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Abstract—Across the field of inverse problems in image and
video processing, nearly all algorithms have various parameters
which need to be set in order to yield good results. In practice,
usually the choice of such parameters is made empirically with
trial and error if no “ground-truth” reference is available. Some
analytical methods such as cross-validation and Stein’s unbiased
risk estimate (SURE) have been successfully used to set such
parameters. However, these methods tend to be strongly reliant
on restrictive assumptions on the noise, and also computationally
heavy. In this paper, we propose a no-reference metric ) which is
based upon singular value decomposition of local image gradient
matrix, and provides a quantitative measure of true image content
(i.e., sharpness and contrast as manifested in visually salient
geometric features such as edges,) in the presence of noise and
other disturbances. This measure 1) is easy to compute, 2) reacts
reasonably to both blur and random noise, and 3) works well
even when the noise is not Gaussian. The proposed measure is
used to automatically and effectively set the parameters of two
leading image denoising algorithms. Ample simulated and real
data experiments support our claims. Furthermore, tests using
the TID2008 database show that this measure correlates well with
subjective quality evaluations for both blur and noise distortions.

Index Terms—Denoising, no-reference metric, parameter opti-
mization, sharpness, singular value decomposition.

I. INTRODUCTION

UMANS have a remarkable capacity to perceive the con-
H tent of a scene even when the image is disturbed by noise,
blur, and other factors. That is to say, we seem to be able to reg-
ister true image content! even when the pixels are highly cor-
rupted across the image. It is self-evident then that a computable,
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1By true image content we refer simultaneously to sharpness and local con-
trast, as manifested by visually salient geometric structures such as edges etc.,
which convey information about the nature of the physical objects in the scene.
In this context, high frequency content such as that introduced by noise, or low
frequency content such as that produced by blur of various types are not con-
sidered true image content.
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quantitative measure of image content would be highly desir-
able. In this paper, we are concerned with the development of a
such a scalar measure (Q) of true image content. This measure
is properly correlated with the noise level, sharpness and inten-
sity contrast (which indicates the “visibility” [1]) of the struc-
tured regions of an image. For any given image, the nominal
value of () reacts in a natural way to the presence of noise and
blur. Namely, its value generally drops if the variance of noise
rises, and/or if the image content becomes blurry. With the def-
inition of ) in hand, we will illustrate that it can be used effec-
tively to optimize the performance of some leading denoising
algorithms.

First, let us briefly summarize the relevant existing literature
in this area. Objective quality [2] and sharpness metrics [3],
[4] have been developed recently and can generally be divided
into three categories: full-reference, reduced-reference and
no-reference. Full-reference metrics need a complete refer-
ence image, and what they calculate is basically the similarity
between the target and reference images. Such measures of
similarity include the classical mean-squared error (MSE)
and the recently introduced structural similarity (SSIM) [2].
Reduced-reference metrics require the reference image to be
partially available, which is usually in the form of a set of
extracted features [2]. However, in most practical applications
the reference image is unavailable. Therefore, in applications
such as denoising, deblurring, super-resolution (SR), and many
other image reconstruction algorithms [2], the (full-reference)
quality metrics MSE or SSIM can not be directly used to
optimize the parameters of algorithms.

Several (no-reference) approaches have been developed to
address the parameter optimization problem. Generalized cross-
validation (GCV) [5], [6] and the L-curve method [7], [8] have
been widely used in choosing the regularization parameters for
various restoration applications. More recently, methods based
upon Stein’s unbiased risk estimate (SURE) were proposed for
the denoising problem [9], [10], which provide a means for un-
biased estimation of the MSE without requiring the reference
image. Useful as they are, these methods are far from ideal.
Namely, aside from their computational complexity, they ad-
dress the parameter optimization problem without direct regard
for the visual content of the reconstructed images. Instead, they
compute or approximate quantities such as MSE (or the related
cross-validation cost), which are not necessarily very good in-
dicators of visual quality of the results. As a particular example,
for instance, Ramani et al.’s Monte-Carlo SURE [10], which
can be used for arbitrary denoising algorithms, is based upon
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the idea of probing the denoising operator with additive noise
and manipulating the response signal to estimate MSE. This ap-
proach is also only appropriate when the noise is assumed to be
Gaussian, and generally requires an accurate estimation of the
noise variance as well.

