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Fast Multi-Layer Laplacian Enhancement
Hossein Talebi and Peyman Milanfar

Abstract— A novel, fast and practical way of enhancing images
is introduced in this paper. Our approach builds on Laplacian
operators of well-known edge-aware kernels, such as bilateral
and nonlocal means, and extends these filter’s capabilities to
perform more effective and fast image smoothing, sharpening
and tone manipulation. We propose an approximation of the
Laplacian, which does not require normalization of the kernel
weights. Multiple Laplacians of the affinity weights endow our
method with progressive detail decomposition of the input image
from fine to coarse scale. These image components are blended
by a structure mask, which avoids noise/artifact magnification
or detail loss in the output image. Contributions of the proposed
method to existing image editing tools are: (1) Low computational
and memory requirements, making it appropriate for mobile
device implementations (e.g. as a finish step in a camera pipeline),
(2) A range of filtering applications from detail enhancement to
denoising with only a few control parameters, enabling the user
to apply a combination of various (and even opposite) filtering
effects.

Index Terms— Image Enhancement, Image Editing, Image
sharpening, Local Tone mapping, Image smoothing

I. INTRODUCTION

Recently, edge-preserving image operators have been widely
used in image enhancement applications. These filters allow
separate processing of texture and piecewise smooth compo-
nents of the image. Given that the main structure (edges) of
the images are preserved by these edge-aware filters, applying
an appropriate nonlinearity on the texture component results
in local contrast enhancement and tonal adjustment [1]–[9].
However, when using these methods, the default assumption
is that undesired perturbations, such as noise or compres-
sion artifacts are removed beforehand. In practical imaging
scenarios, boosting a detail image layer can result in noise
and artifact magnification, limiting applications of the existing
detail enhancement algorithms. This issue is mitigated in our
proposed method by employing a new blending strategy, which
smoothes regions containing noise while sharpening significant
image details. Our experiments demonstrate that the proposed
method can be effective in improving details and local contrast
of images, whilst efficiently handling mildly degraded cases
(examples of the proposed method’s applications are illustrated
in Fig. 1). The existing relevant literature is reviewed next.

A. Related Work

Linear unsharp masking (UM) is perhaps the simplest
algorithm for enhancing the edge and detail information of
an image. Linear UM is a high-pass filter, which sharpens
high frequency content of images, yet magnifies noise and
produces undesirable distortions, such as halo artifacts. Polesel
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et al. [10] proposed adaptive unsharp mask to improve on the
classic UM. This method measures local image gradient to
adaptively apply the UM filter on details, and leave flat regions
unchanged. Constrained unsharp mask [11] is another alterna-
tive, which combines a denoised and a sharpened version of
the input image. Overall, the linear smoothing filter employed
at the core of these methods can restrict their performances.
Replacing the linear operator with a data-dependent (non-
linear) smoother diminishes this issue.

The Bilateral filter is possibly the most widely used edge-
aware filter in image processing and computer graphics [12].
Similarity of neighbor pixels is measured by bilateral range
filter, avoiding averaging across principal edges. Durand and
Dorsey [13] exploit application of the bilateral filter in con-
trast reduction of high dynamic range images. A multi-scale
implementation of the bilateral filter for progressive detail
extraction is explored in [14]. Variations of bilateral filter can
also be used for sharpening [15], creating cartoon effects [4],
image editing [16] and abstraction [17]. Although bilateral
filter outperforms linear smoothers, it still lacks robustness in
some applications such as denoising.

Nonlocal means filter (NLM) works similarly to the bilat-
eral kernel, except that photometric similarity of neighboring
pixels is determined by measuring patch distances [18]–[20].
NLM weights better handle noise and other image distortions
compared to bilateral kernel, yet offer competitive smoothing
properties. Choudhury et al. [21] propose a multi-scale sharp-
ness enhancement scheme based on NLM weights. A noise
suppression step is performed first, and then different detail
layers are extracted by recomputing NLM weights several
times with various smoothing parameters. However, multiple
realizations of the NLM filter impose a high computational
complexity on this algorithm. NLM affinity weights were also
used for various image editing tasks, such as tone manipulation
and edit propagation in [22]. In that work, the global affinity
matrix is approximated by its leading eigenvectors, enabling
different filtering effects by polynomial mapping of the filter
eigenvalues. More recently, differences of NLM smoothers are
used to sharpen mildly blurred images [23]. Overall, global
filtering parameters, filter weight computation and memory
storage may limit application of these methods.

