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Abstract—One shot, generic object detection involves searching
for a single query object in a larger target image. Relevant
approaches have benefited from features that typically model
the local similarity patterns. In this paper, we combine local
similarity (encoded by local descriptors) with a global context
(i.e., a graph structure) of pairwise affinities among the local
descriptors, embedding the query descriptors into a low dimen-
sional but discriminatory subspace. Unlike principal components
that preserve global structure of feature space, we actually seek
a linear approximation to the Laplacian eigenmap that permits
us a locality preserving embedding of high dimensional region
descriptors. Our second contribution is an accelerated but exact
computation of matrix cosine similarity as the decision rule
for detection, obviating the computationally expensive sliding
window search. We leverage the power of Fourier transform
combined with integral image to achieve superior runtime
efficiency that allows us to test multiple hypotheses (for pose
estimation) within a reasonably short time. Our approach to
one shot detection is training-free, and experiments on the
standard data sets confirm the efficacy of our model. Besides, low
computation cost of the proposed (codebook-free) object detector
facilitates rather straightforward query detection in large data
sets including movie videos.

Index Terms—One shot object detection, Graph based dimen-
sionality reduction, Fourier transform, Fast Detection

I. INTRODUCTION

Recent research in visual recognition [1] has attracted
interest in the study of the following two big questions —
i) how to make generalizations for solving large scale visual
recognition problem [2], [3], and ii) how to encode image at-
tributes robustly to represent fine-grained distinction/similarity
[4]. The former question aims to understand visual content
at large scale, generalizing patterns from millions of im-
ages for thousands of class labels. In contrast, fine-grained
visual recognition engages in fine-scale distinction among
categories which are both visually and semantically similar
(e.g., identifying each of the 100 models from 10,000 aircraft
images [5]). It naturally follows that in the study of fine-
scale visual similarity, stronger feature encoding and robust
matching strategies require careful attention. In this paper,
we focus on a particular variety of the fine-grained visual
recognition where the objective is to detect visual similarities
(Fig. 1) across images without the involvement of extensive
(or any) training. In general, the one shot, generic object
detection approaches take a single query image as input, and
the dominant object present in the query image is detected
in a bigger target image. Recent studies [6], [7], [8] have
shown that exemplar-based, training-free detection can work
with laudable success, sometimes very close to training-based
approaches. But more importantly, such detection strategies

provide interesting insights into developing newer and better
features along with provably useful matching strategies.
Query objects typically appear in target images with wide
variations both geometric as well as optical. Geometric vari-
ations can include severe changes in scale and orientation
(pose) of the query, whereas optical variations may result from
differences in lighting, resolution and noise level. Besides,
presence of clutter and not having enough out-of-class exam-
ples make the detection task prone to false alarms. We rely on
a sophisticated embedding technique to obtain a compact but
discriminative set of features to deal with such challenges.
Moreover, we employ efficient computational accelerations
that lead to exact evaluation of decision rules for detection but
in several order of magnitude faster than the traditional sliding
window based detection schemes. Such faster computation of
decision rule allows us to test a greater number of hypotheses
within a relatively short time for estimating pose as well.

A. Overview, Past Work, and Proposed Contributions

We denote the query and target images by () and T re-
spectively, and compute high dimensional descriptors densely
over both query and target, storing them in descriptor matrices
Hg and Hry, respectively. The dense computations make the
descriptors highly informative but also redundant. Hence, to
facilitate fast, efficient and effective detection we extract com-
pact but salient features ' and F7 from the high dimensional
descriptors. Since, T' is bigger than query (), we sweep the
query window over target, and comparing features Fg and
Fr, (extracted from i-th position of the sliding window over
T) we estimate the likelihood of the presence of @ in T (Fig.
1).

Relevant approaches have benefitted from descriptors that
typically model the local similarity patterns. This is because
the image is often replete with self-similar patterns. Motivated
by this observation, Shechtman et al. [9] proposed a pattern
matching scheme based on self-similarity, the premise of
which is that local internal layout of self-similar pixels are
shared by visually similar images. Since its introduction, self-
similarity based models and approaches have found several
applications in subsequent research in computer vision ranging
from detection to object and sketch retrieval [10], [11], [12].
The local self-similarity [9] was defined as a function of simple
sum of square difference (SSD) between a center image patch
and neighboring image patch. In [6], Seo et al., modeled local
geometric layout with Locally Adaptive Regression Kernel
(LARK) [13] descriptors, and projected them on principal
components to extract compact and discriminative features. We
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Fig. 1. Overview of our one shot detection scheme: we aim to detect a given
query [15] (e.g., symbol, face, human pose, car, flower) appearing in a visually
similar manner in a bigger target image !

endorse their view but note that while local feature encoding
is important, the global context (as in [14]) can not be ignored.
We argue that while projecting descriptors on a discriminatory
subspace, as in [6], it is imperative to consider relative position
of descriptors so as to preserve the intrinsic geometry of image
pattern (PCA does not consider spatial location of descriptors).

One common aspect that emerges from such competing
methods is the emphasis on the role of i) local geome-
try in building salient features, and ii) global context that
encapsulates the spatial information of descriptors. In what
follows, we propose a two-layer hierarchical model as shown
in Fig. 2 for combining local geometry with global context
toward obtaining salient features. The top layer passes global
information to guide the bottom up aggregation of low level
visual cues. Our ultimate goal is to estimate a low dimensional
subspace where the high dimensional region descriptors could
be projected with their local image geometry intact.

Sliding window search for object detection is tedious and
computationally demanding. The second contribution of this
paper involves accelerating the computation of matrix cosine
similarity (a generalization of cosine similarity for matrix
features Fg and Fr;) as the decision rule to detect objects.
Since at the heart of matrix cosine similarity (MCS) there
lies a correlation computation, motivated by Dubout et al.
[16] we employ the use of Discrete Fourier Transform (DFT)
for evaluating correlation efficiently in frequency domain.
MCS has also a normalization factor that is not amenable
to spectral techniques. The trick to efficient computation of
the normalization factor lies in a precomputed area sum table
(integral image) of target feature vectors’ Lo norm. The inte-
gral image allows constant time retrieval of the normalization
factor independent of the size of the sliding window.

The rest of the manuscript is organized as follows. Section

'The original picture (available online, 7th September, 2014: https://www.
flickr.com/photos/tdd/8504835638/) used (strictly for academic purpose) is
owned by Tomasz Dunn, and licensed under Creative Commons Attribution
2.0 Generic (CC BY 2.0) for free use and modification with attribution.
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Fig. 2. Laplacian Object: computing a query subspace that preserves intrinsic
image geometry — on left, the proposed two-layer hierarchical model is
shown where top layer of global context (in the form of an affinity graph)
guides the bottom up aggregation of local information from low level descrip-
tors. On right, locality preserving projection [17] with the graph Laplacian is
used as a mathematical framework to represent the two-layer hierarchy.

IT describes the foundation of the graph based dimensional-
ity reduction technique for the proposed hierarchical model,
Section III introduces a unifying view of local descriptors
(bottom layer) and and the graph structure (top layer), Sec-
tion IV presents the detection framework and the proposed
faster detection scheme, Section V reports experimental results
followed by relevant discussion, and we draw conclusions in
Section VI.