In image restoration, as is the case for any estimation
problem generally, it can be observed that selecting parameters
amounts to a tradeoff between bias and variance in the final
estimate. A canonical example is the regularization parameter
in MAP-based restoration algorithms [5], [8]. Generally, the
larger the parameter is, the more smooth the image content
becomes (small variance), while more useful detail and edges
are flattened or blurred (larger bias). In other words, an ideal
no-reference measure that is useful for the parameter op-
timization problem should take both noise and blur on the
reconstructed image into account [11]. However, most sharp-
ness metrics [3], [4], [12], [13] can hardly distinguish image
quality decay against high frequency behavior due to noise.
Take the approach in [12] for example, whose value drops
when the image is increasingly more blurred. The value of this
measure also rises if the variance of noise is increased [see
Fig. 8(e)]. For the metrics based upon edge detection and edge
width estimation [4], the performance stability can easily suffer
in the presence of noise. Such problems are precisely what our
proposed metric () is intended to address.

On a related note, we mention that some no-reference image
quality metrics have been developed to detect noise and blur si-
multaneously. One example is the metric based upon the image
anisotropy [14] proposed by Gabarda and Cristébal [15]. They
calculate the Rényi entropy [16] pixel by pixel along different
directions, and use the variance of the entropy to index visual
quality. However, such metrics require uniform degradation
across the whole image, and do not work well if the random
noise or blur varies spatially, which is the case, for instance, in
images denoised by spatially adaptive filters.

The rest of this paper is organized as follows. We develop the
definition of the metric? () in several well-motivated steps. In
Section II, we first introduce a preliminary metric H, which is
based upon the local gradients of the image, as an intermediate
step in arriving at ). This metric can quantify the amount of blur
and random noise, but requires prior knowledge or estimation of
noise variance. Next, Section III gives the definition of the pro-
posed metric @ and its statistical properties. Metric () serves as
an extension of the metric H, but does not depend upon prior
knowledge about the noise variance. Simulated and real data
experiments focused on optimizing parameters for various de-
noising algorithms using the metric () are shown in Section IV.
Finally, we summarize, conclude, and discuss directions of fu-
ture research in Section V. We note that additional results and
code are available at our project website.3

II. LOoCAL GRADIENTS AND THE SHARPNESS METRIC H

The aim of this section is to introduce some basic concepts
including the image gradient matrix, the gradient covariance

2The proposed quantity is not a metric in the mathematical sense, but for
convenience, we use this term interchangeably with measure when referring to
Q.

3http://www.soe.ucsc.edu/~xzhu/doc/metricq.html.
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Fig. 1. Example of local dominant orientation estimation. (b) Plots the gradient
of each pixel within the chosen patch in (a). s, and s, represent the energy in
the dominant orientation and its perpendicular direction, respectively.

matrix, and their singular values and eigenvalues. Based upon
these concepts and their performance in the presence of blur, a
measure of sharpness which we term H is then proposed, which
requires prior knowledge, or careful estimation, of noise vari-
ance across the whole image. As such, this measure is the basis
of the main subject of this paper, which is the content measure
@ that we subsequently define, analyze, and apply to the param-
eter selection problem.

It is well known that image structure can be measured effec-
tively by using the differences in pixels (or image gradients). In
particular, consider an image of interest p(x,y). The gradient
matrix over an N X N window (w;) is defined as

G = |p(k) py(k)|, keuw; ey

where [p.(k), py(k)]" denotes the gradient* of the image at
point (2, yx). The corresponding gradient covariance matrix
is

Zkewi pi(k)
Ykew, Px(F)py (k)

C=GTG= 2 kew, Pz (F)py(K)
ZkEUH pz(k) (2)

Important information about the content of the image patch
w; can be derived from the gradient matrix G or the gradient
covariance matrix C. In particular, we can calculate the local
dominant orientation by computing the (compact) singular value
decomposition (SVD) of G [17] [18]

S1 0

G:USVT:U[
0 S9

] Vi vo]” ©)

where U and V are both orthonormal matrices. The column
vector vi represents the dominant orientation of the local
gradient field. Correspondingly, the second singular vector v,
(which is orthogonal to v;) will describe the dominant “edge
orientation” of this patch. The singular values s; > s > 0
represent the energy in the directions v; and va, respectively
(see Fig. 1).

