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Abstract In this chapter, we present Motion Assisted Steering Kernel (MASK) re-

gression, a novel multi-frame approach for interpolating video data spatially, tem-

porally, or spatiotemporally, and for video noise reduction, including compression

artifact removal. The MASK method takes both local spatial orientations and local

motion vectors into account and adaptively constructs a suitable filter at every posi-

tion of interest. Moreover, we present a practical algorithm based on MASK that is

both robust and computationally efficient. In order to reduce the computational and

memory requirements, we process each frame in a block-by-block manner, utilizing

a block-based motion model. Instead of estimating the local dominant orientation

by singular value decomposition, we estimate the orientations based on a technique

similar to vector quantization. We develop a technique to locally adapt the regression

order, which allows enhancing the denoising effect in flat areas, while effectively

preserving major edges and detail in texture areas. Comparisons between MASK

and other state-of-the-art video upscaling methods demonstrate the effectiveness of

our approach.
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1 Introduction

Advances in video display technology have increased the need for high-quality and

robust video interpolation and artifact removal methods. In particular, LCD flat-

panel displays are currently being developed with very high spatial resolution and

very high frame rates. For example, so-called “4K” resolution panels are capable

of displaying 2160× 4096 full color pixels. Also, LCD panels with frame rates of

120[Hz] and 240[Hz] are becoming available. Such displays may exceed the high-

est spatial resolution and frame rate of video content commonly available, namely

1080×1920, 60[Hz] progression High Definition (HD) video, in consumer applica-

tions such as HD broadcast TV and Blu-ray Disc. In such (and other) applications,

the goal for spatial and temporal video interpolation reconstruction is to enhance

the resolution of the input video in a manner that is visually pleasing and artifact-

free. Common visual artifacts that may occur in spatial and temporal interpolation

are: edge jaggedness, ringing, blurring of edges and texture detail, as well as mo-

tion blur and judder. In addition, the input video usually contains noise and other

artifacts, e.g. caused by compression. Due to increasing sizes of modern video dis-

plays, as well as incorporation of new display technologies (e.g. higher brightness,

wider color gamut), artifacts in the input video and those introduced by scaling are

amplified, and become more visible than with past display technologies. High qual-

ity video upscaling requires resolution enhancement and sharpness enhancement as

well as noise and compression artifact reduction.

A common approach for spatial image and video upscaling is to use linear filters

with compact support, such as from the family of cubic filters [12]. In this chapter,

our focus is on multi-frame methods, which enable resolution enhancement in spa-

tial upscaling, and allow temporal frame interpolation (frame rate upconversion).

Although many algorithms have been proposed for image and video interpolation,

spatial upscaling and frame interpolation (temporal upscaling) are generally treated

separately. The conventional super-resolution technique for spatial upscaling con-

sists of image reconstruction from irregularly sampled pixels, provided by register-

ing multiple low resolution frames onto a high resolution grid using motion estima-

tion, see [16, 4] for overviews. A recent work by Narayanan et al. ([14]) proposed

a video-to-video super resolution algorithm using a partition filtering technique, in

which local image structures are classified into vertical, horizontal, and diagonal

edges, textures, and flat areas by vector quantization [6] (involving off-line learn-

ing), and prepare a suitable filter for each structure class beforehand. Then, with

the partition filter, they interpolate the missing pixels and recover a high resolution

video frame. Another recent approach in [8] uses an adaptive Wiener filter and has

a low computational complexity when using a global translational motion model.

This is typical for many conventional super-resolution methods, which as a result

often don’t consider more complex motion.

For temporal upscaling, a technique called motion compensated frame interpo-

lation is popular. In [5], Fujiwara et al. extract motion vectors from a compressed

video stream for motion compensation. However, these motion vectors are often

unreliable; hence they refine the motion vectors by the block matching approach
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with variable-size blocks. Similar to Fujiwara’s work, in [9], Huang et al. proposed

another refinement approach for motion vectors. Using the motion reliability com-

puted from prediction errors of neighboring frames, they smooth the motion vector

field by employing a vector median filter with weights decided based on the local

motion reliability. In [10, 2], instead of refining the motion vector field, Kang et al.

and Choi et al. proposed block matching motion estimation with overlapped and

variable-size block technique in order to estimate motion as accurately as possible.

However, the difficulty of the motion-based approach is that, even though the mo-

tion vector field may be refined and/or smoothed, more complex transitions (e.g.

occlusions, transparency, and reflection) are not accurately treated. That is, motion

errors are inevitable even after smoothing/refining motion vector fields, and, hence,

an appropriate mechanism that takes care of the errors is necessary for producing

artifact-free outputs.

Unlike video processing algorithms which depend directly on motion vectors, in

a recent work, Protter et al. [18] proposed a video-to-video super-resolution method

without explicit motion estimation or compensation based on the idea of Non-Local

Means [1]. Although the method produces impressive spatial upscaling results even

without motion estimation, the computational load is very high due to the exhaustive

search (across space and time) for blocks similar to the block of interest. In a related

work [24], we presented a space-time video upscaling method, called 3-D iterative

steering kernel regression (3-D ISKR), in which explicit subpixel motion estima-

tion is again avoided. 3-D ISKR is an extension of 2-D steering kernel regression

(SKR) proposed in [22, 21]. SKR is closely related to bilateral filtering [25, 3] and

normalized convolution [17]. These methods can achieve accurate and robust image

reconstruction results, due to their use of robust error norms and locally adaptive

weighting functions. 2-D SKR has been applied to spatial interpolation, denoising

and deblurring [17, 21, 23]. In 3-D ISKR, instead of relying on motion vectors, the

3-D kernel captures local spatial and temporal orientations based on local covari-

ance matrices of gradients of video data. With the adaptive kernel, the method is

capable of upscaling video with complex motion both in space and time.

In this chapter, we build upon the 2-D steering kernel regression framework

proposed in [22], and develop a spatiotemporal (3-D) framework for processing

video. Specifically, we propose an approach we call motion-assisted steering kernel

(MASK) regression. The MASK function is a 3-D kernel, however, unlike as in 3-D

ISKR, the kernel function takes spatial (2-D) orientation and the local motion tra-

jectory into account separately, and it utilizes an analysis of the local orientation and

local motion vector to steer spatiotemporal regression kernels. Subsequently, local

kernel regression is applied to compute weighted least-squares optimal pixel esti-

mates. Although 2-D kernel regression has been applied to achieve super-resolution

reconstruction through fusion of multiple pre-registered frames on to a 2-D plane

[22, 17], the proposed method is different in that it does not require explicit mo-

tion compensation of the video frames. Instead, we use 3-D weighting kernels that

are “warped” according to estimated motion vectors, such that the regression pro-

cess acts directly upon the video data. Although we consider local motion vectors in

MASK, we propose an algorithm that is robust against errors in the estimated motion
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field. Prior multi-frame resolution-enhanced or super-resolution (SR) reconstruction

methods ([4, 16]) often consider only global translational or affine motions; local

motion and object occlusions are often not addressed. Many SR methods require

explicit motion compensation, which may involve interpolation or rounding of dis-

placements to grid locations. These issues can have a negative impact on accuracy

and robustness. Our proposed method is capable of handling local motions, avoids

explicit motion compensation, and is more robust. The proposed MASK approach is

capable of simultaneous spatial interpolation with resolution enhancement, tempo-

ral video interpolation, noise reduction, and preserving high frequency components.

