were collected, beginning with the lowermost
square, shown in Fig. 3, and ending in the uppermost
square. Next, the synthetic 512 3 512 cloud image
shown in Fig. 4 was generated, and from this image 40
subimages of dimension 256 3 256, each pair separated
by 1 pixel, were collected, this time beginning with the
uppermost square and ending in the lowermost square.36

Denote by ID.C.(t) and ICloud(t) the t-th subimages of the
D.C. and the cloud sequence, respectively. Then, the
256 3 256 images I(t) were generated as

I~t ! 5 0.3ID.C.~t ! 1 ICloud~t !, (55)

so that the power in the cloud component of the above
sum is roughly 3 dB higher than that of the ground, cor-
responding to a heavy (thick) cloud cover scenario.
The frames thus generated now contain two displace-

ment components, namely (2, 22)T and (21, 1)T pixels
per frame. To simulate subpixel motion, I generated the
frames f(x, y, t) from I(t) by low-pass filtering followed
by downsampling. The low-pass filtering step is neces-
sary to avoid aliasing and, in fact, can represent the

Fig. 3. Aerial photograph of Washington, D.C. (courtesy U.S.
Geological Survey).

Fig. 4. Synthetic cloud image.
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Fig. 5. From left to right and top to bottom: 1, 5, 10, 15, 20, 25,
30, 35, and 40 of the sequence.
point-spread function of the imaging system. In this case
this point-spread function was (somewhat arbitrarily)
chosen as an 8 3 8 Gaussian with unit variance. The
images I(t) were filtered and downsampled by a factor of
4 to yield a sequence of 40 64 3 64 images f(x, y, t).
This sequence thereby contains two superimposed sub-
pixel motion components given by v1 5 (1/2, 21/2)T and
v2 5 (21/4, 1/4)T, corresponding to the ground and the
cloud motion, respectively. Gaussian white noise is then
added to each frame (corresponding to SNR 5 16 dB),37

and they are processed through the algorithm. Figure 5
shows selected frames from the sequence thus generated.
Figure 6 shows the magnitude of the 2-D FFT’s of the

(de-meaned) rowwise projections on the right and that of
the columnwise projections on the left. The distinct lines
corresponding to the displacements are seen.38

SLIDE is then used to extract one velocity out of each
image. In this case the sequential extraction of velocities
is appropriate, as the ground image is much more highly
textured than the superimposed clouds. The extracted
velocities were v̂x(1) 5 0.5196 and v̂y(1) 5 20.4959.
After storage of these estimated velocities the difference
frames were formed and fed back into the projection pro-
cess. The 2-D FFT magnitudes of the results are shown
Fig. 6. (a) uP(vx , v t)u, (b) uQ(vy , v t)u.

Fig. 7. (a) uDp(vx , v t)u and (b) uDq(vy , v t)u Fourier magnitudes of projections after removal of one velocity.
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in Fig. 7, and these clearly display the remaining veloci-
ties to be estimated. Another application of SLIDE
yields v̂x(2) 5 20.2603 and v̂y(2) 5 0.2522.
To match the velocities Vx 5 $v̂x(1), v̂x(2)% and Vy

5 $v̂y(1), v̂y(2)%, we compute the difference measure L
for all possible pairs over only the first K 5 5 difference
frames. This gives L(1, 1) 5 248.6188, L(1, 2)
5 235.5621, L(2, 1) 5 212.0420, and L(2, 2)
5 183.4123. Hence, since L(2, 2) is the smallest, we
have v̂2 5 @ v̂x(2), v̂y(2)#

T 5 (20.2603, 0.2522)T, which
also yields v̂1 5 @ v̂x(1), v̂y(1)#

T 5 (0.5196, 20.4959)T.
Each of these velocity estimates is seen to be within
roughly 4% or 1/100 ppf of the true values.
To confirm that the performance obtained in this ex-

ample was typical and to gain more insight about the per-
formance as a function of noise, I performed a Monte
Carlo simulation in which the above experiment was re-
peated for 50 different realizations of the noise at each of
various SNR’s. The mean performance curves for the x
and y velocity estimates are shown in Figs. 8 and 9. It is
seen that the performance is consistently good for SNR’s
above 10 dB. For higher-intensity noise the performance
degrades quickly and severely. To see how the 2-D per-
formance would compare with the direct 3-D spectral ap-
proach, we compute the bound in relation (54) for this ex-
ample. The upper bound on the relative difference
between the approximate error variances for the two ap-
proaches turns out to be '5 3 1024, or 0.05%.

B. Real Example
The real image sequence processed in this example was
obtained from the VASC image database at Carnegie Mel-
lon University. The sequence consists of 50 frames (of a
longer sequence) of aerial images of the Pittsburgh area
taken from an aircraft. Low-resolution frames (60
3 64) were chosen for processing, and selected frames of
this sequence are shown in Fig. 10. The projection func-
tions p(x, t) and q( y, t) are shown in Fig. 11. By look-
ing at these images, we can immediately note that the
Fig. 8. Mean performance for x velocity estimates.