4The gradient can be estimated through the filters in (16) or (17) for instance.
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Fig. 2. Types of patches that are used in the experiments throughout this
section. Gray levels are normalized to the range [0,1]. (a) Flat; (b) linear;
(c) quadratic (anisotropic); (d) quadratic (isotropic); and (e) edged.

The previously shown quantities can equivalently be mea-
sured using the eigenvectors of C, because

2
s 0

— T T _
C=VS'SV _V[O 52

} VT, 4)

As we will describe in the following (and has been observed
before [19]), since the singular values reflect the strength of the
gradients along the dominant direction and its perpendicular di-
rection, they are sensitive to blurring and, therefore, may be used
to define a sharpness metric. But first, to gain some useful intu-
ition, we analyze the behavior of s; and s, on several types of
idealized patches which include flat, linear, quadratic, and edged
regions (shown in Fig. 2).

In the flat case, all points within the NV x N patch share a
common intensity value

Tk, k) = c. (5)
Both p,.(k) and p,(k) are equal to O for k = 1,2,---, N2,
and s; = so = 0. Naturally, ignoring boundary effects arising
from the finite nature of the window, a flat patch remains un-
changed after being blurred. In what follows, we will apply a
space invariant Gaussian blur function with a growing spread to
the canonical regions shown in Fig. 2, and observe how the sin-
gular values behave. In this sense, the flat region can be thought
of as the asymptotic result as the spread of the blur function (or
equivalently the strength of the blur) is made arbitrarily large.

In the linear patch, the gray value of each point can be mod-
eled as

p(zk,yr) = a(zp cosl + ypsinb) + b (6)
where a decides the slope, 6 decides the orientation, and b is the
bias. It can be deduced that s; and s2 have the following values:

s1 =alN

59 =0.

)

Both s; and s9 are independent from the orientation, and s
is proportional to the slope given a fixed patch size, while s
remains at zero.

The quadratic patch is modeled as

p(wr, yr) = ar(zg — 20) + az(yr — ye)? ®)
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where (z.,y.) is the center point. This kind of patch is called
“isotropic” when a; as, and “anisotropic” otherwise [see
Fig. 2(c) and (d)]. The singular values of its gradient matrix are

S1 = amaxN (N — 1)(N + 1)
3
N-1)(N+1
52 = gy VW 1) ©)
3
where
Umax = max(a,as)
@min = min(ay, as). (10)

Here s; and s reflect the values of a1 and a-, which determine
the patch slope at each point and, thus, determine the sharpness
and contrast of the region.

Another type of image region that is very sensitive to blurring
is the ideal edged patch. In the interest of convenience we just
look at an ideal vertical edge:

b+ ec,
p(ﬂ?k,yk):{b. ¢

Ty > T,

. 11
otherwise an
where, without loss of generality, c is a positive constant. The
corresponding singular values are

S1 :%\/QN
0.

sg = (12)
Only s; here reflects the value of parameter ¢, which gives the
intensity difference (contrast) between the two sides of the edge.

In general, and regardless of type, rotating a patch by an arbi-
trary angle 6 will not change the singular values of the gradient
matrix. To see this, we note the relationship between the rotated
gradient matrix Gy and the unrotated G

Gy = GR} (13)
where Ry is the (orthonormal) rotation matrix
cosf) —sinf
Ry = [Sinﬂ cos f } ) (14)
Therefore, the SVD of GGy becomes
Gy = US(R, V)T (15)

which illustrates that the directions v; and v are corre-
spondingly rotated, but the singular values s; and so remain
unchanged.

It is observed through the previously shown analysis that the
singular value s is quite intimately related with the sharpness
and contrast of the local region. This is valid not only in regions
with strong direction and contrast (edged patch (12)), but also in
regions which may be isotropic (quadratic patch (9), (10), where
a1 = ag), or very smooth (linear patch (7)).
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Fig. 3. Plots of sy in blurring process for different patches. Patch size N' = 7. The blur kernel is Gaussian, and the value of its standard deviation o, is raised
steadily to make each patch more and more blurred. (a) Flat; (b) linear; (c) quadratic (anisotropic); (d) quadratic (isotropic); and (e) edged.