Initial results using MASK were presented in [20].

An overview of this chapter is as follows. Firstly, we provide a review of 2-D

SKR in Section 2. Then, we extend 2-D SKR to 3-D SKR and describe the MASK

approach in Section 3. Subsequently, we propose a practical video upscaling algo-

rithm based on MASK in Section 4, proposing further novel techniques to reduce

computational complexity and improve robustness. We present several example re-

sults of our algorithm in Section 5 and conclude in Section 6.

2 Review of Steering Kernel Regression

This section gives an overview of SKR, which is the basis of MASK. We be-

gin with describing the fundamental framework of SKR, called kernel regression

(KR), in which we estimate a pixel value of interest from neighboring pixels using

a weighted least-square formulation. We propose an effective weighting function

for the weighted least-square estimator, called steering kernel function, that takes

not only spatial distances between the samples of interest into account, but also the

radiometric values of those samples.

2.1 Kernel Regression in 2-D

The KR framework defines its data model as

yi = z(xi)+ εi, i = 1, · · · ,P, xi = [x1i,x2i]
T , (1)

where yi is a noisy sample at xi (Note: x1i and x2i are spatial coordinates), z(·) is

the (hitherto unspecified) regression function to be estimated, εi is an i.i.d. zero

mean noise, and P is the total number of samples in an arbitrary “window” around a

position x of interest as shown in Fig. 1. As such, the kernel regression framework

provides a rich mechanism for computing point-wise estimates of the regression

function with minimal assumptions about global signal or noise models.

While the particular form of z(·) may remain unspecified, we can develop a

generic local expansion of the function about a sampling point xi. Specifically, if
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the position of interest x is near the sample at xi, we have the N-th order Taylor

series

z(xi) ≈ z(x)+{∇∇∇z(x)}T (xi−x)+
1

2
(xi−x)T {Hz(x)}(xi−x)+ · · ·

= β0 + βββ T
1 (xi−x)+ βββ T

2 vech
{
(xi−x)(xi−x)T

}
+ · · · (2)

where ∇∇∇ and H are the gradient (2×1) and Hessian (2×2) operators, respectively,

and vech(·) is the half-vectorization operator that lexicographically orders the lower

triangular portion of a symmetric matrix into a column-stacked vector. Furthermore,

β0 is z(x), which is the signal (or pixel) value of interest, and the vectors βββ 1 and βββ 2

are

βββ 1=

[
∂ z(x)

∂x1

,
∂ z(x)

∂x2

]T

,

βββ 2=
1

2

[
∂ 2z(x)

∂x2
1

, 2
∂ 2z(x)

∂x1∂x2

,
∂ 2z(x)

∂x2
2

]T

. (3)

Since this approach is based on local signal representations, a logical step to take is

to estimate the parameters {βββ n}
N
n=0 from all the neighboring samples {yi}

P
i=1 while

giving the nearby samples higher weights than samples farther away. A (weighted)

least-square formulation of the fitting problem capturing this idea is

min
{βββ n}

N
n=0

P

∑
i=1

[
yi−β0−βββ T

1 (xi−x)−βββ T
2 vech

{
(xi−x)(xi−x)T

}
−·· ·

]2

KH(xi−x)

(4)

with

KH(xi−x) =
1

det(H)
K
(
H−1(xi−x)

)
, (5)

where N is the regression order, K(·) is the kernel function (a radially symmetric

function such as a Gaussian), and H is the smoothing (2×2) matrix which dictates

the “footprint” of the kernel function. In the classical approach, when the pixels (yi)

Fig. 1 The data model for the kernel regression framework.
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are equally spaced, the smoothing matrix is defined as

H = hI (6)

for every sample, where h is called the global smoothing parameter. The shape of

the kernel footprint is perhaps the most important factor in determining the quality

of estimated signals. For example, it is desirable to use kernels with large footprints

in the smooth local regions to reduce the noise effects, while relatively smaller foot-

prints are suitable in the edge and textured regions to preserve the signal disconti-

nuity. Furthermore, it is desirable to have kernels that adapt themselves to the local

structure of the measured signal, providing, for instance, strong filtering along an

edge rather than across it. This last point is indeed the motivation behind the steer-

ing KR framework [22] which we will review in Section 2.2.

Returning to the optimization problem (4), regardless of the regression order and

the dimensionality of the regression function, we can rewrite it as a weighted least

squares problem:

b̂ = argmin
b

[
(y−Xb)T

K(y−Xb)
]
, (7)

where

y = [y1, y2, · · · , y
P
]T , b =

[
β0, βββ T

2 , · · · , βββ T

N

]T

, (8)

K = diag
[
KH(x1−x), KH(x2−x), · · · , KH(x

P
−x)

]
, (9)

and

X =




1, (x1−x)T , vechT
{
(x1−x)(x1−x)T

}
, · · ·

1, (x2−x)T , vechT
{
(x2−x)(x2−x)T

}
, · · ·

...
...

...
...

1, (x
P
−x)T , vechT

{
(x

P
−x)(x

P
−x)T

}
, · · ·


 (10)

with “diag” defining a diagonal matrix. Using the notation above, the optimization

(4) provides the weighted least square estimator

b̂ =
(
XT KX

)−1
XT K y =




W
N

W
N,x1

W
N,x2

...


y, (11)

where W
N

is a 1×P vector that contains filter coefficients, which we call the equiv-

alent kernel weights, and W
N,x1

and W
N,x2

are also 1×P vectors that compute the

gradients along the x1- and x2-directions at the position of interest x. The estimate of

the signal (i.e. pixel) value of interest β0 is given by a weighted linear combination

of the nearby samples:

ẑ(x) = β̂0 = eT
1 b̂ = W

N
y =

P

∑
i=1

Wi(K,H,N,xi−x) yi,
P

∑
i=1

Wi(·) = 1, (12)
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where e1 is a column vector with the first element equal to one and the rest equal to

zero, and we call Wi the equivalent kernel weight function for yi (q.v. [22] or [26]

for more detail). For example, for zero-th order regression (i.e. N = 0), the estimator

(12) becomes

ẑ(x) = β̂0 =
∑P

i=1 KH(xi−x) yi

∑P
i=1 KH(xi−x)

, (13)

which is the so-called Nadaraya-Watson estimator (NWE) [13].