More nonlinear filters have been introduced in the past few
years. A progressive coarsening operator based on a weighted
least square optimization is proposed in [6]. Subr et al. [7]
introduced a new image decomposition method by smoothing
large image oscillations and preserving edges. Gaussian pyra-
mids are also used for edge-aware filtering in local Laplacian
framework [3], [8], where each detail layer is mapped by a
specific function, resulting in tonal enhancement of the recon-
structed image. The domain transform paradigm proposed by
Gastal et al. [24] formulates the nonlinear image smoothing as
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Fig. 1. Examples of detail enhancement using our method. Each image pair shows the input (left) and enhanced image (right). Top row: Application of our
method for sharpening and local contrast enhancement. Bottom row: Application of our method for simultaneous artifact/noise removal and sharpening.

a few iterations of one dimensional filtering. The main edges
are detected by image gradient and preserved in the filtering
process. Another gradient-based smoother is introduced in
[5] where image structure and texture are distinguished by
means of local covariance. Edge preserving operators are
also practically viable by guided image filtering [1], [2].
Image smoothing while constraining the number of non-zero
gradients is another edge-aware filtering technique [25]. This
approach removes low-amplitude structures by progressively
reducing the number of non-zero gradients. Similar to the
framework in [25], an L1 energy minimization method for
image smoothing is proposed in [26]. The energy cost includes
local variations and global sparsity terms, and minimizing
it results in flattening details. Our intention in this paper is
not to introduce yet another nonlinear smoother. In fact, the
base smoothing filter upon which the rest of the presented
framework is constructed can be any of the existing filters
mentioned above.

In addition to edge preserving filters, other contrast enhance-
ment techniques based on the retinex theory [27] have been
developed in the past few years [28], [29]. Retinex theory
explains how humans can see colors consistently in spite of
difference in light levels. Inspired by this theorem, several
enhancement algorithms have been proposed recently [29]–
[31]. Although these techniques are quite efficient and produce
compelling results, noise magnification while brightening dark
pixels remains challenging.

B. Contributions

The Laplacian operator of the local affinity matrix is at
the core of our algorithm. The Laplacian operators can be
computed for any smoothing operator, yet we develop our
method based on the NLM kernel which is quite resilient

to noise. Contributions of this work to the current image
enhancement literature are:

• A novel filtering approach using normalization-free fil-
ters: Affinity weights are conventionally normalized and
applied on the image to preserve the local brightness.
In this paper we propose an efficient approximation of
the normalized affinities to provide a computationally
simplified un-normalized filtering paradigm.

• Detail manipulation in the presence of mild image dis-
tortions: Instead of applying noise/artifact suppression
as a pre-filtering stage (which imposes extra complex-
ity to the framework and may remove image details),
our approach naturally handles these degradations. More
specifically, fine detail boosting is replaced by smoothing
when dealing with noisy regions. Fig. 2 demonstrates an
example of simultaneous smoothing and sharpening using
our proposed method.

• Substantial complexity reduction of nonlinear multi-scale
decomposition: We propose a simple, yet effective way to
compute the multi-scale detail decomposition by approx-
imating affinity weights. Typical nonlinear multi-scale
decomposition relies on successive computation of the
filter weights on the input image. Given the exponential
affinities of the NLM and bilateral kernels, we precom-
pute the image-dependent filter weights only once and
produce different versions of the filter by simple direct
product of the weights. Significant speed up is observed
by this strategy.

The proposed method allows real-time detail manipulation
and enhancement such as examples shown in Fig. 3. The rest
of the paper is organized as follows. In Section II, a detailed
explanation of the proposed method is described. Next, in
Section III, applications of our algorithm are exemplified. We



3

Fig. 2. Application of our method for simultaneous artifact/noise removal and sharpening. The input image is of size 1856 × 2528 and average running
time for producing this result on an Intel Xeon CPU @ 3.5 GHz is about 0.2 seconds.

also provide details of our implementation along with running
time comparisons. Finally, this paper is concluded in Section
IV.

II. PROPOSED SCHEME

Our enhancement algorithm is broadly illustrated in Fig. 4.
The input image is filtered by different affinity-based operators
(built on the NLM weights [18]) to produce the image detail
layers. Each layer is mapped by a nonlinear function to boost
or suppress the associated detail and then, the manipulated
layers are blended through a structure mask. The proposed
scheme has parameters of the mapping functions as its filter-
ing knobs, which control the filter’s behavior by altering it
from smoothing to sharpening and from tone enhancement to
tone compression. Our processing is principally in the YUV
domain, by filtering luma and leaving chroma unaltered. For
completeness, we also illustrate our method for filtering RGB
color channels separately (Fig. 3). In this section, first the
affinity filters are reviewed and then the normalization-free
filter weights are discussed. We elaborate on the details of the
proposed filtering scheme, and finally our mapping functions
and blending strategy are discussed.