II. Laplacian Object: A FRAMEWORK FOR LOCALLY
SALIENT FEATURE COMPUTATION

We begin the model description by assuming m X n sized
gray-scale ) and M x N sized T. We visualize a gray-
scale image as the parameterized image surface S(x;) =
{xi,2(x;)}, where x; denotes the 2D coordinate vector
X; = [vi,,7i,|T, having intensity z(x;). We compute local
image descriptors (e.g., SIFT [18], LARK [19]) densely at
every pixel, that makes the number of descriptors from @
as mn, and from T as MN. The descriptor at location
x; is denoted as a [-dimensional vector h, € R!. The
descriptor vectors hg; for query, and hg; for target, are
stacked column wise to define the descriptor matrix for query
as Hg = [hgi,hge, ..., homn] € R (mn) “and the same
for target as Hy = [hy, hyo,... hyyy] € RN,
To distill the redundancy resulting from dense computation
of descriptors we embed Hg in a global graph structure,
represented by an affinity matrix K, that takes into account
the spatial relationship among the descriptors. Our goal is
to estimate a low dimensional but discriminatory subspace v
from () such that the query descriptors hg;, when projected on
v, respect the local geometric pattern. In other words, if hg,
and hg; are closely spaced over the image manifold S then
their projections vIhe; and vThg; on a subspace v should
be close as well (Fig. 2). The theory of locality preserving
projection (LPP) [20] ensures this criterion by minimizing the
following objective function —

1
Juep = 5 %:(VThQi — v'hg;)’Ky;. (1
The objective function Ji,pp with our proposed affinity mea-
sure K;; incurs heavy penalty if neighboring descriptors hg;
and hg; are mapped far apart. Each element of graph affinity
matrix K, denoted as K;;, indicates the pairwise affinity
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Fig. 3. Salient features shown after dimensionality reduction of LARK descriptors: (a) query & target images, (b)-(c) salient query (target) features F¢
(Fr) learnt by projecting descriptors Hg (H7) along two dominant principal components, (d)-(¢) same LARK descriptors projected along two dominant

eigenvectors of LPP (one can notice finer local details in these features)

between descriptors hg; and hg; of the query @. Upon
simplification, (1) leads to the following penalty (for details
refer to [20]):

Jupp = vV HoLHGv. )

Defining the diagonal matrix D;; = Zj K,;;, the matrix
L =D — K is known as the graph Laplacian. Recent research
shows success of graph Laplacian in effective exploration of
local patterns in massive graphical networks [21], [22]. Here
we have studied the related Laplacian eigenmap [23], [24] to
embed the informative but redundant descriptors into a low
dimensional but salient feature space (Fig. 2).

To prevent abnormally high values of D;; (which means
unusually greater “importance” to descriptor h;) in (2), the
constraint v HQDHQGV = 1 is imposed on D. Minimizing
Jrpp with respect to the aforementioned constraint we obtain
the following optimization problem:

min v HoLHQv subject to v HoDHLv = 1. (3)

The projection vector v that minimizes the above is given by
the minimum eigenvalue solution to the following generalized
eigenvalue problem:

HoLH,v = AHoDH)v. 4)

The desired set of eigenvectors which builds our low dimen-
sional LPP subspace comprises the trailing d eigenvectors
computed as a solution of (4). We collect the set of d
eigenvectors as columns of V. = [vi,vy,...,v4 € R*4
Since the descriptors are densely computed they typically lie
on a lower dimensional manifold. As a consequence, we can
expect d to be quite small in comparison to the dimension [/ of
the descriptors. In practice, d is selected to be a small integer,
and it turns out that this small set of eigenvectors is good
enough to discriminate the query from the background clutter.
The descriptor matrices Hg and H7, when projected on 'V,
lead to salient features that preserve locality as guaranteed by
the objective function (1). The locally salient features F g and
Fr, for query (Q and target 1" respectively, are defined by the

following equations:
Fq = VTHg € R (M) Py = VITH, € RN (5)

The salient query (target) features Fg (Fr) learnt with PCA
and LPP are shown in Fig. 3. The results in the figure(s)
demonstrate that LPP is able to preserve greater amount of
details in the projected features than PCA. During detection
the detailed contour and inherent spatial geometry captured
in LPP result in better localization. The reason why LPP
features inculcate more information compared to PCA features
[6] lies in the construction of respective objective functions as
explained below.

Descriptors hg; and hg; typically encode geometric infor-
mation in various channels, but if they share similar local
geometry they would likely have a high pairwise similarity
term K;;. Consequently, a high K,;; would penalize the cost
function in case hg; and hg; are projected far apart. The
pairwise similarity term ensures that the local continuity of
the fine edge structure would be preserved on the projected
subspace.

PCA does not care which descriptor comes from where — it
retains the global geometric structure of the data (as evident
from the mean term A below) without providing any room for
preserving local details. It maximizing the following objective
function,

JPCA = Z(VThQi — VTH)2 (6)

%

The graph encoded by K;; in (1) provides further insights
into the working principles of LPP and PCA. We denote the
total number of pixels mn in query by n,. Suppose we connect
x; with all other pixels x; of the query image obtaining a
complete graph with constant weights K;; = %,in,xj.
Then L = D — K = LI — Lee”, where e is a vector
of all ones. Under this graﬁh construction, and denoting mean
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Fig. 4. Unifying geodesic framework: the geodesic distance (ds;;) between
the points x; and x; on the image manifold S(x) is used to derive both the
LARK descriptors and affinities on the right
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This happens to be the covariance matrix of the data set
that is used in PCA (Jpca upon simplification boils down
to Jpca = VT [Zi(hQi —h)(hg; — H)T] v). The analysis
above (and also in [20]) suggests when we care about global
structure of LARK descriptor space we connect each de-
scriptor location (i.e., each pixel) to all others in the graph
construction, and project the descriptors along the direction of
maximal variance. When we seek to preserve local information
in reduced dimension we connect each pixel to its immediate
neighborhood, and project the descriptors along the direction
that minimizes local variation.

A fact of theoretical interest is the subtle difference between
Laplacian eigenmap [23] and LPP [20]. The former provides
us a non-linear manifold, and a (linear) projection operation
like (5) does not hold true in case of Laplacian eigenmap. LPP,
as described in [20], can be seen as a linear approximation to
the non-linear Laplacian eigenmap allowing us to project the
query and target features as shown in (5).

III. LOCAL DESCIPTORS & AFFINITY MATRIX FROM A
UNIFYING GEODESIC PERSPECTIVE

The proposed detection framework is general enough to use
with any local descriptor (e.g., SIFT [18], HOG[25]). How-
ever, we advocate LARK descriptor because it is specifically
designed for one shot object detection [6], [26]. In fact, the
geodesic interpretation behind LARK descriptors introduced in
[26] motivates us to present an unifying geometric perspective
to connect the definitions of LARK descriptor h; and the graph
afﬁnity K”
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Fig. 5. Estimation of covariance matrix C from local gradients (shown with
black arrows): (a) For LARK descriptors we estimate Cgq, from (13) using
the support patch €2; corresponding to x; as shown in (blue) color. Note, €2;
(in red) corresponding to x; is different from €2;. To make K;; symmetric
(b) shows the rule adopted for defining a common support for x; and x;
using the patch €2;; (shown in yellow) over which CQU is estimated (15).