What we described above is the “classic” kernel regression framework, which, as

we just mentioned, yields a pointwise estimator that is always a local linear combi-

nation of the neighboring samples. As such, it suffers from an inherent limitation.

In the next sections, we describe the framework of steering KR in two and three

dimensions, in which the kernel weights themselves are computed from the local

window, and therefore we arrive at filters with more complex (nonlinear) action on

the data.

2.2 Steering Kernel Function

The steering kernel framework is based on the idea of robustly obtaining local sig-

nal structures (e.g. discontinuities in 2-D and planes in 3-D) by analyzing the radio-

metric (pixel value) variations locally, and feeding this structure information to the

kernel function in order to affect its shape and size.

Consider the (2× 2) smoothing matrix H in (5). As explained in the previous

section, in the generic “classical” case, this matrix is a scalar multiple of the iden-

tity. This results in kernel weights which have equal effect along the x1- and x2-

directions. However, if we properly choose this matrix locally (i.e. H→Hi for each

yi), the kernel function can capture local structures. More precisely, we define the

smoothing matrix as a symmetric matrix

Hi = hC
− 1

2
i , (14)

which we call the steering matrix and where, for each given sample yi, the matrix

Ci is estimated as the local covariance matrix of the neighborhood spatial gradient

vectors. A naive estimate of this covariance matrix may be obtained by

Ĉnaive
i = JT

i Ji, (15)

with

Ji =




zx1
(x1) zx2

(x1)
...

...

zx1
(x

P
) zx2

(x
P
)


 , (16)

where zx1
(·) and zx2

(·) are the first derivatives along x1- and x2-axes, and P is the

number of samples in the local analysis window around a sampling position xi.
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However, the naive estimate may in general be rank deficient or unstable. Therefore,

instead of using the naive estimate, we can obtain the covariance matrix by using

the (compact) singular value decomposition (SVD) of Ji:

Ji = UiSiV
T
i , (17)

where Si = diag[s1,s2], and Vi = [v1,v2]. The singular vectors contain direct infor-

mation about the local orientation structure, and the corresponding singular values

represent the energy (strength) in these respective orientation directions. Using the

singular vectors and values, we compute a more stable estimate of our covariance

matrix as:

Ĉi = γiVi

[
ρi

1
ρi

]
VT

i = γi

(
ρiv1vT

1 +
1

ρi

v2vT
2

)
, (18)

where

ρi =
s1 + λ ′

s2 + λ ′
, γi =

(
s1s2 + λ ′′

P

)α

. (19)

The parameters ρi and γi are the elongation and scaling parameter, respectively, and

λ ′ and λ ′′ are “regularization” parameters, respectively, which dampen the effect

of the noise and restrict γi and the denominator of ρi from becoming zero. The

parameter α is called the structure sensitivity parameter. We fix λ ′ = 0.1, λ ′′ = 0.1,

and α = 0.2 in this work. More details about the effectiveness and the choice of the

parameters can be found in [22]. With the above choice of the smoothing matrix and

a Gaussian kernel, we now have the steering kernel function as

KHi
(xi−x) =

√
det(Ci)

2πh2
exp

{
−

(xi−x)T Ci(xi−x)

2h2

}
. (20)

Fig. 2 illustrates a schematic representation of the estimate of local covariance

matrices and the computation of steering kernel weights. First we estimate the gra-

dients and compute the local covariance matrix Ci by (18) for each pixel. Then,

for example, when denoising y13, we compute the steering kernel weights for each

neighboring pixel with its Ci. In this case, even though the spatial distances from

y13 to y1 and y21 are equal, the steering kernel weight for y21 (i.e. KH21
(x21−x13))

is larger than the one for y1 (i.e. KH1
(x1−x13)). Moreover, Fig. 3 shows visualiza-

tions of the 2-D steering kernel function for noise-free Lena image and a low PSNR1

case (we added white Gaussian noise with standard deviation 25, the corresponding

PSNR being 20.16[dB]). As shown in Fig. 3, the steering kernel weights (which are

the normalized KHi
(xi−x) as a function of xi with x held fixed) illustrate the relative

size of the actual weights applied to compute the estimate as in (12). We note that

even for the highly noisy case, we can obtain stable estimates of local structure.

At this point, the reader may be curious to know how the above formulation

would work for the case where we are interested not only in denoising, but also

upscaling the images. Fig. 4 illustrates a summary of image upscaling by steering

1 Peak Signal to Noise Ratio = 10log10

(
2552

Mean Square Error

)
[dB].
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kernel regression. Similar to the denoising case, we begin with computing steer-

ing (covariance) matrices, Ci for all the pixels, yi, from the input image shown in

Fig. 4(a) by (18) as depicted in Fig. 2(a). Once Ci’s are available, we compute steer-

ing kernel weights by (20). For example, when we estimate the missing pixel z(x) at

x shown as the green box in Fig. 4(b), the steering kernel function gives high weights

to the samples y
13

and y
17

and a small weight to y
12

. This is because the missing pixel,

z(x), most likely lies on the same edge (shown by the red dashed curve) as y
13

and

y
17

. Next, plugging the steering kernel weights into (11), we compute the equivalent

kernel W
N

and the estimator (12) gives the estimated pixel ẑ(x) at x. Fig. 4(c) shows

the upscaled image by steering kernel regression. In [22], we introduced an itera-

tive scheme where we recompute Ci from the upscaled image one more time, and,

using the new covariance matrices, we estimate the missing pixels and denoise the

given samples again. However, in this work, to keep the computational load low, we

compute the steering matrices only once from the given samples.

3 Motion Assisted Steering Kernel Regression

SKR estimates an unknown pixel value in a single image by a weighted combina-

tion of neighboring pixels in the same image, giving larger weights to the pixels

along a local orientation. In this section, we develop a multi-frame video upscal-

ing method based on SKR by additionally utilizing local motion vectors, and we

call the resulting method motion-assisted steering kernel (MASK) regression. The

MASK approach is a 3-D kernel regression method in which the pixel of interest is

estimated by a weighted combination of pixels in its spatiotemporal neighborhood,

(a) Covariance matrices from local gradients with 3×3 analysis window (b) Steering kernel weights

Fig. 2 A schematic representation of the estimates of local covariance metrics and the steering

kernel weights at a local region with one dominant orientation: (a) First, we estimate the gradients

and compute the local covariance matrix Ci by (18) for each pixel, and (b) Next, when denoising

y13, we compute the steering kernel weights with Ci for neighboring pixels. Even though, in this

case, the spatial distances between y13 and y1 and between y13 y21 are equal, the steering kernel

weight for y21 (i.e. KH21
(x21−x13)) is larger than the one for y1 (i.e. KH1

(x1−x13)). This is because

y13 and y21 are located along the same edge.