Fig. 9. Mean performance for y velocity estimates.
Fig. 10. From left to right and top to bottom: frames 1, 5, 9, . . ., 41, and 45 of the Pittsburgh sequence.
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motion occurring in this image sequence is not purely
translational (this would correspond to linear strips in
both projection images); this is particularly clear in
q( y, t). However, we can see that a strong translational
component is present in both projection images (at least
for times t . 25). This is further supported by the shape
of the magnitude spectra of these projection functions
shown in Fig. 12, which exhibit linear features. Under
the assumption that only one translational motion is
present in each direction the algorithm produces a motion
vector estimate v̂ 5 (20.3334, 0.3540)T.
Since no ground truth is available for this example, we

rely on a heuristic technique to show that a strong com-
ponent of the motion in this image sequence is captured
by the estimated translational motion vector. To this
end, we follow7 and use the internal representation image
sequence g(x, y, t). This sequence is defined by

g~x, y, 0! 5 f~x, y, t !, (56)

g~x, y, t 1 1 ! 5 ~1 2 g!f~x, y, t 1 1 !

1 g Register @g~x, y, t !,

f~x, y, t 1 1 !#, (57)

where Register (•, •) denotes the difference image ob-
tained by registering the arguments with the use of the
estimated motion vector v̂, and 0 , g , 1 is a smoothing
parameter. The effect of this iteratively defined tempo-
Fig. 11. Projection images of the Pittsburgh sequence.

Fig. 12. Magnitude spectra of (a) p and (b) q for the Pittsburgh sequence.

Fig. 13. (a) 50th frame of the original sequence, (b) corresponding frame of the internal representation.
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ral smoothing operation is that g(x, y, t) maintains
sharpness on parts of the image where the motion vector
is an accurate representation of the true motion, while
other parts of the image are blurred. To see the effect of
this operation on the current example, I display the 50th
frames of both f(x, y, t) and g(x, y, t) in Fig. 13, where
g 5 0.75 was used. As we can see, most larger-scale fea-
tures of the image have remained in focus, while the
smaller-scale features have been blurred out. This indi-
cates, at least qualitatively, that the dominant motion
component has been captured by the estimated motion
vector.

8. DISCUSSION AND CONCLUSIONS
In this paper an efficient algorithm has been described for
the estimation of superimposed translational motions
from multiple image frames. The algorithm has been
shown to be effective for moderate noise levels. As a re-
sult of using projections, followed by 2-D FFT’s, and an ef-
ficient array processing technique for line detection, the
algorithm incurs lower computational cost when com-
pared with alternative techniques based on the 3-D FFT.
The effectiveness of the proposed algorithm has been fur-
ther demonstrated on both a simulated and a real se-
quence of aerial images. It is noteworthy that after the
submission of this paper I became aware of Ref. 19, in
which the idea of projections followed by (subspace-based)
line detection was independently suggested.
While the present algorithm offers potentially signifi-

cant computational savings, it is not expected to perform
as well as comparable 3-D FFT-based algorithms, since
the 2-D processing deals with only two slices of the com-
plete 3-D spectrum of the image sequence. In Section 5
we used approximate error variances to demonstrate that
when the motions are small and the SNR is high, the rela-
tive degradation in performance suffered when using the
proposed approach rather than a direct 3-D approach can
be quite small if the spatial gradients of the images are
sufficiently large in the directions where projections are
taken.39

A potential difficulty that can arise in the 2-D approach
is that if two motions in the image frames have identical
velocity components along a direction of projection, then
the 2-D FFT of the projection along that direction will
show energy concentration along only one line. In gen-
eral, the algorithm is not designed to distinguish the
number of multiple motions present, although this can be
done.2 However, as was pointed out in Section 6, the am-
biguity can be remedied by reprojecting the frames along
new directions. The new directions should be chosen to
be maximally apart from the original directions. This
can be accomplished by selecting the bisector of the angle
between the original pair of directions. In any case the
process of reprojection will increase the computational
load of the algorithm. However, if the number of re-
projections needed to resolve such ambiguities can be
kept low—for instance, by choosing new directions as de-
scribed above—the proposed approach is still useful, par-
ticularly when relatively few velocities are being sought.
The experimental results of Section 7 demonstrate that

the algorithm proposed herein is capable of efficiently es-
timating multiple velocities to within a few percent of
truth given a moderate number of frames. It should,
however, be pointed out that in the simulated experi-
ments a consistent, rather small bias was observed in the
estimates produced by the algorithm. I expect that two
sources are responsible for this observed bias. The first
is likely the sequential estimation of the motions. The
energy in the second motion component biases the SLIDE
estimate when it is assumed that only one line is present
in the magnitude spectrum. This would explain the ob-
servation that the estimates of the cloud velocities have
smaller biases, since these are typically extracted in the
second pass of the algorithm, where only one motion is
left over. The second major source of bias, I suspect, is
the finite resolution of the data.
Finally, it should be noted that existing iterative

image-domain techniques such as those of Refs. 3 and 21
work better for rather large motions and that their con-
vergence is a strong function of the image content. Fur-
thermore, their computational cost is rather high. The
present algorithm, while also sensitive to the image con-
tent, is specifically intended as a faster technique for situ-
ations in which a large number of frames are available,
and it allows for the possibility of more than two super-
imposed motions.
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