A. Nonlinear edge-aware filters

The general construction of an edge-aware filter begins by
specifying a symmetric positive semi-definite (PSD) kernel
kij ≥ 0 that measures the similarity, or affinity, between
individual or groups of pixels. This affinity can be measured
as a function of both the distance between the spatial variables
(denoted by x), but more importantly, also using the gray or

color value (denoted by y). While the results of this paper
extend to any filter with a PSD kernel, some popular examples
commonly used in the image processing, computer vision, and
graphics literature are as follows:

a) Bilateral (BL) [12], [32]: This filter takes into ac-
count both the spatial and value distances between two pixels,
generally in a separable fashion. For BL we have:

kij = exp

(
−‖xi − xj‖2

hx

)
exp

(
−(yi − yj)2

hy

)
(1)

As seen in the overall exponent, the similarity metric here is a
weighted Euclidean distance between the concatenated vectors
(xi, yi) and (xj , yj).

b) Nonlocal Means (NLM) [18], [20]: The NLM kernel
is a generalization of the bilateral kernel in which the value
distance term is measured patch-wise instead of point-wise:

kij = exp

(
−‖xi − xj‖2

hx

)
exp

(
−‖yi − yj‖2

hy

)
, (2)

where yi and yj refer now to subsets of samples (i.e. patches)
in y.

These affinities are not used directly to filter the images,
but instead in order to maintain the local average brightness,
they are normalized so that the resulting weights pointing to
each pixel sum to one. More specifically,

wij =
kij∑n
j=1 kij

, (3)

where each element of the filtered signal z is then given by

zi =

n∑
j=1

wij yj . (4)
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(a) Input (b) Smoothed (c) Enhanced (effect 1) (d) Enhanced (effect 2)

Fig. 3. Example of our method applied for (b) detail smoothing, (c) detail enhancement in luma channel, and (d) detail enhancement in RGB channels. The
input image is of size 700× 458 and average running time for producing effect 1 is about 0.015 second.
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Fig. 4. The proposed pipeline: The input image is fed to multiple affinity based Laplacians obtained from NLM kernel (Wl) to produce various detail layers.
The filter operators are {W1,W2 −W1, ...,Wk −Wk−1, I−Wk} and the smoothest image layer is obtained from W1 (Given the smoothing parameter of
Wl as hl, for every 1 ≤ l < k we have hl > hl+1). Detail layers are mapped by nonlinear s-curves (Tl(.)) and blended by a structure mask to produce the
enhanced image.

It is worth noting that the denominator in (3) can be computed
by simply applying the filter (without normalization) to an
image of all 1’s.

In matrix notation, the collection of the weights used to
produce the i-th output pixel is the vector [wi1, · · · , win];
and this can in turn be placed as the i-th row of a filter matrix
W so that

z = Wy. (5)

We note again that due to the normalization of the weights, the
rows of the matrix W sum to one, That is, for each 1 ≤ i ≤ n,

n∑
j=1

wij = 1. (6)

Viewed another way, the filter matrix W is a normalized
version of the symmetric positive definite affinity matrix K
constructed from the un-normalized affinities kij , 1 ≤ i, j,≤
n. As a result, W can be written as a product of two matrices

W = D−1K, (7)

where D is a diagonal matrix with diagonal elements [D]ii =∑n
j=1 kij = di.

B. Motivation

In our multiscale scheme, the filtered image z is expressed
as a linear combination of k detail layers and one smooth
layer:

z = β1 ysmooth + β2 ydetail1 + · · ·+ βk+1 ydetailk (8)

where βi denotes the boosting or shrinking factor associated
with each layer. A nonlinear filter W can be used to realize
this decomposition scheme as:

z = β1Wky + β2(I−W)Wk−1y + · · ·
+βk(I−W)Wy + βk+1(I−W)y (9)

in which Wky represents the smooth layer obtained from k
diffusion iterations of W filter. The remaining terms consist
of k − 1 “band-pass” and one “high-pass” filters that decom-
pose the input image into various detail layers (This image
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Smoothing Residuals

Fig. 5. The proposed image decomposition framework. Input image y
is decomposed into smoothed Wy and residual (I − W)y components. k
iterations of this process on the smoothed image leads to k residual layers.

decomposition scheme is shown in Fig. 5). As shown in [22],
the multiscale filtering in (9) corresponds to a polynomial
mapping of the filter eigenvalues. Although this interpretation
provides a flexible global framework for affinity based filtering
in the spectral domain, complexity of the eigen-decomposition
approximation remains relatively high.