10 Hiroyuki Takeda, Peter van Beek, and Peyman Milanfar

involving multiple video frames. Hence, we first extend the 2-D kernel regression

framework into a 3-D framework. Then, we present our 3-D data-adaptive kernel,

the MASK function, which relies not only on local spatial orientation but also local

motions. Finally, we describe the process of spatial upscaling and temporal frame

interpolation based on MASK. While we focus on the principles of our approach

in this section, we present a specific algorithm for video processing based on the

MASK method in the next section.

3.1 Spatiotemporal Kernel Regression

For video processing, we define a spatiotemporal data model as

yi = z(xi)+ εi, i = 1, · · · ,P, xi = [x1i,x2i,ti]
T , (21)

Fig. 3 Steering kernel weights for Lena image without/with noise (white Gaussian noise with

standard deviation σ = 25) at flat, edge, and texture areas.

(a) Input image (b) The given samples with steering matrices (c) Upscaled image

Fig. 4 Steering kernel regression for image upscaling: (a)Input image. (b)We compute steering

matrices for each pixel and then estimate. Then, estimate the missing position z(x) and denoise

the given pixels yi. The red dashed line is a speculative local orientation. (c)Upscaled image by

steering kernel regression.
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where yi is a given sample (pixel) at location xi, x1i and x2i are the spatial coor-

dinates, ti is the temporal coordinate, z(·) is the regression function, and εi is i.i.d

zero mean noise. P is the number of samples in a spatiotemporal neighborhood of

interest, which spans multiple video frames.

Similar to the 2-D case, in order to estimate the value of z(·) at point x, given

the above data samples yi, we can rely on a local Nth order Taylor expansion about

x. We denote the pixel value of interest z(x) by β0, while βββ 1, βββ 2, · · · , βββ N denote

vectors containing the first-order, second-order, · · · , Nth order partial derivatives of

z(·) at x, resulting from the Taylor expansion. For example, β0 = z(x) and βββ 1 =

[zx1
(x),zx2

(x),zt(x)]T .

The unknowns, {βββn}
N
n=0, can be estimated from {yi}

P
i=1 using the following

weighted least-squares optimization procedure:

min
{βββn}

N
n=0

P

∑
i=1

[
yi−β0−βββ T

1 (xi−x)−βββ T
2 vech

{
(xi−x)(xi−x)T

}
−·· ·

]2

KH3D
i

(xi−x)

(22)

where N is the regression order and K(·) is a kernel function that weights the in-

fluence of each sample. Typically, samples near x are given higher weights than

samples farther away.

A 3-D steering kernel is a direct extension of the 2-D steering kernel defined in

[22]. The 3×3 data-dependent steering matrix H3D
i can be defined as

H3D
i = h

(
C3D

i

)− 1
2 (23)

where h is a global smoothing parameter and C3D
i is a 3×3 covariance matrix based

on the sample variations in a local (3-D) neighborhood around sample xi. We can

construct the matrix C3D
i parametrically as C3D

i = γiRiΛΛΛ iR
T
i , where Ri is a 3-D ro-

tation matrix, ΛΛΛ i is a 3-D elongation matrix, and γi is a scaling parameter. We have

found that such an approach performs quite well for spatial upscaling of video [24].

However, this 3-D kernel does not consider the specific spatiotemporal characteris-

tics of video data. In particular, problems may occur in the presence of large object

displacements (fast motion). This may result in either shrinking of the kernel in the

temporal direction, or spatial blurring (as the kernel weights spread across unrelated

data samples), both undesirable effects.

3.2 Motion Assisted Steering Kernel Function

A good choice for steering spatiotemporally is to consider local motion or optical

flow vectors caused by object motion in the scene, in conjunction with spatial steer-

ing along local edges and isophotes. Spatial steering should consider the locally

dominant orientation of the pixel data and should allow elongation of the kernel in

this direction. Spatiotemporal steering should allow alignment of the kernel weights
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with the local optical flow or motion trajectory, as well as overall temporal scal-

ing. Hence, we construct our spatiotemporal kernel as a product of a spatial- and

motion-steering kernel, and a kernel that acts temporally:

K
MASK

≡
1

det(Hs
i )

K
(
(Hs

i )
−1Hm

i (xi−x)
)

Kht
(ti− t), (24)

where Hs
i is a 3× 3 spatial steering matrix, Hm

i is a 3× 3 motion steering matrix,

Kht
(·) is a temporal kernel function, and ht is the temporal smoothing parameter

which controls the temporal penalization. These data-dependent kernel components

determine the steering action at sample xi, and are described next.

Following [22], the spatial steering matrix Hs
i is defined by:

Hs
i = hs

[
Ci

1

]− 1
2

, (25)

where hs is a global spatial smoothing parameter, and Ci is a 2×2 covariance matrix

given by (18), which captures the sample variations in a local spatial neighborhood

around xi. Ci is constructed in a parametric manner, as shown in (18).

The motion steering matrix Hm
i is constructed on the basis of a local estimate

of the motion (or optical flow vector) mi = [m1i,m2i]
T at xi. Namely, we warp the

kernel along the local motion trajectory using the following shearing transformation:

{
(x1i− x1) ← (x1i− x1)−m1i · (ti− t)
(x2i− x2) ← (x2i− x2)−m2i · (ti− t)

.

Hence,

Hm
i =




1 0 −m1i

0 1 −m2i

0 0 0


 . (26)

Assuming a spatial prototype kernel was used with elliptical footprint, this results

in a spatiotemporal kernel with the shape of a tube or cylinder with elliptical cross-

sections at any time instance t. Most importantly, the center point of each such

cross-section moves along the motion path.