To verify the usefulness of s; in the presence of blur, we
applied a Gaussian blur kernel (of size 5 x 5) with a steadily
growing standard deviation o, to the previously mentioned
patch types and recorded the resulting s; values, which are
shown in Fig. 3. The size of the patches is 11 x 11, and we
only analyze the 7 x 7 window in the center to avoid border
effects. It is observed that as the value of o}, grows (more blur),
s1 for all the nonflat patches drops steadily as expected.

Next, we take noise into account. A good sharpness metric
should react reasonably to both blur and random noise. So
next we address what happens to s; if the image (or patch) is
corrupted by white (though not necessarily Gaussian) noise.
Assume that we have an N x NN white noise image patch (with
pixel-wise variance o?) denoted in column-stacked vector
format as an N2 x 1 vector n. In practice, the statistics of
its gradient matrix G,, depend upon the way we calculate the
discrete derivatives. For example, the gradient of n in = and y
directions can be produced by applying the filters

1 0 0 0 1 0 -1 0
3 X -1 0 1 3 X 0 0 0 (16)
0 0 0 0 1 0
or the filters
1 -1 0 1 1 -1 -2 -1
3 x|—=2 0 2 3 x| 0 0 O 17)
-1 0 1 1 2 1
The gradient matrix G,, can be calculated as
G, =[D,n Dyn] (18)

where the matrices D, and D, are derived from filters such as
the ones just mentioned. Because the noise is zero-mean, the
expected value of G,, is

E(G,) =[0 0] 19)

and the expected gradient covariance matrix becomes

E(C,)=E (G!G,)

nTDgDmn nTDnyn
=E <[nTD5Dmn nTDgDyn (20)

where the first entry can be deduced as

E(Cy);,; =E (n"D;D.n)
=F (tr (DmnnTDf))

=o’tr (D, DY) (21)

and similarly we have
E(Cn)m =o’tr (Dny) J E(Cn)2,1 = o’tr (DIDJ)
E(C,),, =0’tr (D,D]).

The value of tr(DD?'') depends upon the specific filter used in
(18). It can be shown that if we choose (16) or (17), the expected
C,, will have the form

(22)

E(Cn):[gjv?a? 0}

0 EN252

where £ = 1/2 if we use filters (16), and { = 3/16 for filters in
(17).
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Fig. 4. Plots of the coherence I of a noisy edged patch (a) and a noisy flat patch (b) versus the noise standard deviation . R,, stands for the coherence of the

noise sample.
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Fig. 5. Statistical properties of local coherence measure R for white Gaussian noise. (a) Probability density functions with different patch sizes. (b) Expected
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Now consider how the value of s; changes when a clean
image p is corrupted by the white noise image denoted by n.
The gradient matrix of the noisy image p would become

G=G+G,. (23)

Since G is deterministic, the expected C would have the form

E(C) =E(GTG)
=G'G+ E (G G,) +2G"E(G,)
s? + ¢(N202 0

V[T v

} vT. (24
So on average the dominant singular value $; of the noisy image
can approximately be written as

\/82 + EN202.

This equation tells us that §; is determined by both s; and o2
Given a fixed o2, the value of §; drops as sj is decreased, or
say when the image p becomes more blurry. Unfortunately, $;
is also monotonically increasing with the noise variance o2.

To alleviate this problem, we define a modified metric H as
follows:

~ 25)

51

>

H= J—; (26)

For now, we assume that the noise variance o2 is known, or
at least can be estimated. For a fixed o2, the behavior of H is
basically the same as 3;. If o2 is sufficiently large, 5; becomes
approximately proportional to the standard deviation o

41 ~ 2 No. 27)
And, therefore, the value of H ~ (£'/2N/o) drops to zero
with increasing o, as desired. We note that in (26) the value of
H estimated from patches in an image can be used to decide
whether those patches contain real content (based upon sharp-
ness and contrast) as opposed to noise. Said another way, H can
be thought of as a rough indicator of the signal to noise ratio
[19].