The local geodesic distance (Fig. 4) between the two neigh-
boring descriptor locations x; and x; on the image manifold
S(x;) is approximated [26] by the differential arc length ds;;
as follows:

ds?j = dm?l + dac?z +dz? ~ Az;;CiAz;. (11)

The approximation involves the following discretizations:
dz;, = Az 5, = x5, — Ty, and dxg, = Az, j, = Tj, — T4y
(i.e., Ax;;, and Awx;,;, representing displacements along
the two image-axes in Fig. 4). Also, we assume Azx;; =
[Az;j,  Awy,;]T, and the matrix C; denotes the local
gradient covariance matrix (also called as steering matrix in
[13]) computed at x;.

A. Computation of LARK descriptors

The descriptor h; denotes a multidimensional vector h; =
(hi1, higs .. hij, ..., hy2) computed at pixel x; over a p X p
local window. We define the general term h;; as a measure
of similarity between two descriptor locations x; and x; as
follows:

ds?j
e 202 ) 9
hij = —, J=1,2,...,p°%, (12)
p? -4
=1 e 20

where ds;; is approximated as in (11). The normalization in
the denominator is carried out by summing the local geodesic
similarities over all the neighbors of x; in its p X p local
neighborhood. LARK descriptors when normalized to a unit
vector become robust to illumination changes.
Straightforward computation of C; in (11) based on raw
image gradient at a single pixel may be too noisy. Therefore,
to estimate C; in a robust fashion, first we compute the
derivatives of the image signal z(x;) over a patch Q; of
pixels centered at pixel x; (Fig. 5(a)) and we denote such
local gradient covariance matrix as Cg,. This accumulation of
first derivatives guards against the undesirable effect of noise
and perturbations. Secondly, we further smooth the signal
manifold, to strictly focus on the dominant pattern of local



texture, by computing Cgq, in a stable way that includes eigen-
decomposition. Combining these two steps we write the final
expression of Cgq, as follows:

Az(m)2 Az(m)  Az(m)
_ Az, Az, Az,
Ca, - Z Az(m)  Az(m) Az(m)? ’
me; Az Az, Az,
T T
=rviuiuy + Vuguz -,
= (\/1/11/2 + 6)9 .
U+ T T U+ T T
S———wu; +-————uguz ), (13)

u
V2 +T NZR

where, 11 and v are eigenvalues of Cgq, corresponding to
eigenvectors u; and u., respectively. Also in the derivation
above, ¢, 7, 0 are regularization parameters to avoid numerical
instabilities and kept constant throughout all the experiments
in this paper at 10~7,1 and 0.1 respectively.

B. Building the Graph Laplacian with Geodesic Affinities

Next, we build a graph structure from ) with descriptors
representing the graph nodes. The edges in the graph denote
affinities between neighboring descriptor locations x; and x;
as follows,

IS!

K.=J€e = when |x; — x;[l2 <7,

i | (14)
0 otherwise ,

where o is a smoothing parameter (kept same in (12) for
LARK descriptor), and ~y a radius within which we limit the
affinity computation. The choice of +y is not too critical as long
as it covers decent neighborhood size (typically 3 to 5 pixel
radius). Setting y too high increases the computational burden,
and may involve derogatory confluence of too many and
irrelevant neighborhood information. In fact, as also observed
in [20], too much aggregation of information collected over a
bigger neighborhood may invariably affect LPP’s embedding
performance.

Unfortunately, K;; defined above is non symmetric. How-
ever, the derivation of LPP subspace in (2) assumes a sym-
metric affinity matrix K. To understand why K;; is non
symmetric we note computing ds;; = Ax};Cq,Ax;; fol-
lowing the definition of Cgq, in (11) makes ds;; # dsj;.
This is because the support £2; of Cgq, is centered at x;
(Fig. 5(a)), and similarly, support 2; of Cgq; is centered at
x;, hence, Cq, # CQ].. Therefore, to ensure K;; to be
symmetric we make the supports of Cg, and Cq, common as
shown by a circumscribing rectangle in Fig. 5(b). The common
support is denoted by €2;;, and we write the corresponding
gradient covariance matrix as Cg,,. It follows directly that
dsij = dsj; = Ax};Cq, Awij, and the final expression of
affinity becomes the following:

T .
AxliCq, Awy

e~ 22 when ||x; —x,|l2 <7, (15)

0 otherwise .

Note, to ensure symmetry a straightforward averaging (K;; =
K; = %) does not work well in practice because such

average oversmooths the dominant structure pattern over the
image manifold.

To summarize, since each LARK channel captures a specific
orientation pattern, different edge orientations manifest them-
selves in different LARK channels along with relative signal
strength of the edges (in terms of 11, 15 in (13)). Flat regions
receive low values in all the channels, but edge structures
show up as high values in appropriate channel depending on
the orientation. Getting all the directional information of 81
channels (when p = 9) in 5 or 6 low dimension is difficult:
when PCA does this job it tends to show the fine structures
like eyes, nose, or mouth of faces (or contour of parts in
case of generic objects) as blobs in high contrast regions, and
completely misses the relatively faint parts in low contrast
region (Fig. 3). In contrast, LPP is able to retain the delicate
image geometry relatively better. The reason is by virtue of
pairwise similarity LPP keeps the projected descriptors close,
if similar, thereby maintaining local continuity of fine details.
Viewed from an alternative perspective, LPP projects the high
dimensional LARK channels along a direction that minimizes
the weighted local variance following a least square framework
(1), preserving geometric details in lower dimension.

IV. DETECTION FRAMEWORK AND FASTER QUERY
SEARCH

A. Detection Framework, FDR Control & Pose Estimation

The traditional sliding window based detection sweeps the
query window over 7', and at each position x; (center of
sliding window) in 7' the MCS decision rule [6] is computed
as follows:

FEFE
pi = p(Fo,Fr,) = trace(————-———) € [-1,1], (16)
IFQllel[Fr ||
To suppress the small correlation values of (16) the Lz,awley-
Hotelling Trace statistic ([27], [28]) f(pi) = 1fipg was

proposed in [6]. Our findings support that f(p;) (henceforth
be called resemblance values) does suppress smaller values
(mostly coming from false alarms), and to further handle
the issue of false alarms we employ Benjamini-Hochberg
procedure [29], [7] of false discovery rate (FDR) control as
follows.

Let our proposed detector impose a threshold 7 (to be
determined) on resemblance values f(p;),Vi=1,2,... , MN,
giving us R as the total number of detections of which W are
incorrect (i.e., false alarms). In what follows, U = % is the
proportion of error committed by our detector. Since we do not

know W apriori, U denotes the unobservable random quotient

U ¥, if R>0,
N 0, otherwise.

The FDR, defined by the expectation E(U), is controlled
at a desired level o while maximizing the expectation
E(R). We have py,pa,...,ppmn which denote the p-values
(pi = 1 - P,, where P, is the cumulative distribu-
tion function of resemblance values f(p)) corresponding to

{f(p1), f(p2),..., f(pmn)}. FDR control is readily imple-
mented as follows:

a7



o Step 1: define maximum allowable desired FDR bound
(on an average) « € (0,1).

e Step 2: order the p-values in ascending order yielding
{pay <pe) <. <Py}

o Step 3: let f(p(;)) be the query window on target
corresponding to p(,). Let 3 be the largest r for which
P(r) < ﬁa-

o Step 4: identify the threshold 7 corresponding to p(g), and
predict that the query windows (centered at x;) having
f(p;) above T contain instances of the query object Q.