Our current paper’s motivation is to expedite the local
computation of the diffusion filtering in (9). More explicitly,
given the filter W of size n× n, the expensive matrix multi-
plication of the diffusion process in computing Wk (O(kn3))
is replaced by recomputation of the affinity weights using a
larger smoothing parameter hk. As it will be addressed in
this work, we only compute the affinity weights once and
reuse the filter weights to efficiently reevaluate the affinity
kernel weights. This leads to a quadratic filter computation
complexity of O(kn2). In what follows, the normalization-free
filter is discussed first, and then, our multiscale enhancement
scheme is described in more details.

C. The Normalization-free Filter

To avoid the normalization in (7), we will replace the filter
W with an approximation Ŵ that only involves D rather than
its inverse. More specifically,

Ŵ = I + α(K− D). (10)

Why is this a good idea? In what follows, we will motivate
and derive this approximation from first principles, while
also providing an analytically sound and numerically tractable
choice for the scalar α > 0 that gives the best approximation
to W in the least-squares sense. Before doing so, it is worth
noting some of the key properties and advantages of this
approximate filter which are evident from the above expression
(10).

• Regardless of the value of α, the rows of Ŵ always
sum to one. That is, like its counterpart W constructed
with D−1, the approximation Ŵ, constructed with only
D, is automatically normalized. This can be easily seen
by multiplying Ŵ on the right by a vector of ones, and
observing that it returns the same vector back regardless
of α.

• While the filter W is not symmetric due to the mul-
tiplicative normalization (see Eq. 7), the approximate

Ŵ is always symmetric, again regardless of α. The
advantages of having a symmetric filter matrix are many,
as documented in the recent work [33].

• The PSD affinity matrix K is typically also non-negative
valued, leading to filter weights in W which are also in
turn non-negative valued. The elements in Ŵ however,
can be negative valued due to the term K−D. This means
that the behavior of the approximate filter may differ from
its reference value, and must be carefully studied and
controlled. We will do this next.

To derive the approximation, we first note that the standard
filter can be written as:

W = I + D−1(K− D) (11)

Comparing this form to the one presented earlier in (10),
we note that the approximation is replacing the matrix inverse
(on the right hand side) with a scalar multiple of the identity:

D−1 ≈ αI (12)

As an illustration, an image containing the normalization terms
di (which comprise the diagonal elements of D) for the photo
in Fig. 7, are shown in Fig. 6. The proposal, as we elaborate
below, is to replace these many normalization constants in (11)
with a single constant.

 

 

20 40 60 80 100 120

Fig. 6. Values of di for the old man photo. Large values shown in red indicate
pixels that have many “nearest neighbors” in the metric implied by the bilateral
kernel. Weights were computed over 11×11 windows (i.e. m = 121)

The justification for this approximation is a Taylor series in
terms of D for the filter matrix. In particular, let’s consider the
first few terms in the series around a nominal D0:

D−1K ≈ I + D−1
0 (K− D)− D−2

0 (D− D0)(K− D) (13)

The series expresses the filter as a perturbation of the
identity, where the second and third terms are linear and
quadratic in D. For simplicity, we can elect to retain only
the linear term, arriving at the approximation

D−1K ≈ I + D−1
0 (K− D). (14)

Letting D0 = α−1I, we arrive at the suggested approximation
in (10).



6

Input Image Standard filter Approximate filter

Fig. 7. (Left) Input y; (Center) exact BL filter Wz , and (right) approximate BL filter Ŵz.

Choosing the best α: A direct approach to optimizing the
value of the parameter α is to minimize the following cost
function using the matrix Frobenius norm:

min
α
‖W− Ŵ(α)‖2 (15)

We can write the above difference as

J(α) = ‖W− Ŵ(α)‖2 = ‖D−1K− I− α(K− D)‖2 (16)

This is a quadratic function in α. Upon differentiating and
setting to zero, we are led to the global minimum solution:

α̂ =
tr(KD−1K)− 2tr(K) + tr(D)

tr(K2)− 2tr(KD) + tr(D2)
(17)

For sufficiently large m, where m is the size of the widnow
over which filter weights are calculated, the terms tr(D) and
tr(D2) dominate the numerator and the denominator, respec-
tively. Hence,

α̂ ≈ tr(D)

tr(D2)
=
s1
s2
, (18)

where

s1 =
n∑
i=1

di, and s2 =

n∑
i=1

d2i (19)

This ratio is in fact bounded as 1
mn ≤

s1
s2
≤ 1

d
, which for large

n justifies a further approximation:

α̂ ≈ 1

d
(20)

where d = mean(di) (the upper bound comes from the
arithmetic-geometric mean inequality [34]) . Effect of this
approximation on local variance is addressed in Appendix A.
Properties of the normalization-free filter are further discussed
in [35] 1. Next, our affinity-based multiscale image enhance-
ment framework is explained.