III. IMAGE CONTENT METRIC )

Although the metric H has well-behaved characteristics in
the presence of both noise and blur,3 it still suffers from the
shortcoming that the variance of noise is assumed known or re-
liably estimated, which may not be the case in many real appli-
cations. As a practical example, if the image of interest is the
output of a spatially adaptive denoising filter [20], it is diffi-
cult to estimate how much noise still remains, because the de-
noising effect varies with the local content in different parts of
the image. So we need a metric which implicitly contains an es-
timate of the local noise variance as well. This is what we set
out to do next.

SWe refer interested readers to [19] for detailed experiments on H.
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Fig. 6. Plots of the mean metric () versus the noise standard deviation o in Monte-Carlo simulations for different patches. 100 different noise realizations were
used for each ¢ to get the averaged (), and the patch size was N = 7. (a) Flat; (b) linear; (c) quadratic (anisotropic); (d) quadratic (isotropic); and (e) edged.

A. Definition of Metric @), Coherence R and Their Statistical
Properties

We define the image content metric @) as

Q=51

51— 5
a2 (28)
S$1 + So
Compared with H in (26), it can be seen that in the definition
of @ the factor 1/0? is replaced by another quantity, which we
call the coherence
$1— 5
R=21""2 (29)
S1+ S2
As we briefly describe in the following, this replacement will not
only do away with the explicit need to know the noise variance
a priori, but also enables us to measure content even if the noise
variance is nonstationary across the image.
Recall that for a noisy image patch p, its singular values §;
and S, can approximately be written as:

51 ~\/s1 +EN20?
Sy &/ 82+ EN2o?

where s; and s9 stand for singular values of a patch of the noise-
free image p. Replacing s; and s by §; and §» in formula (29),
we have

~ /82 + EN202 — (/s + EN202
\/S%+€N202+\/3%+5N202
52+ EN%02 — 53 — EN2o2
2
(\/s%—i—szcrz—i— \/8%+5N202)
2 2
_ 81— 53
52+ 52 +26N202 +2,/(s2 + EN202) (83 + EN202).
(30)

=V

The previous equation illustrates that in a noisy image patch,
the computed value of coherence R is roughly inversely pro-
portional to the local noise variance o2 when s; > s» (which is
true whenever the underlying patch is anisotropic.)

This is not the first time that coherence R has been used to
analyze local image characteristics. Indeed, Bigun ef al. [18]
used this quantity to measure the locally dominant orientation
of textures in a deterministic setting. In [17], we used this mea-
sure in a statistical framework to estimate dominant orientations
in a multiscale setting. As mentioned before, s; and s, repre-
sent the energy in both the dominant direction and its perpendic-
ular direction. So basically R measures their relative size. Con-
sidering a noise-free region with strong anisotropic geometric
structure (such as the edged patch), the difference between s
and s, is very large, and in the absence of noise, the value of
R is near 1. If white noise is added, the resulting 2 would be
reduced, indicating that this region has become less structured,
or the strength of the dominant direction has been reduced. It is
worth repeating that metric () is valid as an approximation of H
only when the noise-free patch contains a dominant orientation
(where s; > s2). The behavior of () when the patch is isotropic
(where s; = s9) will be discussed in the next subsection.

So far, the definition and descriptions of measures () and R
were quite general in the sense that the only assumption on
noise was that it is white. It is instructive to study the statis-
tical behavior of () and R in a specific (Gaussian) noise set-
ting. As may be expected, the statistical distribution of these
metrics in the presence of noise of arbitrary distribution is in
general very complex. However, their distributions are tractable
when the noise is restricted to be white and Gaussian. For the
sake of completeness, therefore, we next discuss the statistical
behavior of R when the image patch is purely white Gaussian
noise (WGN).6

SFor the sake of completeness, the statistical distribution of () is also given
in the Appendix.
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Fig. 7. Monte-Carlo simulations using both random noise and blur for different patches. Each patch was blurred first and then white Gaussian noise with o = 0.1
was added. After each blurring process, 100 independent noise simulations were applied, respectively, and averaged value of metric ( was calculated. N = 7 and
the size of the Gaussian smoothing kernel is 5 X 5. (a) Flat; (b) linear; (c) quadratic (anisotropic); (d) quadratic (isotropic); and (e) edged.