The final component of (24) is a temporal kernel that provides temporal penal-

ization. A natural approach is to give higher weights to samples in frames closer to

t. An example of such a kernel is the following:

Kht
(ti− t) =

1

ht
exp

(
−
|ti− t|2

2h2
t

)
, (27)

where a temporal smoothing parameter ht controls the relative temporal extent of

the kernel. We use the temporal kernel (27) in this section to illustrate the MASK

approach. However, we will introduce a more powerful adaptive temporal weighting

kernel in Section 4.2, which acts to compensate for unreliable local motion vector

estimates.
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3.3 Spatial Upscaling and Temporal Frame Interpolation

Having introduced our choice of 3-D smoothing matrix, H3D
i , using Gaussian kernel

for K, we have the MASK function as

K
MASK

(xi−x) =
1

det(Hs
i )

K
(
(Hs

i )
−1

Hm
i (xi−x)

)
·Kht

(ti− t)

=
1

det(Hs
i )

K

(
(Hs

i )
−1

(
xi−x−

[
mi

1

]
(ti− t)

))
·Kht

(ti− t)

=

√
det(Ci)

h2
s h2

t

exp

(
−

1

2h2
s

∥∥∥∥xi−x−

[
mi

1

]
(ti− t)

∥∥∥∥
2

Ci

)

·exp

(
−
|ti− t|2

2h2
t

)
(28)

where ‖ · ‖2
Cs

i
is weighted squared L2-norm. Figs. 5(a-i)-(a-iii) graphically describe

how the proposed MASK function constructs its weights for spatial upscaling. For

ease of explanation, suppose there are 5 frames at times from t1 to t5, and we upscale

the third frame (spatial upscaling). When estimating the pixel value at x = [x1,x2,t],
where t = t3, first we compute 2-D steering kernel weights for each frame, as il-

lustrated in Fig. 5(a-i), using the first Gaussian kernel function in (28). Motions are

not taken into account at this stage. Second, having motion vectors, mi, which we

estimate using the optical flow technique with the translational motion model and

the frame at ti=3 as the anchor frame, we shift the steering kernels for each frame

by mi as illustrated in Fig. 5(a-ii). Finally, as in Fig. 5(a-iii), the temporal kernel

function penalizes the shifted steering kernels so that we give high weights to closer

neighboring frames.

Local steering parameters and spatio-temporal weights are estimated at each

pixel location xi in a small region of support for the final regression step. Once

the MASK weights are available, similar to the 2-D case, we plug them into (11),

compute the equivalent kernel W
N

, and then estimate the missing pixels and denoise

the given samples from the local input samples (yi) around the position of inter-

est x. Similar to (12), the final spatio-temporal regression step can be expressed as

follows:

ẑ(x) =
P

∑
i=1

Wi(x;Hs
i ,H

m
i ,ht,K,N) yi. (29)

The MASK approach is also capable of upscaling video temporally (also called

frame interpolation or frame rate upconversion). Fig. 5(b) illustrates the MASK

weights for estimating an intermediate frame at sometime between t3 and t4. Fun-

damentally, following the same procedure as described in Figs. 5(a-i)-(a-iii), we

generate MASK weights. However, for the motion vector with the unknown inter-

mediate frame as the anchor frame, we assume that the motion between the frames at

t3 and t4 is constant, and using the motion vectors, mi=1,··· ,5, we linearly interpolate

motion vectors m′i as
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m′
i
= m

i
+ m

4
(t− t

3
). (30)

Note that when m
4

is inaccurate, the interpolated motion vectors for other frames

in the temporal window (m′
i
) are also inaccurate. In that case, we would shift the

kernel toward the wrong direction, and the MASK weights would be less effective

for temporal upscaling. Therefore, one should incorporate a test of the reliability of

m
4

into the process, and use vectors m
i

instead of m′
i

if it is found to be unreliable.

Our specific technique to compute the reliability of motion vectors is described in

Section 4.2.

(a-i) 2-D steering kernel weights for each frame (a-ii) Shifting the kernel with local motion vectors

(a-iii) Scaling by the temporal kernel function (b) MASK weights for temporal upscaling

Fig. 5 Schematic representations of the construction of MASK weights: the proposed MASK

weights are constructed by the following procedure (a-i) compute 2-D steering kernel weights

for each frame (with mi = 0 at this moment), (a-ii) shift the steering kernels by the local motion

vectors, and (a-iii) scale the shifted steering kernels by the temporal kernel function. Fig.(b) shows

the weight construction for the estimation of an intermediate frame at time t .
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4 A Practical Video Upscaling Algorithm Based on MASK

In this section, we describe a complete algorithm for spatial upscaling, denoising

and enhancement, as well as temporal frame interpolation, based on the MASK ap-

proach. We introduce several techniques that enable a practical implementation of

the MASK principles explained in the previous section. In particular, we develop

an algorithm with reduced computational complexity and reduced memory require-

ments, that is suitable for both software and hardware implementation.

An overview of the proposed video interpolation and denoising algorithm based

on motion-assisted spatiotemporal steering kernel regression is provided in Fig. 6.

The algorithm estimates spatial and motion steering parameters using gradient-

based techniques. Hence, we first compute initial estimates of the spatial and tem-

poral derivatives, e.g. based on classic kernel regression. In this work, we obtain a

quick and robust estimate of the spatial orientation angle (θi), elongation (ρi) and

scaling (γi) parameters at xi by applying a vector quantization technique to the co-

variance matrix obtained from the spatial gradient data. This will be described in

Section 4.3. Motion vectors are estimated using the well-known Lucas and Kanade

method, based on both spatial and temporal gradients in a local region. This is fol-

lowed by computing estimates of the temporal motion reliability (η), and is de-

scribed further in Section 4.2. Given spatial and motion steering parameters, final

MASK regression is applied directly on the input video samples; further details of

this step are provided in Section 4.4.

The following are further salient points for our algorithm based on MASK. We

first summarize them, and then provide details in subsequent subsections.

⊲ Block-by-Block Processing

Since the kernel-based estimator is a pointwise process, it is unnecessary to store

the orientations and motion vectors of all the pixels in a video frame (Hs
i and Hm

i

for all i) in memory. However, strict pixel-by-pixel processing would result in a

large number of redundant computations due to the overlapping neighborhoods

of nearby pixels. In order to reduce the computational load while keeping the

Fig. 6 Illustration of video processing based on motion-assisted spatiotemporal steering kernel

(MASK) regression.



16 Hiroyuki Takeda, Peter van Beek, and Peyman Milanfar

required memory space small, we break the video data into small blocks (e.g.

8×8 pixels), and process the blocks one-by-one.

⊲ Adaptive Temporal Penalization

MASK relies on motion vectors, and the visual quality of output video frames

is strongly associated with the accuracy of motion estimation. Even though our

motion estimation approach is able to estimate motion vectors quite accurately,

the estimated vectors become unreliable when the underlying scene motion and

camera projection violate the motion model. In practice, errors in motion vectors

are inevitable and it is important to provide a fall-back mechanism in order to

avoid visual artifacts.

⊲ Quantization of Orientation Map

The estimation of spatial orientations or steering covariance matrices Cs
i in (18)

involves singular value decomposition (SVD), which represents significant com-

putational complexity. Instead of using the SVD, we use a pre-defined lookup

table containing a set of candidate covariance matrices, and locally select an

appropriate matrix from the table. Since the lookup table contains only stable

(invertible) covariance matrices, the estimation process remains robust.