1Note that our proposed enhancement scheme is not dependent on the
normalization-free weights, yet, using this technique can further simplify our
method and result in a speed up.

D. Proposed Filtering Scheme

Our proposed filtering scheme (Fig. 4) has the following
form:

z = T1 (W1y) + T2 ((W2 −W1)y) + · · ·
+Tk ((Wk −Wk−1)y) + Tk+1 ((I−Wk)y) (21)

where Wl denotes the (normalized or normalization-free)
filter weights with smoothing parameter hl and Tl(.) is a
scalar point-wise mapping function applied on each layer.
It is worth mentioning that the generic filtering scheme in
(21) includes (9) as a special case where Tl(t) = βlt and
Wl = Wk−l+1. Each term in (21) is a filter difference applied
on the input image y and mapped through Tl(.). The proposed
filter consists of one high-pass term (I−Wk), k−1 band-pass
terms (Wl+1−Wl) and one low-pass term (W1y). Apparently
the filtering behavior is determined by mapping functions Tl(.)
which can boost or suppress each signal layer.

An example of the proposed filter is shown in Fig. 8. The
NLM affinity weights W1 and W2 are computed for the center
pixel in the texture patch with different smoothing parameters.
The output filter is obtained by linear mapping functions as
T1(t) = T3(t) = t and T2(t) = 5t. As can be seen, the
output filter is a band-pass filter with both negative and positive
weights.

Fig. 9 illustrates application of the proposed filtering scheme
in (21). First, the degraded input image is decomposed into
smooth and detail layers. Then, each layer is mapped by a
function Tl(.), and finally, all the layers are blended using
a structure mask to produce the output image. As can be
seen, image details are recovered in the band-pass layer and
blended into the smooth layer, while the compression artifacts
are suppressed. In the following, the filtering steps in (21) are
explained in more depth.

1) Laplacian Interpretation: Given a linear mapper as
Tl(t) = βlt, Eq. 21 can be rewritten as:

z = β1y + (β1 − β2)L1y + · · ·+ (βk − βk+1)Lky (22)

in which Ll represents the random walk Laplacian Wl−I [36] .
This basically is the input image added to a linear combination
of the Laplacian-filtered images. Another interpretation of
the proposed filter can be described by un-normalized graph
Laplacian [36]. As shown in Sec. II-C, the normalized filter
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Fig. 8. An example of our proposed filter built on the two low-pass filters W1

and W2. The filter weights are shown for the center pixel of the 9×9 texture
patch. W1 and W2 contain positive affinity weights, yet the combination of
their Laplacians may produce negative filter values.

can be approximated as Wl ≈ I + αl(Kl − Dl) = I + αlLl.
Then, Eq. 22 can be expressed in terms of un-normalized
Laplacians as:

z = β1y + (β1 − β2)α1L1y + · · ·+ (βk − βk+1)αkLky (23)

where αl are used in the normalization approximation. Next,
we address the multiple computations of the affinity weights
in (21) .

2) Multiple Affinity Weight Computation: The represented
filtering scheme in (21) requires multiple computations of
the edge-aware weights Wl for l = 1, · · · , k. Ideally, an
appropriately tuned filter based on (21) needs the affinity
kernels to be evaluated by different smoothing parameters.
This leads to a significant slow down of the algorithm’s
running time. This is due to the multiple evaluations of the
exp(.) function. Our proposed solution to address this issue is
an element-wise product of the kernel weights as:

Wl+1 = D−1
l+1Kl+1 (or Wl+1 = αl+1(Kl+1 − Dl+1))

with Kl+1 = Kl �Kl (24)

where W1 is computed explicitly, l varies from 2 to k − 1,
and � denotes the element-wise Hadamard product. Given the
exponential affinities of BL or NLM, (24) leads to a set of
filters defined by smoothing parameters as hl+1 = hl/2 (both
hx and hy in (1) and (2) will be divided by 2). In practice, we
can start with a large h1 and successively compute multiple
versions of the filter using (24).

An example of the element-wise weight multiplication is
shown in Fig. 10. Starting with W1, multiple filter weights
from W2 to W7 are computed. It’s worth pointing out that the
variable bandwidths of these weights allow a more flexible
evaluation of the proposed filtering scheme in (21).