After the significance testing with 7 as above we perform non-
maxima suppression [30] as the last step to eliminate duplicate
detections close to an already identified MCS peak.

Though the algorithm is resilient to minor scale and rotation
perturbation of the query, severe changes in its pose requires
an altogether different strategy. Here, we handle two kinds of
in-plane query distortions — scaling and rotation. In contrast
to the setup of [6] we do not scale the target image features.
Instead, we scale and rotate query features and leave the
target features untransformed (for computational reason). Once
we obtain the MCS values, for all scales and orientation,
at a particular sliding window location, we select the right
scale and orientation by doing maximum likelihood estimation
following [6].

B. Fast Target Processing for Rapid Query Search

To mitigate prohibitive computational load O(M x N xm X
n) owing to straightforward sliding window search, Seo et al.
mostly relied on evaluating MCS on a sparse grid (coarse-
to-fine) search [6], or saliency based pruning techniques [19]
to aggressively reduce search space. Though valid and partly
effective, such approximate search methods run the risk of
missing detection peaks — a fact that often manifests itself as
missed detection or as imprecisely located/oriented bounding
box on the target image.

Besides pruning based approximate approaches (e.g., active
learning in [31]) in the past, exact search of decision function
maxima with branch and bound search schemes have also
been investigated for object detection. Though branch and
bound techniques [32], [33] are designed to converge to global
maximum of decision function they are specifically designed
for (bag-of-word style) histogram features, and it is not directly
evident how to extend such frameworks to MCS based decision
rule (the signs of feature elements can not be known a-priori
to design sign based integral images [32], [33]).

1) Exact Acceleration of Matrix Cosine Similarity: Our
intention remains going beyond the sliding window scheme
to get rid of the m x n factor in the complexity of O(M x
N x m x n), and at the same time sticking to the exact
computation of MCS. We proceed by first reshaping query
feature Fg € RX(mn) o 1 x n x d feature matrix, and
in a similar fashion we reshape Fr, € R¥*MN) o the
size M x N x d. With slight notational abuse we retain the
same nomenclatures for the reshaped query and target features.
Paying this polite nod, we write the MCS expression (16) in
the following fashion, noting that the numerator is (feature
channel wise) cross-correlation between Fg and F7, which

can be efficiently computed in Fourier domain:

(FQ’FT)
FQ P, q, )FT(le +pal‘12+Q7 )

ZZZ HFQ”F”FT Ti1 * Tl +m T2 P X429 +TL 1: d)HF

c=1 qg=1p=1

(18)

d
o 20:1 ZZ:I Z;nzl FQ(pa q, C)FT(xil + D, Ti2 + q, C)
||FQ||F||FT(£L'11 X1 M, X0 Ty + n,l : d)”F

(19)

IFT{Y"_ FT{Fq(;:, ¢)}FT{Fr(;:¢c)}}

= , (20)
IFollpl|Fr(zin: zin +m, x4 : 20 +n,1:d)||p

where FT{-}, IFT{-}, and FT{-} denote Fourier transform,
inverse Fourier transform, and conjugated Fourier transform
respectively. Two important facts are worth mentioning at this
point. First, correlation can directly be achieved by multiplying
one Fourier transform with another, conjugated. Second, since
Fourier transform is a linear operator, one can perform the
channel wise correlation right in frequency domain followed
by channel wise summation [16].

However, two important distinctions with [16] exist in the
proposed acceleration. First, we do not compute spatial cor-
relation by converting it into equivalent convolution problem
in frequency domain (by 180° rotation of query); correlation
between two signals can be directly achieved in frequency
domain by first taking Fourier transform of both signals, and
then taking complex conjugate of just one of them followed by
point by point multiplication (Hadamard product) in frequency
domain. Second, MCS has also a normalization factor ||Fr,||
in the denominator (16) requiring a different strategy for faster
computation that Dubout er al. did not face in [16]. The
trick to efficient computation of the normalization factor lies
in a precomputed area sum table of target feature vectors’
Ls norm. Due to the presence of ||Fr,|| in the denominator
of MCS (16) one can not carry out the entire computation
in Fourier domain. The target feature elements in ||Fr|| are
individually squared and summed across all channels followed
by an integral image construction. Next, one goes through
2 in constant time with
three arithmetic operations. This is followed by squaring and
dividing the numerator by denominator to yield f(p;).

Indeed, a similar technique has found application in a
somewhat dated but absolutely relevant work of J. P. Lewis
[34]. However, Lewis used a different form of correlation ! to
consider, and the idea proposed in his work does not involve
multichannel features, nor the multiscale and multioriented
pattern detection. So, the methodology described in [34] is
roughly comparable to a special case of a much more general
framework proposed here when the number of feature channels
reduces to one, and detection happens at single scale and
orientation.

Fig. 6 shows the details of accelerated computation of MCS
(at single scale and orientation). The descriptors are computed

IThe idea of correlation manifests itself in various forms and definitions,
and quite rightly there exists at least 13 distinct ways to look at the definition
of correlation [35].
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a priori, — from both query as well as target — and are treated
as parts of the data set following the setup of Lampert [36]. We
extract query features, scale and rotate them, do zero padding
to bring each feature channel (matrix) to a pre-defined DFT
size, apply forward Fourier transform on each feature channel
followed by complex conjugation. However, for target 7', the
transformation on computed features is nil to keep the runtime
cost at a bare minimum, only one forward Fourier transform
in each feature channel is applied.

2) Implementation & Computational Time Analysis: To
sweep m xn xd query window over all locations of M x N xd
target array one requires to check (M —m-+1)(N —n+1) win-
dows for potential objects. A direct evaluation of (16) requires,
in each of such sliding windows, first, element by element
product followed by summation (in each feature channel) for
numerator giving us roughly 2dmn computations; and second,
similar operations for norm in the denominator produces
again (roughly) 2dmn computations. Combining the major
components and considering total a configurations (equalling
to the number of scales times number of orientations), we
write the following total computation cost for sliding window
scheme.