If the image patch p is pure WGN (s; = s = 0), according
to (30) coherence R ~ 0, but in practice in a finite window size,
R has a small positive value. Put another way, while in theory, a
white noise images contains (by definition) no dominant orien-
tation, patches with limited size lead to a small relative differ-
ence between $; and $o, leading to a nonzero coherence. More
specifically, given a patch of white Gaussian noise pixels, the
corresponding R is a random variable whose density function is
(see Fig. 5 and Appendix for detailed derivation)

(1-

It is interesting to note that the pdf of R is independent of the
mean and variance of the white noise; instead, it is a strong
function of the patch size N2.

We computed the coherence R on an edged patch (as de-
scribed in (11), where b = 0.3 and ¢ = 0.5) and a flat patch
(as described in (5), where ¢ = 0.5) to illustrate its behavior in
random noise. A sample of WGN n is added to each patch with
its standard deviation ¢ ranging from O to 0.7. The plots of the
coherence R of each noisy edged patch are shown in Fig. 4(a).
Since s; > so = Ointhe clean edged patch, R = 1 wheno = 0.
We can see that as o increases, the value of R drops as desired,
and approaches the value of R,,, which is the coherence of the
noise-only sample n. This is reasonable, because when o — oo,
the patch looks more and more like pure WGN. In the flat case
[see Fig. 4(b)], where no anisotropic structure exists, R = R,
for all the nonzero noise standard deviations.” The random vari-
able R,, is distributed according to the pdf (31).

The pdf of R for a variety of N is plotted in Fig. 5, where the
change of the first and second moments of fr(r) versus N are

702)N2—2

fr(r) =4(N? = 1)r 31)

TFor the flat patch, s; = so = 0 when o0 = 0. In such situations, we define
R = 0.

also shown. We can see that the expected value of R decreases
as N increases. This coincides with the fact that as the patch size
grows, asymptotically there is no dominant direction in a noise
patch. The reader may be wondering why we bother to derive
and illustrate the statistical distribution of R as we have done
here. This indeed turns out to be helpful in the latter part of this
section, where the density function of R will be used in a sig-
nificance test to tease apart isotropic patches from anisotropic
ones. This distinction will then be employed in reliably calcu-
lating the metric @) for the whole image.

B. Behavior of Q in Different Patch Types

To further understand the performance of the image con-
tent metric () in different types of patches in the presence of
Gaussian noise, we employ Monte-Carlo simulations. White
Gaussian noise with a variety of o, ranging® from 0.01 to 0.3,
was added to the test patches shown earlier. For each o, 100
Monte-Carlo simulations are carried out with independent noise
realizations. Fig. 6 shows the plots of the averaged () across
these experiments, versus the standard deviation of noise. In
this experiment, we distinguish quadratic patches into isotropic
(a1 = az) and anisotropic (a1 # ag) types. It can be observed
that the behavior of () is consistent across all anisotropic patch
types (including linear, anisotropic quadratic and edge), but
different in the isotropic patches (including flat, and isotropic
quadratic.)

It is no surprise to see that in isotropic cases, () goes up
steadily when o rises, because the coherence part in ) cannot
play the role of 1/0? as we mentioned before. Take the flat patch
for example. The coherence R does not change with the noise

8The pixel value is on a scale of [0, 1] gray level.
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similarity between MSE and () in capturing the trend of image quality change.

variance [see Fig. 4(b)], while §; is proportional to o [see (27)].
So in this case, @ also becomes proportional to ¢.

For anisotropic cases, ) behaves reasonably, since the co-
herence part decreases as described in (30) with respect to the
increase of the noise standard deviation o. But when o goes to
infinity, the image patch looks more and more like pure noise. So
the coherence part approaches the expected value of the random
variable R characterized by the density function (31). This value
is usually small, but not zero. While, on the other hand, the in-
crease of the §; part in () is approximately proportional to o,
hence, the value of () rises again. Fortunately, this becomes a
problem only when the noise standard deviation becomes ex-
tremely large.