3) Mapping Functions: The detail manipulation of the
proposed algorithm strictly depends on the mapping functions
Tl(.). Having the input image decomposed into multiple detail
layers, there are several ways to manipulate image texture and
edges. The linear mapping discussed earlier is the simplest
way of manipulating image details. Although the linear mapper
has the interesting Laplacian interpretation, its main restrictive
issue is the over-sharpening (-smoothing) of the detail content.
In other words, a properly tuned detail mapping operator
should treat details based on their respective local gradient
magnitude. Recently, nonlinear detail manipulation has been
successfully used for this task [6], [8]. Our choice is a
nonlinear mapping function, specifically the sigmoid function:

T (t) = 1/(1 + exp(−at)) (25)

Our mapping operators derived from sigmoid function are
demonstrated in Fig. 11 (appropriate shifting and scaling is
applied on the sigmoid function). Application of the s-curve
mapper on the detail and base layers leads to sharpness and
tonal enhancement, respectively. On the other hand, the inverse
s-curve can suppress details and compress the image contrast.
Given the generic sigmoid function in (25), our mapping
operator has two tuning parameters for each image layer.
Parameter a determines the strength of the mapping operator.
The other control parameter of the mapping function is its
width (illustrated in the left and right plots of Fig. 11). The
width parameter can prevent generation of halo and over-
sharpening artifacts around large gradient edges. It also allows
mid-tone contrast enhancement without suppressing details in
dark or bright regions. Another possible mapping function
is the combination of gamma correction with an s-curve for
enhancing dark and bright details while boosting mid-tone
details (shown in the middle plot of Fig. 11). It is worth
mentioning that these mapping functions can be computed in
advance as look up tables and used at run time.

Examples of applying our mapping functions are shown in
Fig. 12. The detail layers of both enhanced images are fed
to the same s-curves, and the base (smooth) layers are fed to
s-curve (effect 1) and inverse s-curves (effect 2) mappers. As
can be seen, details are enhanced in both cases, with effect
1 offering higher contrast and effect 2 representing relatively
lower tonal range.

4) Structure Mask: Detail enhancement and artifact magni-
fication are inseparable. Conventionally it is preferable to boost
strong image structure with high signal-to-noise (SNR) and
keep the noisy regions unaltered. This requires a mechanism
to detect the image structure and somehow distinguish it from
other areas. Edge detection provides a rough structure mask
by detecting image irregularities. However, artifacts also are
prone to be recognized as image details in a gradient map. One
might argue that a pre-filtered image could possibly result in
a more stable edge detection; yet, this approach could lead to
extra complexity in the overall framework.

Interestingly, we have observed that the sum of the affinity
degrees [d1, · · · , dp] (in a p-pixel neighborhood) conveys
useful information about the image structure (see Fig.6). A
pixel located on an edge or textured region has relatively low
weight sum compared to a pixel in a flat area. A soft structure
mask for i-th pixel can be defined as:

mi = 1− di/p (26)

where di denotes sum of the kernel weights associated with
the i-th pixel and mi takes values in [0, 1]. Examples of this
structure mask are demonstrated in Fig. 13. Blending results
using these masks are shown in Fig. 2 and Fig. 16. The detail
layers of our image decomposition scheme are modulated
by these masks to attenuate any possible noise and artifact
boosting:

z = T1 (W1y) + MT2 ((W2 −W1)y) + · · ·
+MTk ((Wk −Wk−1)y) + MTk+1 ((I−Wk)y)

where M is a diagonal matrix representing the structure
mask with values in [0, 1]. The detail layers of our image
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(a) Input (b) T1 (W1y) (c) T2 ((W2 − W1)y) (d) T1 (W1y) + T2 ((W2 − W1)y)

Fig. 9. Removing compression artifacts using our proposed method in Eq. 21. (a) JPEG compressed image, (b) The base layer image smoothed by filter W1,
(c) The luma detail layer obtained from the band-pass filter W2 −W1, (d) Blended output z. In this example, the baseline kernel is NLM [18], the mapping
functions Tl(.) are s-curves (see Sec. II-D3) and layer blending is based on a structure mask (see Sec. II-D4).
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Fig. 10. NLM filters produced by element-wise multiplication as Wl+1 =
D−1
l+1Kl+1 where Kl+1 = Kl � Kl and with W1 computed explicitly. The

filter weights are shown for the center pixel of the 9× 9 texture patch.

decomposition scheme are modulated by these masks to at-
tenuate any possible noise and artifact boosting. Fig. 2 shows
smoothing of the artifacts and sharpening of the details as a
result of applying the structure mask. It is worth noting that
the structure mask costs almost no additional computation,
given that the kernel weights are already computed. Also, the
structure mask is moderately robust to noise, because (1) it
includes many summed weights, and (2) NLM kernel weights
measure similarity between patches.