Cswrd4dd-a-(M—m+1)-(N—n+1)-m-n. (21

Note here, operations like division and Lawley-Hotelling
transformation are of the order of O(MN), and hence neg-
ligible. Before we derive the exact computational cost for
proposed fast detection methodology, we note that correlation
performed by means of DFT is circular rather than linear,
which we require. The difference lies in the fact that circular
correlation is an aliased version of its linear counterpart.
As long as the DFT matrix is large enough the resulting

circular correlation will equal the linear correlation. This is
ensured by padding each query feature channel (m x n) and
corresponding target feature channel (M x N) with sufficient
zeros so that zero padded arrays are at least as large as
(M +m—1) x (N +mn—1). We assume the zero padded
DFT size is (M, x N,), where M, > M + m — 1, and
N, > N +n — 1. It is also worthwhile to mention that a
good practice is in keeping the DFT size at a power of 2
for leveraging the inherent efficiency of Fourier transform.
Of course, with variable target size one can go with mixed-
radix DFT. Now, a single forward/backward DFT involves
computational cost Cppr ~ 2.5M, N, log, (M, N),) as in [16].
We need d forward DFT for target plus one inverse DFT for
each configuration of the query (Fig. 6). Hence, considering
the cost of Hadamard product across all feature channels for
all configurations (Cproa = daM,N,) followed by the cost
of channel wise summation (Csym = daM,Np), we write the
total cost for numerator of (20) as,

C'numer = dCDFT + CYprod + Cvsum + aCDFT7
~ (d+ a)2.5M,N,logy(M,N,) + 2adM,N,. (22)

Producing the norm squared integral image from target feature
matrices requires time complexity 2dM N, because each fea-
ture element is squared and summed over all d-channels. Re-
trieval of ||Fr,||? corresponding to the sliding window location
x; in target 7" happens in constant time O(1) with only three
arithmetic operations yielding 3M N cost. Next, squaring the
numerator followed by the division by the product of ||Fr, ||?
and the constant term ||Fg|| are again three constant time
operations per configuration. The construction of f(p) involves
another two constant operations (subtraction in denominator
and division) per configuration. Taking all this information into
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Fig. 7. Example detections on UIUC car test set [37] are shown here. (a) Single scale car detection (the query image is shown top left), and (b) Multiscale
car detection (the same query image as used in single scale experiment is used here). The FDR « is set at 1%. The f(p) values above the threshold T
corresponding to « is embedded inside the displayed bounding box. A red bounding box indicates highest resemblance to query image, and for other colors

the colormap shown right depicts relative resemblance.
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Fig. 8. Precision recall curves obtained from the evaluation of our proposed methodology on UIUC single scale car test set (left), and UIUC multiscale car
test set (right) in comparison to other training based state of the arts [38], [39], [37], [40] as well as training-free state of the art methodology [6].

account, we end up with the following cost of denominator
computation across all d feature channels,

Cdenom = 2dM N + 3MN + 3aMN + 2aM N,

= (2d + 3+ 5a) M N. (23)

Considering the division of numerator by the denominator the
total cost Cproposed 0f MCS computation boils down to —

Cproposed = Chumer + Cdenomy
~ 2.5(d + a) M, N, log,(M,N,)

+2adM,N, + (2d + 3+ 5a)MN.  (24)

The key observation here is that the proposed detection
methodology has made the computational cost independent of
the query size m x n for a fixed DFT size M, x N,. Large
computational mileage results from this fact especially when
the query size changes as long as the maximum required DFT
size is less than the fixed DFT size. There is further advantage
when d + a << ad, i.e., with increasing number of query
templates, and feature channels, one reaps increasing benefit

in comparison to sliding window scheme. Indeed, Dubout et
al. [16] have achieved almost 13 times theoretical speedup
by leveraging Fourier transform in their part based detection
process. In our setup, if we plugin typical values for the
cost parameters in the final cost expression (24) we get the
following result: for m = 64,n = 64, M = 128, N =
128,a = 1,d = 5 we get theoretical speedup 20, and for
M = 256,N = 256 the speedup is 41. Table III gives
some ideas of achievable speedup with our (unoptimized)
implementation.

V. EXPERIMENTAL SETUP, RESULTS & DISCUSSIONS

In this section, we evaluate the proposed low dimensional
features along with runtime performance of the proposed
detection methodology. All the experiments are done in a
standard desktop machine with 8 GB RAM, Intel Core i7-
2600 CPU @3.40 GHz using standard MATLAB functions
with no GPU support. Of course, our proposed methodology
is general enough to avail of the benefit of GPU computation
which would result in even shorter computation time.
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Fig. 9. Face detection in MIT-CMU face data set [41] is illustrated in the figure above. (a) Example detections along with scale estimation are shown using a
query face (bottom left). (b) Sample detections along with pose estimation are shown when the scales as well as orientations of the query both vary in target
images. In both the experiments, the FDR « is set at 1% to determine the threshold 7. The thresholded f(p) is shown inside the bounding box. The correct
bounding box results from the maximum likelihood estimate of probable set of scales and orientation. The colormap on right is a mapping between color of
bounding box and the measure of resemblance in case of multiple detection; the red means highest resemblance.

In the first part, we have evaluated our methodology on
three benchmark data sets: UIUC car data set [37], MIT-CMU
face data set [41], Shechtman’s general object data set [9],
and Caltech 101 data set [42], [43], [44]. The input to the
algorithm is a query image with a single dominant object
present, e.g., face or car, plus a target image. The typical
output of our proposed methodology is a set of bounding boxes
drawn around the detected object of interest. By bounding
box we mean the smallest possible rectangle drawn around
the detected object in the target image. We evaluate the object
detection algorithm following the criterion described in [37]:
if the detected region overlaps considerably with the ground
truth we accept the output of the algorithm as true positive (or
correct detection). Otherwise, the detection is regarded as false
alarm. With each pair of recall and precision value collected
by varying the false discovery rate o, we draw precision-recall
and/or receiver operating characteristics (ROC) curves. Also,
for the purpose of comparison with other competing detection
methodologies we report detection equal error rate which is
same as recall rate when recall is equal to precision.

A. UIUC Car Data Set

This gray-scale image data set comprises training (500 car
and 500 noncar images) and test sets. The test set contains car
images at i) same scale (with 170 images of 200 cars, some
images having multiple cars of size approximately 100 x 40
pixels matching closely with the size of the cars in the training
sets), and at ii) multiple scales (with 108 images of 139 cars
at various sizes where the ratio of scales between largest and
smallest car being around 2.5). Since this paper focuses on
one shot object detection task, we use a single car from the
training set as our query image.

The LARK descriptors at pixel x; are computed over a
9 x 9 patch centered at x; yielding 81-dimensional local
descriptors h;. The smoothing parameter ¢ for computing
LARK has set to 1.0; the value of o in the estimation of
pairwise affinity K;; (15) between h; and h; also remains
the same. Following locality preserving projection we reduce
the dimension of LARK descriptors from [ = 81 to d = 5
by choosing the 5 trailing eigenvectors of (4). It is observed
that selecting more eigenvectors does not produce noticeable
change in the detection performance. Performing a significance
test by setting the FDR o = 1% we obtain the threshold 7
for each test example. Fig. 7(a) shows an example of single
scale car detection. In case of multiscale detections, as already
mentioned in Section 4.2, we do not enforce any feature
transform on target features Fr. The query features Fq are
scaled as much as 2.5 times for robust detection of objects. We
use 0.5 times to 2.5 times scaling of query features by a step
size of 0.2. The detection performance of multiscale analysis
is shown in Fig. 7(b). The performance of our algorithm is
reported after aggregating the results of multiple query images.
For a particular threshold 7 we obtain a set of precision-
recall values for the whole query set which we average to
obtain a single precision-recall pair, and next, by varying
7 we draw the precision-recall curve in Fig. 8(a)-8(b). The
overall performance shows improvement as a consequence of
preserving locality in derived features. The proposed approach
presented here has also been compared with training based
approaches in Table 1. The results show that our training-free
methodology has been able to take the performance of one-
shot detection close to some of the training-based ones.
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Fig. 10. Evaluation of proposed detection technique on MIT-CMU face data set in comparison to [6]: (a) precision-recall curve, (b) ROC curve