⊲ Adaptive Regression Order

A higher regression order (e.g. N = 2 in this chapter) preserves high frequency

components in filtered images, although it requires more computation (11). On

the other hand, zeroth regression order (N = 0) has lower computational cost, but

it has a stronger smoothing effect. Although second order regression is prefer-

able, it is only needed at pixel locations in texture and edge regions. Moreover,

in terms of noise reduction, zeroth order regression is more suitable in flat re-

gions. We propose to adjust the order N locally, based on the scaling parameter

(γi). Consequently, this adaptive approach keeps the total computational cost low

while it preserves, and even enhances, high frequency components.

4.1 Block-by-Block Processing

The overall MASK algorithm consists of several operations (i.e. estimating spatial

and temporal gradients, spatial orientations, and motions as shown in Fig. 6 and

finally applying kernel regression), and it is possible to implement these in, e.g.,

a pixel-by-pixel process or a batch process. In a pixel-by-pixel process, we esti-

mate gradients, orientations, and motions one-by-one, and then finally estimate a

pixel value. Note that most of these operations require calculations involving other

pixels in a neighborhood around the pixel of interest. Since the neighborhoods of

nearby pixels may overlap significantly, frequently the same calculation would be

performed multiple times. Hence, a pixel-by-pixel implementation suffers from a

large computational load. On the other hand, this implementation requires very lit-

tle memory. In a batch process, we estimate gradients for all pixels in an entire

frame and store the results in memory, then estimate orientations of all pixels and
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store those results, etc. In the batch implementation, we need a large memory space

to store intermediate results for all pixels in a frame; however, it avoids repeated

calculations. This type of process is impractical for a hardware implementation.

As a compromise, in order to limit both the computational load and the use of

memory, we process a video frame in a block-by-block manner, where each block

contains, e.g., 8× 8 or 16× 16 pixels. Further reduction of the computational load

is achieved by using a block-based motion model: we assume that, within a block,

the motion of all the pixels follow a parametric model, e.g, translational or affine. In

this chapter, we fix the block size to 8×8 pixels and we use the translational motion

model. A variable block size and the use of other motion models are also possible,

and are the subject of ongoing research.

4.2 Motion Estimation and Adaptive Temporal Penalization

As mentioned, motion estimation is based on the well-known Lucas and Kanade

method [11, 19], applied in a block-by-block manner as follows. Assume we com-

puted initial estimates of the local spatial and temporal derivatives. For example,

spatial derivatives may be computed using classic kernel regression or existing

derivative filtering techniques. Temporal derivatives are computed by taking the

temporal difference between pixels of the current frame and one of the neighbor-

ing frames. Let ẑx1
, ẑx2

and ẑt denote vectors containing (in lexicographical order)

derivative estimates from the pixels in a local analysis window wl associated with

the ℓ-th block in the frame. This window contains and is typically centered on the

block of pixels of interest, but may include additional pixels beyond the block (i.e.

analysis windows from neighboring blocks may overlap). A motion vector ml for

block ℓ is estimated by solving the optical flow equation [ẑx1
, ẑx2

]mℓ + ẑt = 0 in

the least-squares sense. The basic Lucas and Kanade method is applied iteratively

for improved performance. As explained before, MASK uses multiple frames in a

temporal window around the current frame. For every block in the current frame, a

motion vector is computed to each of the neighboring frames in the temporal win-

dow. Hence, if the temporal window contains 4 neighboring frames in addition to

the current frame, we compute 4 motion vectors for each block in the current frame.

In practice, a wide variety of transitions/activies will occur in natural video. Some

of them are so complex that no parametric motion model matches them exactly, and

motion errors are unavoidable. When there are errors in the estimated motion vec-

tors, visually unacceptable artefacts may be introduced in the reconstructed frames

due to the motion-based processing. One way to avoid such visible artifacts in up-

scaled frames is to adapt the temporal weighting based on the correlation between

the current block and the corresponding blocks in other frames determined by the

motion vectors. That is to say, before constructing MASK weights, we compute

the reliability (ηℓ) of each estimated motion vector. A simple way to define ηℓ is

to use the mean square error or mean absolute error between the block of interest

and the corresponding block in the neighboring frame towards which the motion
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vector is pointing. Once the reliability of the estimated motion vector is available,

we penalize the steering kernels by a temporal kernel Kt , a kernel function of η .

Fig. 7 illustrates the temporal weighting, incorporating motion reliability. Suppose

we upscale the ℓ-th block in the frame at time t using 2 previous and 2 forward

frames, and there are 4 motion vectors, mℓ,i, between a block in the frame at t and

the 4 neighboring frames. First, we find the blocks that the motion vectors indicate

from the neighboring frames shown as yℓ,i in Fig. 7. Then, we compute the motion

reliability based on the difference between the ℓ-th block at t and other blocks and

decide the temporal penalization for each neighboring block.

More specifically, we define ηℓ,∆ t and Kt as

ηℓ,∆ t =

∥∥yℓ,t−yℓ,t+∆ t

∥∥
F

M
, (31)

Kht
(ηℓ,∆ t) =

1

1 +
ηℓ,∆ t

ht

(32)

where ht is the (global) smoothing parameter, which controls the strength of tempo-

ral penalization, yℓ,t is the ℓth block of the frame at time t, t + ∆ t is a neighboring

frame, M is the total number of pixels in a block, and ‖ · ‖F is Frobenius norm.

We replace the temporal kernel in (28) by (32). This temporal weighting technique

is similar to the Adaptive Weighted Averaging (AWA) approach proposed in [15];

however, the weights in AWA are computed pixel-wise. In MASK, the temporal ker-

nel weights are a function of radiometric distances between small pixel blocks and

are computed block-wise.

Fig. 7 A schematic representation of temporal weighting in MASK for upscaling the ℓ-th block

(yℓ,t ) of the frame at time t . First, we locate the neighboring blocks (yℓ,i for i = −2,−1,1,2)

indicated by the motion vectors (mℓ,i). Then, we compute the motion reliability (ηℓ,i) based on

the difference between the ℓ-th block at t and the neighboring blocks, and combine the temporal

penalization by Kt with the spatial kernel function K.
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4.3 Quantization of Orientation Map

The computational cost of estimating local spatial steering (covariance) matrices is

high due to the SVD. In this section, using the well-known technique of vector quan-

tization [6], we describe a way to obtain stable (invertible) steering matrices without

using the SVD. Briefly speaking, first, we construct a look-up table which has a cer-

tain number of stable (invertible) steering matrices. Second, instead of computing

the steering matrix by (18), we compute the naive covariance matrix (15), and then

find the most similar steering matrix from the look-up table. The advantages of using

the look-up table are that (i) we can lower the computational complexity by avoiding

singular value decomposition, (ii) we can control and trade-off accuracy and com-

putational load by designing an appropriate vector quantization scheme with almost

any desired number of steering matrices in the look-up table, and (iii) we can pre-

calculate kernel weights to lower the computational load further (since the steering

matrices are fixed).