III. EXPERIMENTAL RESULTS

Enhancement applications of the proposed filtering method
are demonstrated through some examples in this section. NLM
is our choice of affinity kernel without the spatial term given
in (2), and filter weights are computed in a 5×5 neighborhood
window. The patch size is 3×3, and the smoothing parameter
hy is set as 0.7 for pixel values in [0, 1]. Three decomposition
layers are selected based on Fig. 4 (i. e. k = 2), meaning
that NLM weights are computed once (W1), and used in the
element-wise weight multiplication to form the second filter
(W2).

There are three main applications for our method. First,
detail smoothing (shown in Fig. 14 and Fig. 15); second,
sharpening mildly blurred images (shown in Fig. 16 and Fig.
17), and finally, detail enhancement in noisy/artifacted images
(shown in Fig. 18, Fig. 19 and Fig. 20). Mapping functions

Tl(.) are tuned specifically for each application to produce the
best results.

Our multiscale decomposition allows smoothening fine de-
tails while preserving medium and coarse scale details. Our
method is compared to the guided edge-aware filter [1] in Fig.
14 and Fig. 15. These results are obtained by removing the
fine scale detail layer and mapping the medium scale layer
(see Fig. 4) by an s-curve of width 0.2 and a = 10. As can be
seen, in contrast to the guided filter, our result is less blurry.

Out-of-focus blur is another common problem in mobile
imaging. Objects typically lose sharpness and local contrast
in a mildly blurred scene (see input photo in Fig. 16). Our
filtering framework can effectively enhance these images (see
output photo in Fig. 16). Parameters of the s-curve functions
in each scale are: a = 20 and width of 0.66 for the fine scale
detail layer, a = 50 and width of 0.33 for the medium scale
detail layer, and a = 6 with width of 0.75 for the base layer.
Comparison of the proposed method with other techniques is
demonstrated in Fig. 17. The adaptive unsharp masking [10]
and Farbman’s detail enhancement [6] tend to boost the image
sharpness and noise together. Our result demonstrates better
local contrast with no noise magnification or detail loss.

Noise is an inevitable part of any imaging pipeline. We
also used our method for enhancing images corrupted by real
noise and other artifacts (see input images in Fig. 9, Fig. 18,
Fig. 19, Fig. 20, Fig. 22 and Fig. 21). To better handle noise
in the input image, the fine scale detail is suppressed in our
image decomposition and the base and medium scale layers
are boosted. The mapping parameters to achieve this effect are:
a = 10 and width of 1 for the fine scale detail layer (inverse
s-curve), a = 60 and width of 0.45 for the medium scale detail
layer (s-curve), and a = 5 and width of 0.75 for the base layer
(s-curve). Fig. 18-21 show examples of noisy/artifacted images
enhanced by different methods. Overall, visual comparisons
indicate superiority of the proposed algorithm when dealing
with degraded images.

Our C++ implementation is tested on an Intel Xeon CPU
@ 3.5 GHz with 32 MB memory. Complexity of the proposed
algorithm is linearly dependent on the filter size. Running time
of our method is reported for some test images in Table I.
Examples shown in this paper are mostly based on 5×5 NLM
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Fig. 11. Left: s-curve used for detail/tonal enhancement. Middle: s-curve combined with gamma correction for enhancing mid-tone contrast and boosting
dark/bright details. Right: inverse s-curve used for smoothing and tone compression.

(a) Input (b) Enhanced (effect 1) (c) Enhanced (effect 2)

Fig. 12. Example of our method applied for detail enhancement. The same s-curve functions were applied on the detail layers for both output images. The
base layer image of effect 1 and effect 2 are fed to s-curve and inverse s-curve, respectively. Effect 1 represents contrast enhancement and effect 2 shows
tonal compression. The input image is of size 1028× 926 and running time for producing the enhanced images is about 0.031 second.