B. MIT-CMU Face Data Set

This is also a gray-scale image data set and we have
evaluated our methodology on the same subset of images as
done by Seo et al. [6]. The motivation behind using MIT-CMU
data set is to subject our algorithm to severe scale changes (up
to as much as a scale factor of 5), and large in-plane rotation of
the query pattern as well. The test set consists of 43 gray-scale
images (list given in [6]) containing a total of 149 frontal faces,
occurring at various scales, and 20 gray-scale images having
faces at unusually large (> 60°) angular orientation. The query
faces used for detection as shown in Fig. 9(a) and 9(b) each
has a size 61 x61. As has been done in [6], we do not resize
the target image to bring it at the same scale as that of the
query. Instead, we engage in a multiscale and multiorientation
search for the query to achieve correct detection optimizing
over its pose parameters. Specifically, for a particular scale
we search over all angular orientations, from 0° to 360°, with
an interval of 30°. Parameters like smoothing parameters (h),
LARK descriptor size (9 x 9), number of eigenvectors d for
dimensionality reduction, and FDR « remain the same as the
ones used in UIUC car data set.

Figures 9(a) and 9(b) show the efficacy of our proposed
method. We are able to detect faces at various scales with a
tight bounding box. The rotated faces are also detected with
correct localization and adequate orientation — the displayed
results show the correct angle estimated for the oriented
face. Since our aim is to detect visually similar instances we
have also been able to detect faces drawn on a white board.
Following the evaluation scheme we have presented our result
in the form of precision-recall and ROC curves in Fig. 10(a)-
10(b) with two query faces.

C. General Object Data Set

In this section, we present the performance of our algorithm
on color images. In Shechtman and Irani’s general object data
set [9] we have applied the proposed concepts to match pose
symbols of humans with relevant human poses in general
photographs (Fig. 11). Several challenging query and target
pairs are taken from categories like flowers, heart symbols,
peace symbols, and faces (Fig. 12). We follow the similar
parameter settings like previous experiments except being little

cautious with FDR (« = 0.5%) to deal with false positives in
a more conservative fashion. To study color information one
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Fig. 11. The human pose symbols as query objects are detected in real life
photographs in Shechtman and Irani’s general object data set [9]. The query
symbols are displayed in the ) panel, and corresponding target detections are
shown on right in the 7" panel. We set the FDR « at 0.5% to deal with false
positives conservatively.

can consider several color space models like RGB, YCbCr,
and CIE L*a*b*. Our experiments support the findings already
reported in [6] and [9], that CIE L*a*b* color model is the
most discriminatory. In fact, the luminance channel alone is
sufficient to distinguish the object from the clutter in most
of the cases as shown in precision-recall and ROC curves in
Fig. 13(a)-13(b). In [6], Seo et al., have proposed the use of
Canonical Cosine Similarity (CCS) to combine all three color
channels for improved detection performance. We endorse
their view but at the same time we note that the resulting
performance gain as seen from precision-recall and ROC
curves is not terribly significant. This comes as no surprise
because the structural information (excellently captured by
LARK descriptors) alone is enough to compare the visual
geometry of query and target, and it is readily available in
the luminance channel.

We have compared the performance of present features
with other state of the art descriptors like GLOH [45], Shape
Context [46], SIFT [18] using the implementation in [45].



TABLE I
DETECTION EQUAL ERROR RATES ON UIUC CARS AND MIT-CMU FACES (MULTISCALE AND MULTI-ORIENTATION)

Training Based Approaches
Datasets Proposed Agarwal Mutch Kapoor Lampert Wu
Approach | et al. [37] | & Lowe [40] | & Winn [39] | ef al. [32] | & Nevatia [38]
UIUC Single Scale 90.76 77.08 99.94 94.00 98.5 97.6
UIUC Multiscale 79.01 44.00 90.60 93.50 98.60 -
MIT-CMU Faces 91.24 - - - - -

Fig. 12. More examples from Shechtman and Irani’s general object data set
[9]: Query objects (heart symbol, peace symbol, flower and sketch of human
face) are displayed in @ panel; setting the FDR o = 0.5% we show the
corresponding detections in 71" panels just underneath the relevant @ panels.

We have computed all the local descriptors as densely as
possible. To facilitate a fair comparison among the descriptors
we have maintained the proposed way of matching in rest of
the detection process. In other words, we have carried out the
experiment on the data set by replacing the LPP features with
these descriptors but keeping the rest of the steps the same.
The proposed graph-based dimensionality reduction technique
is able to robustly capture the local image structure as clearly
visible in the performance curves of Fig. 13(a)-13(b).

The proposed detector achieves a detection equal error rate
of 84.4% on this data set. In contrast, self-similarity descriptor
when densely computed and used in our matching framework
yields a detection rate of 79.2%. Saliency based pruning
technique to remove redundant and noisy features followed
by nearest neighbor voting based matching [47] improves the
detection to 82.7% but that gain comes with considerable com-
putational cost as also observed by Chatfield et al. [47]. Be-
sides pruning of features, another factor that further increases
the runtime is computation of self-similarity at multiple scales
over a Gaussian image pyramid. Note, the performance stated
above does not contradict the reported 86% detection rates
of self-similarity by Schechtman et al. [9] because we did
not implement the star-graph based ensemble matching that
they used in conjunction with self-similar descriptors. In fact,
it is not directly evident how ensemble matching performs
in terms of false positive rate as well as computational
efficiency when compared with MCS based detection, because
[9] did not mention the false positive rate (corresponding to
reported detection rate) and computation time. Therefore, our
evaluation makes the proposed methodology more practical

as Figure 13 provides explicitly the estimates of false alarm
versus detection tradeoff. The runtime analysis is discussed in
Section V-F.

D. Caltech Data Sets

Caltech 101 [42], [43], [44] is a color data set containing
101 object categories. In general, there are 80 to 100 images
per category but in some cases number of images may be
as high as 800 in a category. Size of each image is roughly
300 x 200. This data set has a single object present in all
the images. An important point to mention is that objects in
Caltech data sets vary a lot both in terms of viewpoint (i.e.,
off-the-plane pose variation) and intra-class pose variation.

In the present work, we study visual similarity between ob-
jects with emphasis on efficient detection techniques involving
in-plane pose variation (scaling and rotation only). We don’t
consider class-specific contextual information using training
methodologies (to handle intra-class pose variation), nor do
we consider huge out of plane viewpoint changes. Caltech
101 has all these variabilities present, however, since it has
been widely used in visual recognition task in the past we
have presented results of our experiment on this data set (Fig.
14). Past work on Caltech 101 mostly reported performance
of training based schemes (with 15 or 30 images as training
set) in terms of mean accuracy. Using the proposed embedding
technique we obtain a mean recognition rate of 18.5% with a
single query (averaged over 15 randomly chosen query images
per category). The methodologies proposed by Zhang et al.
[48] and Grauman et al. [49] achieved mean accuracies of
21.0% and 18.0% respectively. Here too, we have extracted
CIE L*a*b* color model, and used luminance channel alone
for subsequent feature computation and detetcion/matching
task as explained in case of General Object Data Set. Using all
LARK channels and leading few feature channels of PCA we
obtain mean accuracy figures as 15.7% and 17.2% respectively.
Further evaluation of dimensionality reduction is described in
the next section.