From (18), the elements of the spatial covariance matrix Ci are given by the

steering parameters with the following equations:

C j(γ j,ρ j,θ j) =

[
c11 c12

c12 c22

]
, (33)

with

c11 = γ j

(
ρ j cos2 θ j + ρ−1

j sin2 θ j

)
(34)

c12 = −γ j

(
ρ j cosθ j sinθ j + ρ−1

j cosθ j sinθ j

)
(35)

c22 = γ j

(
ρ j sin2 θ j + ρ−1

j cos2 θ j

)
(36)

where γ j is the scaling parameter, ρ j is the elongation parameter, and θ j is the orien-

tation angle parameter. Fig. 8 visualizes the relationship between the steering param-

eters and the values of the covariance matrix. Based on the above formulae, using a

pre-defined set of the scaling, elongation, and angle parameters, we can generate a

lookup table for covariance matrices, during an off-line stage.

During the on-line processing stage, we compute a naive covariance matrix Cnaive
i

(15) and then normalize Cnaive
i so that the determinant of the normalized naive co-

variance matrix det(C̃naive
i ) equals 1.0:

C̃naive
i =

Cnaive
i√

det(Cnaive
i )

=
1

γi

Cnaive
i , (37)

where again γi is the scaling parameter. This normalization eliminates the scaling pa-

rameter from the look-up table and simplifies the relationship between the elements

of covariance matrices and the steering parameters, and allows us to reduce the size

of the table. Table 1 shows an example of a compact lookup table. When the elon-
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gation parameter ρi of C̃i is smaller than 2.5, Ĉi is quantized as an identity matrix

(i.e. the kernel spreads equally every direction). On the other hand, when ρi ≥ 2.5,

we quantize Ĉi with 8 angles. Using C̃naive
i , we obtain the closest covariance matrix

C̃i from the table. I.e.,
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Fig. 8 The graphical relationship between the steering kernel parameters and the values of covari-

ance matrix.
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Table 1 A compact lookup table for covariance matrices.

c11 c12 c22 ρ j θ j

1.0000 0 1.0000 1.0 0

2.5000 0 0.4000 2.5 0

2.1925 1.0253 0.7075 2.5 1
8

π

1.4500 1.4500 1.4500 2.5 2
8

π

0.7075 1.0253 2.1925 2.5 3
8

π
0.4000 0 2.5000 2.5 4

8
π

0.7075 -1.0253 2.1925 2.5 5
8

π

1.4500 -1.4500 2.1925 2.5 6
8

π

2.1925 -1.0253 0.7075 2.5 7
8

π

C̃i = argmin
ρ j ,θ j

∥∥∥C(ρ j,θ j)− C̃naive
i

∥∥∥
F
, (38)

where ‖ · ‖F is the Frobenius norm. The final matrix Ĉi is given by:

Ĉi = γiC̃i. (39)

4.4 Adaptive Regression Order

As mentioned earlier, although the kernel estimator with a higher regression or-

der preserves high frequency components, the higher order requires more computa-

tion. In this section, we discuss how we can reduce the computational complexity,

while enabling adaptation of the regression order. According to [7], the second order

equivalent kernel, W2, can be obtained approximately from the zeroth order one, W0,

as follows. First, we know that the general kernel estimator (12) can be expressed

as:

ẑ(x) = eT
1

(
XT KX

)−1
XT K y = W

N
y (40)

where again W
N

is a 1×P vector containing the filter coefficients and which we call

the equivalent kernel. The zeroth order equivalent kernel can be modified into W2

by

W̃T
2 = WT

0 −κLWT
0 , (41)

where L is Laplacian kernel in matrix form (we use [1,1,1;1,−8,1;1,1,1] as a

discrete Laplacian kernel) and κ is a regression order adaptation parameter. This

operation can be seen to “sharpen” the equivalent kernel, and is equivalent to sharp-

ening the reconstructed image. Fig. 9 shows the comparison between the actual

second order equivalent kernel, W2, and the equivalent kernel, W̃2, given by (41).

In the comparison, we use the Gaussian function for K, and compute the zeroth or-
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der and the second order equivalent kernels shown in Fig. 9(a) and (b) respectively.

The equivalent kernel, W̃2, is shown in Fig. 9(c), and Fig. 9(d) shows the horizon-

tal cross section of W0, W2, and W̃2. As seen in Fig. 9(d), W̃2 is close to the exact

second order kernel W2.

There are two advantages brought by (41): (i) The formula simplifies the com-

putation of the second order equivalent kernels, i.e. there is no need to generate the

basis matrix, X, or take inversion of matrices. (ii) Since the effect of the second

order regression is now explicitly expressed by κLW0 in (41), the formulation al-

lows for adjustment of the regression order across the image, but also it allows for

“fractional” regression orders, providing fine control over the amount of sharpening

applied locally.

We propose a technique to automatically select the regression order parameter

(κ) adaptively as follows. By setting κ near zero in flat regions and to a large value

in edge and texture regions, we can expect a reduction of computational complexity,

prevent amplifying noise component in flat regions, and preserve or even enhance

texture regions and edges. In order to select spatially adapted regression factors, we
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(c) A sharpened 0th order equivalent kernel (W̃2) (d) Horizontal cross sections of the equivalent kernels

Fig. 9 Equivalent kernels given by classic kernel regression: (a) the 0th order equivalent ker-

nel with the global smoothing parameter h = 0.75, (b) the 2nd order equivalent kernel (W2)

with h = 0.75, (c) a sharpened 0th order equivalent kernel (W̃2) with a 3× 3 Laplacian kernel

(L = [1, 1, 1; 1, −8, 1; 1, 1, 1]) and κ = 0.045, and (d) Horizontal cross sections of the equiva-

lent kernels W0, W2, and W̃2. For this example, we used a Gaussian function for K(·).
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can make use of the scaling parameter γi, which we earlier used to normalize the

covariance matrix in (37). This makes practical sense since γi is high in texture and

edge areas and low in flat area as shown in Fig. 10. Because γi is already computed

when computing the steering matrices, no extra computation is required. A good

way to choose the regression factor (κ) locally is to make it a simple function of γi.

Specifically, we choose our adaptive regression factor by

κi = 0.01γi, (42)

where 0.01 is a global parameter controlling the overall sharpening amount. E.g. it is

possible to choose a larger number if a stronger sharpening effect is desired globally.

As shown in Fig. 10, with the choice of the adaptive regression order κi = 0.01γi

(42), the regression order becomes close to zero in the area where γi is close to

zero, while the resulting equivalent kernel given by (41) approximately becomes a

second order kernel in the area where γi is around 5. Setting κ too large results in

overshoot of pixel values around texture and edges. We process color video in the

YCbCr domain and estimate spatial orientations in the luminance component only,

since the human visual system is most sensitive to orientations in the luminance

component.