Fig. 13. Structure masks used for blending of the detail layers. These masks
are shown for images in Fig. 2 and Fig. 16.

filters, leading to an average speed of 21 MP/sec. Given avail-
able implementations of the other enhancement techniques,
our method is significantly faster. For instance, processing
an image of size 0.5 Mega pixel takes 0.03, 0.91, 3.2, 30.5,
12.7 seconds for [1], [31], [6], [10], and [11] , respectively.
Our implementation takes less than 0.025 seconds to enhance
the same image. We also tested our algorithm without weight
normalization and weight re-computation approximations to
measure the overall saved time. Our experiments suggest that

TABLE I
AVERAGE RUNNING TIME (SECONDS) OF THE PROPOSED ALGORITHM

COMPUTED FOR NLM KERNEL OF DIFFERENT SIZES. SIZE OF THE TEST
IMAGES ALONG WITH THE NEIGHBORHOOD WINDOW SIZES ARE SHOWN

IN THE FIRST ROW AND COLUMN OF THE TABLE.

0.4 MP 1 MP 3 MP 12 MP
3× 3 0.014 0.019 0.034 0.143
5× 5 0.022 0.045 0.105 0.575
7× 7 0.040 0.075 0.223 1.363
9× 9 0.078 0.152 0.473 2.623

these approximations lower the running time by 15-20%.

IV. CONCLUSION

We introduced a new multiscale image enhancement al-
gorithm to improve on the existing edge-aware filters. Our
multiscale decomposition scheme provides a fast detail ma-
nipulation paradigm with a minor complexity added to the
computation of the baseline kernel. Combination of the detail
layers with a structure mask produces state-of-the-art image
enhancement results, addressing shortcomings of the existing
algorithms. This proposed work is implemented for NLM filter
weights; however, it can be easily extended to other edge-
aware filters.
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(a) Input (b) [1] (c) Ours

Fig. 14. Edge-aware smoothing using our method compared to the result from guided image filtering [1]. For nearly the same running time budget (0.08
second), our method better flattens the fine details and avoids blurring the piecewise smooth output.

(a) Input (b) [1] (c) Ours

Fig. 15. Edge-aware smoothing using our method compared to the result from guided image filtering [1]. For nearly the same running time budget (0.06
second), our method better flattens the fine details and avoids blurring the piecewise smooth output.

APPENDIX A
EFFECT OF APPROXIMATION ON LOCAL VARIANCE

We expect that the approximate filter should affect the
variance of the output pixels. Here we characterize this effect.
Recall the pixel-wise expressions for the exact and approxi-
mate filter, respectively:

zi =

n∑
j=1

wij yj , ẑi =

n∑
j=1

ŵij yj (27)

The variance in the output pixel in terms of the variance in the
input pixel is given by the sum-squared of the filter weights.
That is,

var(zi) =

 n∑
j=1

w2
ij

 var(yi) = νi var(yi) (28)

var(ẑi) =

 n∑
j=1

ŵ2
ij

 var(yi) = ν̂i var(yi) (29)

It is of interest to establish a relationship between the factors
νi and ν̂i. We proceed as follows:

ν̂i = ŵTi ŵi
=

(
δi + α2d2i (wi − δi)

)T (
δi + α2d2i (wi − δi)

)
= α2d2i νi + (α2d2i − 2α(1 + α)di + 1 + 2α) (30)

where δi is the shifted Dirac delta vector
[0, · · · , 0, 1, 0, · · · , 0], with subscript i indicating that
the value 1 occurs in the i-th position. The two variance
factors are linearly related when α is small:

ν̂i ≈ ρ2i νi + (ρi − 1)2 (31)

where ρi = αdi. The contour plot in Fig. 23, shows the values
of ν̂i as a function of ρi and νi. Also, for the specific approxi-
mation pertaining to (18), we note that di = O(m) where m is
the size of the window over which filter weights are calculated.
For instance, in the case of Fig. 7, m = 11×11 = 121. Given
n pixels in the image, tr(D) = O(mn). In the meantime,
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(a) Input (b) Enhanced details

Fig. 16. Example of our method applied for detail enhancement. The input image is of size 1289×1029 and running time for producing the enhanced image
is about 0.04 second.

(a) Input (b) [10] (c) [11] (d) [6] (e) Ours

Fig. 17. Comparing existing detail enhancement methods with our proposed algorithm.

tr(K) = O(n), tr(KD−1K) = O(n/m), tr(K2) = O(n2),
tr(KD) = O(mn2), and tr(D2) = O(m2n2). So for
sufficiently large m (typically larger than 5×5), the terms
tr(D) and tr(D2) dominate the numerator and denominator
as claimed.
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(a) Input (b) Ours
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Fig. 21. Removing compression artifacts using our method. Filters are applied
in RGB domain and are computed in an 11× 11 neighborhood window.
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11× 11 neighborhood window. For the same running time budget, our result
is superior to [1].
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