E. Performance Analysis of Embedding Techniques

Considering our proposed contribution it becomes impera-
tive to study the performance benefit of the locality preserving
embedding in contrast to raw LARK channels as well as other
embedding technique. For that purpose we have introduced
Table II that shows results produced by different components
related to the present detector. The proposed LPP features
derived from LARK, shown in fourth column of Table II,
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Fig. 13. Evaluation of proposed detection technique on Shechtman-Irani general object data set [9]: on left, precision-recall curves are shown, and on right
the ROC curves show the performance of the proposed algorithm along with [6], SIFT [18], GLOH [45], and Shape Context [46]. Experiment is conducted
using only luminance channel as well as all CIE L*a*b* channels. In case of CIE L*a*b* channels, canonical cosine similarity [6] is used to fuse information

from three channels.

Fig. 14. First column and second column show visually similar matches.
Caltech 101 has images with considerable viewpoint and intra-class variation
which result into failure in matching shown in third and fourth column. The
presence of articulated objects (last two rows) also makes matching difficult
in this data set.

works superior to PCA projections of LARK [6] as mentioned
in third column.

It is also noted in the second column of Table II that using
raw LARK feature channels (with the implementation of [6])
affects the detection performance as also observed by [6]. This
is because too much channel information has a derogatory
influence on the detector. In contrast, the locality preserving
projection aggregates channel information from all LARK
channels in such a way that the object contours become very
prominent in lower subspace, and the non-contour parts tend
to get smoothed out (Fig. 3(d)-(e)). This makes sense because
K;; in locality preserving cost function (1) is built with local
aggregation of gradient vectors (Fig. 5(b)), and the subsequent

TABLE II
DETECTION RATES OF RAW LARK AND PROJECTED FEATURES

Data LARK LARK Proposed

Sets All Channels [6] | + PCA [6] | Approach
UIUC Car (Single Scale) 83.92 87.13 90.76
UIUC Car (Multiscale) 73.33 75.47 79.01
MIT-CMU Faces 84.76 86.58 91.24
General Object Data [9] 81.58 83.35 84.41

dimensionality reduction causes strong contours in dominant
projections.

Also worth mentioning is the computational benefit that
comes with maintaining a low number of feature channels as
a result of the embedding, and in the subsequent sections we
will see how a few discriminatory feature channels (typically
four or five) aids rapid processing of an image in real time.

F. Accelerated Visual Search: Runtime Evaluation & Query
Detection in Video

In Section IV, we have derived a theoretical estimate of the
runtime of our accelerated search technique. It is worthwhile
to mention that for a fixed DFT size we achieve a runtime
performance that is independent of the query size. Surely, set-
ting the DFT size too high (by zero padding) to accommodate
both query and target inside, may led to somewhat inefficient
memory usage. There are various techniques to get around this
difficulty. One can work with query and target of reduced sizes,
or the more technically correct solution is to perform overlap-
add and overlap-save methodology following a mixed-radix
implementation.

In our experiments we have presented results comparing
the proposed fast object detection with sliding window based
scheme [6]. The number of feature channels for evaluating
MCS has been kept constant at five. Table III summarizes
the runtime in seconds for single scale object detection using
two queries of sizes 64 x 64 and 128 x 128. The Power-
of-2 implementation assumes the smallest (power-of-2) DFT



Fig. 15. User defined object detection in movie Charade (1963): in leftmost column the user defined query object is highlighted, and example detections are
displayed on right. Correct detection has been achieved with high resemblance value even in case of partial occlusion.

size as (Mp, N,), large enough to hold query plus target
sizes, ie, M, > M +m —1, and N, > N +n — 1.
Consequently, a 64 x 64 query and 128 x 128 target should
have a minimum (power-of-2) DFT size of 256 x 256, and
a target 512 x 512 (or 768 x 768) should have a DFT size
of 1024 x 1024. We also present runtime in seconds with
mixed-radix implementation as part of of our results. Clearly,
the results show considerable performance gain rendering the
real time object detection feasible. For multiscale search in
Table IV, we have categorically used 10 scales, transforming
the query features by 0.5 to 2.0 times the original query size
(and compared with [6] who transform the target features). For
joint multiscale and multiangle detection in Table IV, besides
using 10 scales, we have checked 12 orientations (per scale)
with equal angular spacing. Table IV reports runtime based on
mixed radix implementation of discrete Fourier transform.

Inspired by the famous project Video Google by Sivic and
Zisserman [50], and later studied by Lampert [36], we have
extended our work to user defined query detection in movie
videos. Before we go into the experimental details, we point
out some novel features of our approach in comparison with
previous approaches to Video Google. First, our methodology
does not require the overhead of bulk codebook creation.
The user is free from the tedious task of feature quantization
for building a visually descriptive dictionary. Secondly, the
proposed detector robustly deals with in-plane variation (i.e.,
change in scale and orientation), handling extreme clutter, low
resolution as well as partial occlusion. We have carried out our

experiment on three movie data sets, namely, Charade (1963),
Dressed to Kill (1980), and Ferris Bueller’s Day Off (1986).
The first two movies come with gray scale frames and the
last one with color frames. We have processed the following
frame sizes for the above movies: 312 x 240, 320 x 240, and
416 x170. The number of feature channels used is five in num-
ber, and we have used FDR a = 1% to achieve the detection
results as shown in Fig. 15, 16, and 17. It is reasonable here to
search for the query at 5 scales, 0.8, 0.9, 1.0, 1.1, and 1.2 times
the size of the query image selected by the user. We do not
consider multioriented detection in this experiment. With the
present set of queries we have achieved following detection
rates for the three movies: 97.21%, 92.05%, and 88.66%,
respectively, as opposed to 93.17%, 84.88%, and 82.25%
by [6]. The missed detections result when the query suffers
severe off-the-plane distortions resulting in major viewpoint
alteration. The proposed method is able to detect queries
amidst major in-plane distortions, like significant scale change,
partial occlusion, out-of-focus blur, and low resolution. The
average time consumed per frame for all the three movies are
as follows: 0.131 sec, 0.150 sec, and 0.122 sec, as opposed
to 9.581 sec, 11.622 sec, and 10.210 sec by [6]. It is true
that codebook-based approaches [50], [33] consume much
shorter runtime to process movie frames but two important
distinctions exist here. First, our work is training-free and
we don’t require the user to build a codebook. Secondly, the
codebook based approaches [36] do not process the movie
frames in linear fashion. In contrast, we are interested in



Fig. 16. Query object detection in movie Dressed to Kill (1980): in top row, leftmost column, the user selects the bow-tie as query object, and sample
detections are shown in right panels. In second row, leftmost column, the selected biscuit jar as query gets detected in subsequent frames in the middle of
heavy clutter, scale change, and partial occlusion.