5 Example Video Upscaling and Denoising Results

In this section, we provide video frames generated by the proposed MASK algo-

rithm as visual illustrations of its performance. We will provide examples of spa-

tial upscaling, temporal frame interpolation, and denoising. We compare MASK to

two other state-of-the-art multi-frame video upscaling methods: Non Local-mean
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Fig. 10 Local scaling parameters (γi) for (a) Barbara image and (b) Boat image. With the choice

of the adaptive regression order κi = 0.01γi (42), the regression order becomes nearly zero in the

areas where γi is close to zero, while in areas where γi is around 5, the resulting equivalent kernel

given by (41) approximately becomes second order.
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based super resolution [18] and 3-D iterative spatial steering kernel regression (3-

D ISKR) [24]. The algorithm proposed in [18] consists of multi-frame fusion with

Non Local-mean based weighting, as well as explicit deblurring. 3-D ISKR is an

algorithm closely related to MASK involving iterative 3-D steering kernel regres-

sion; however, it does not require accurate (subpixel) motion estimation. For 3-D

ISKR and MASK, we set the temporal window of support 5, and NL-based SR ap-

proach searches similar local patches across all the frames in time and the window

of support 21×21 in space.

The first example shown in Fig. 11 is a visual comparison of spatial upscaling

and temporal frame interpolation results, using MASK, NL-mean based SR, and 3-

D ISKR. For this example, we used the Car-phone video sequence in QCIF format

(144× 176 pixels, 30 frames) as input, and spatially upscaled the video with an

upscaling factor of 1 : 3. Fig. 11(a) shows the input frame at time t = 25 (upscaled by

pixel-replication). The upscaled results by single frame bicubic interpolation, NL-

mean based SR, 3-D ISKR, and MASK are shown in Figs. 11(b)-(f), respectively. In

addition, Fig. 12 shows a spatiotemporal upscaling example (both spatial upscaling

and temporal frame interpolation) of the Car-phone sequence by 3-D ISKR and

MASK. For this example, we estimated an intermediate frame at time t = 25.5 as

well as spatially upscaling the intermediate frames with the upscaling factor of 1 : 3.

Comparing to the result by bicubic interpolation, all the adaptive methods, NL-

mean based SR, 3-D ISKR, and MASK, reconstruct high-quality upscaled frames,

although each has a few artifacts: jaggy artifacts on edge regions for NL-mean based

SR and MASK, and overshooting artifact for 3-D ISKR.

The second example is spatio-temporal video upscaling using two color real

video sequences: Spin-Calendar (504×576 pixels, 30 frames) and Texas (504×576

pixels, 30 frames). Fig. 13(a) and 14(a) show an input frame of each sequence at

time t = 5, respectively. Spin-Calendar has relatively simple motions, namely ro-

tations. Texas sequence contains more complicated motions, i.e., occlusion, 3-D

rotation of human heads, and reflection on the helmet. Furthermore, Spin-Calendar

contains camera noise, while Texas contains significant compression artifacts (e.g.

blocking). Video frames that were spatially upscaled by a factor of 1 : 2 using single

frame bicubic interpolation, 3-D ISKR, and MASK are shown in Figs. 13(b)-(d) and

14(b)-(d), respectively. Also, Figs. 13(e)-(h) and 14(e)-(h) show selected portions of

the input frame, the upscaled frame using single frame bicubic interpolation, 3-D

ISKR, and MASK at a large scale. Next, we estimated an intermediate frame at time

t = 5.5 for both Spin-Calendar and Texas sequences by 3-D ISKR and MASK, and

the results are shown in Fig. 15. The intermediate frames are also spatially upscaled

by the same factor (1 : 2). Again, both 3-D ISKR and MASK produce high quality

frames in which camera noise and blocking artifacts are almost invisible while the

important contents are preserved.
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(a) Input (b) Cubic interpolation

(c) NL-mean based SR (d) 3-D ISKR

(f) MASK
Fig. 11 Spatial upscaling of Car-phone video sequence: (a) input video frames at time t = 25

(144×176, 30 frames) and (b)-(f) the upscaled frames by single frame bicubic interpolation, NL-

mean based SR [18], 3-D iterative SKR [24], and MASK, respectively.
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6 Conclusion

In this chapter, we presented an extension of steering kernel regression for video

upscaling. Our proposed algorithm is capable of spatial upscaling with resolution

enhancement, temporal frame interpolation, noise reduction, as well as sharpening.

In the proposed algorithm, we construct 3-D kernels based on local motion vec-

tors, unlike our previous work [18, 24]. The algorithm includes motion estimation,

but doesn’t use explicit motion compensation. Instead, the spatio-temporal kernel

is oriented along the local motion trajectory, and subsequent kernel regression acts

directly on the pixel data. In order to avoid introducing artifacts due to motion esti-

mation errors, we examine the motion vectors for their reliability. We apply a tem-

poral weighting scheme, which allows us to suppress data from neighboring frames

in the case of a motion error. Also, we reduce the computational cost of MASK

by using a block-based motion model, using a quantized set of local orientations,

and adapting the regression order. The adaptive regression order technique not only

reduces the computational cost, but also provides sharpening while avoiding noise

amplification.

We have presented several video upscaling examples showing that the MASK

approach recovers resolution, suppresses noise and compression artifacts, and is ca-

pable of temporal frame interpolation with very few artifacts. The visual quality of

the upscaled video is comparable to that of other state-of-the-art multi-frame up-

scaling methods, such as the Non-Local-Means based super-resolution method [18]

and 3-D ISKR [24]. However, the computational complexity of MASK in terms of

processing and memory requirements is significantly lower than these alternative

methods. In order to improve the visual quality of MASK further, it may be nec-

(a) 3-D ISKR (b) MASK

Fig. 12 Spatiotemporal upscaling of Car-phone video sequence: (a) upscaled frames by 3-D iter-

ative SKR [24] at t = 25.5, and (b) upscaled frames by MASK at t = 25.5. In this example, we

upscale Car phone sequence shown in Fig. 11(a) with the spatial upscaling factor 1 : 3 and the

temporal upscaling factor 1 : 2.
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essary to include more accurate motion estimation, for example by using smaller

block sizes (currently 8×8), or extending the motion model, e.g. to an affine model.

(a) Input (b) Bicubic interpolation

(c) 3-D ISKR (d) MASK

(e) Input (f) Bicubic interpolation (g) 3-D ISKR (h) MASK

Fig. 13 Spatial upscaling of Spin-Calendar video sequence: (a) the input frame at t = 5, (b)-(d)

the upscaled video frames by bicubic interpolation, 3-D ISKR, and MASK, respectively. (e)-(h)

Enlarged images of the input frame and the upscaled frames by cubic interpolation, 3-D ISKR, and

MASK, respectively.
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