TABLE III
RUNTIME OF PROPOSED FAST OBJECT DETECTION IN COMPARISON WITH SLIDING WINDOW SCHEME

Query Size (pixels) 64 X 64 128 x 128

Target Size (pixels) 128 x 128 | 256 x 256 | 512 x 512 | 768 x 768 | 256 x 256 | 512 x 512 | 768 x 768
Sliding Window [6] (sec.) 0.3665 2.8815 15.6680 38.9581 5.4294 45.1551 132.1556
Proposed Power-of-2 0.0304 0.0886 0.3296 0.3313 0.0929 0.3259 0.3341
(in sec.) Mixed-radix 0.0184 0.0366 0.1360 0.2429 0.0540 0.1650 0.2492

exact search, and hence, the present methodology processes
the frames successively in linear sequence fashion; our task is
motivated by the long term goal of real time object detection
with smart phone cameras or mobile devices when the frames
may not be available a-priori.

G. Discussions, Current Trends and Future Directions

The primary difference of LPP features from other features
such as SIFT [18], GIST [51], or HOG [25] is the fact
that proposed features do not have any geometric invariance
like rotational or scale invariance. We encode the image
geometry robustly without considering invariance and transfer
the rotation/scale considerations to matching/detection phase.
While matching a query image with all the parts in a big-
ger target image, the built-in invariance in the descriptors
— though capable of handling off-the-plane pose variation —
often leads to too many false positives. Indeed, Seo et al.
[6] have observed that for one shot detection task LARK
descriptors sacrifice such invariance in exchange of superior

localization performance when compared with HOG, GLoH
[46], SIFT. One disadvantage in using the current framework
is that our proposed detector can handle minor out-of-plane
transformation, but severe such viewpoint variation if present
can go undetected (see Fig. 18). In such cases the best strategy
is to use keypoint based detector with RANSAC matching
technique but such methodologies being prone to false alarm
often require associated geometric constraints verification.

LARK descriptor in spirit is somewhat close to Local
Binary Pattern (LBP) [52], as LBP also captures neighborhood
information converted to binary figures by appropriate thresh-
olding. Instead, LARK captures more sophisticated attribute
of the signal by measuring the geodesic properties of the
neighborhood with respect to the center pixel. Also, LBP
works directly on the intensities whereas LARK collects
gradient vectors to estimate the locally dominant orientation.
Since it works on gradients, LARK is robust to photometric
or brightness variation in the image. How other descriptors
perform in visual recognition if projected in similar fashion



15

TABLE IV
RUNTIME OF FAST OBJECT DETECTION WITH POSE ESTIMATION IN COMPARISON WITH SLIDING WINDOW SCHEME

Pose estimation for Different Target Sizes (in pixels)
Query size 64 x 64 pixels 128 x 128 | 256 x 256 | 512 x 512 | 768 x 768
Multiscale Sliding Window [6] (in sec.) 4.607 34.341 182.475 448.740
Search Time Proposed (in sec.) 0.116 0.380 1.718 2.248
Multiscale, Multiangle | Sliding Window [6] (in sec.) 53.255 398.788 2140.610 5145.767
Search Time Proposed (in sec.) 1.317 4.068 20.142 24.756

Fig. 17. Detection results in movie Ferris Bueller’s Day Off (1986): in top row, leftmost column, the user selects the wall painting (within camera focus),
and subsequent detections include cases with heavy out-of-focus instance and partial occlusions. In second row, the selected jersey number is detected against
considerable geometric distortion. Lastly, in the third and fourth rows, we see the red-wing logo detected in a perfect manner on the T-Shirt despite some
challenging distortions like scale, and even aspect ratio.

remains an interesting open question. Furthermore, robust
estimation of dominant orientation along with consideration
of local geometry during dimensionality reduction make the
feature selection robust to the presence of noise — a fact that
encourages natural extension of this work to feature extraction
from noisy and low-resolution images.

A recent research trend is to obtain mid-level features from
low-level descriptors which seem to work well for bag-of-word
model. For example, VLAD and Fisher vector summarize
the local descriptors over a relatively bigger neighborhood.
In principle, they assign the local descriptors to the code
elements of a visual codebook, derived by either K-Means
clustering (VLAD) [53] or Gaussian mixture model (Fisher
vector) [54]. So far, such approaches have been limited to
histogram features like rotationally invariant (HOG) or scale
invariant (SIFT), what happens if quantization is done with
LARK or LARK+LPP features remains an interesting research
direction to explore. Assuming an object constitutes of various
parts and subparts has led to considerable increase in detection
performance, and the notable contribution in this area has been
made by Felzenszwalb et al. [55].

With the success of convolutional neural network and deep
learning in image classification a new era has started in
learning features. Feature learning itself is connected to a few

questions of great philosophical interest: how do we learn
representations [56] that are key to effective perception, like
depth, color, shape, texture, light? How such representations
can be adapted across domains? In fact, the structured nature
of objects are recently modeled with commendable success by
deep architectures [57]. With deep learning one can go beyond
specifically designed features and learn them with efficient
algorithms in unsupervised or semi-supervised fashion, as well
as in hierarchy (see [58], [59] for general introduction). In this
context, a paper of direct interest in relation to the present work
would be [60] by Hinton et al. where dimensionality reduction
has been achieved with multilayer neural network. However,
deep learning at present requires very sophisticated hardware
configurations and equally complicated software setup with a
long training time. Also, the availability of a large training set
seems to be a crucial factor for it to succeed though research
in this area is still in progress.

With ubiquitous presence of mobile devices a new research
area [61], [62] is fast emerging where one would like to
search objects on mobile devices. Future work involves making
the feature computation very fast especially on low-powered,
memory constrained devices like mobile phones. In this work
we have used the graph Laplacian for embedding the high
dimensional LARK descriptors into low dimensional manifold,



Fig. 18. Limitations are shown with example fable images from Sun data set
[63]. A query table is shown top left. The proposed methodology is limited
by its inability to detect instances which have suffered severe out-of-plane
viewpoint alterations (second and third from left).Since our detector seeks
visual similarity for matching, it is not able to detect tables with intra-class
variations (last two from right).

but we also note that the graph Laplacian has found application
in segmentation of user defined object from the background
[22]. Hence, it is reasonable to explore the use of our definition
of the graph Laplacian in the joint task of detection and
segmentation.

VI. CONCLUSION

In this paper we have studied visual similarity between
two images which could lead to robust and efficient object
detection. Given a single query object, searching the same in
a bigger image is a hard task given various pose and scale
variations that the object undergoes. We have addressed such
concerns in this work. Typically, the descriptors traditionally
used in visual recognition for encoding image geometry have
important information in all the channels. Extracting a useful
gist of them without sacrificing the descriptor’s discriminative
power is not straight forward. To address such concern, we
have studied a graph based dimensionality reduction method
by combining local signal patterns with global context, pre-
serving discriminative details of image patterns for one shot
object detection and concurrent pose estimation. The algorithm
described is quite general; one can integrate the methodology
with any descriptors depending on the application in hand. The
results with LARK descriptors show LPP improves detection
in comparison to PCA by being aware of local structure,
thereby making correct estimate of the object location, its
scale, and orientation. Since the sliding window based de-
tection scheme is very slow in practice, we have proposed
a faster method to evaluate the decision rule. In contrast to
approximated visual search (e.g., in pruning based methods),
the proposed fast detection technique uses frequency domain
to perform correlation computation along with area sum table
to arrive at the exact acceleration of MCS computation.
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