Next, we take the blurring process into account. Blurred
patches are obtained by applying a Gaussian smoothing filter
with a growing standard deviation o;,. After that, white Gaussian
noise with variance o2 is added, respectively. In Fig. 7, we
can see that basically for all the anisotropic cases, the value
of metric @@ drops when the test region gets more and more
blurred in the presence of noise as expected. While in isotropic
cases, () does not show significant change.

So what do we learn from the previously shown simulations?
Namely, we can see that generally for anisotropic patches,
where a dominant orientation exists, the proposed metric @
is able to detect both blur and random noise. So in practice,
when measuring the true content of an image as a whole using
@, the anisotropic areas are detected and used to compute a
global measure for the whole image. Put another way, isotropic
patches should be avoided in the calculation of the overall
image content metric (). Specifically, one way to distinguish
isotropic from anisotropic areas is by employing significance

05 1 15 2
blur kernel deviation

(d)
Fig. 8. Evaluations of (2, MSE and JNB [12] on the image Man (256 X 256), and its successively degraded versions. (a) Test image set; (b) anisotropic patches;
(c) MSE; (d) metric Q; (e) JNB. In (b), the green areas illustrate the anisotropic patch set used in measuring (). In (c), we inverted the color scale just to show the
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Fig. 9. Selecting the tuning parameter using metric ().

testing based upon local coherence R, whose statistics in the
“noise-only” case were described earlier in Section III-A.

Defining the null hypothesis Ho as: “The given patch is
isotropic with white Gaussian noise,” we can calculate the
metric R and use it as a test statistics to decide whether to reject
the null hypothesis Hy. Numerically, the test is carried out
by comparing the calculated R for the patch to a preselected
threshold 7. If R > 7, then the hypothesis is rejected. For its
part, 7 is determined by a significance level 0 < § < 1, which
is the probability of rejecting the null hypothesis when this
hypothesis is in fact true. The relationship between ¢ and 7,
which comes directly from integrating the pdf of R, is:®

1
8 = Prob(R > 7|Hy) = /fR(r)dr

9Strictly speaking, the density function used in the previous formula should
be a valid pdf for R in all types of isotropic patches with WGN added; but this
is not practical. Instead, for simplicity, we employ the pdf for pure WGN [see
(31)] as an approximate and quite reasonable alternative.
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Fig. 10. Original images that are used in the simulated experiments, and the corresponding noisy images whose PSNR = 23 dB.

The integral of fr(r) can be computed in closed form as
1—72 NP1
( 1472 ) '

o= o= [-(152)"7]
" ’ (32)

For a desired 6, to determine the threshold, we can simply solve
the previous equation for 7. For example, if the patch size N =
8, and we want the significance level § to be 0.001, then the
corresponding threshold becomes 7 = 0.2340. If the local co-
herence R > 7, the test patch would be labeled as “anisotropic.”

1—72
14172

C. Detailed Algorithm for Computing Q

To summarize the previous discussions, we provide here a
concise description of the algorithmic procedure for calculating
the metric () from a given image:

Algorithm 1 Algorithmic Procedure for Computing )

1. Given a noisy image, divide it into M nonoverlapping
patches of size N x IV, and calculate the local coherence
Ry, using (29) for each patch k = 1,---, M.

. Find (say m < M) anisotropic patches by thresholding
the local coherence values as R, > 7. The threshold 7 is
determined by solving the (32) with a given significance
level 6.

3. Calculate the local metric ) using (28) on each

anisotropic patch identified in step 2.

Output the value Q = (1/M) >~ Q. as the metric for

the whole image.

A simulated experiment using the natural image Man has
been carried out to illustrate this procedure. The data in the test
image set are generated through the following model:

p=p®k+n (33)

where p stands for the clean image, k represents the blurring
kernel, ® denotes the convolution, and n is WGN.

We arranged the simulated images into a grid as shown in
Fig. 8(a), where images get more and more blurred from left to
right (by applying a 9 x 9 Gaussian blur kernel with growing
standard deviation o03), and more and more noisy from top to
bottom. The corresponding metric Qs (with the patch size N =
8 and 6 = 0.001) are given in Fig. 8(d). Full-reference metric
MSE and a no reference sharpness metric JNB [12] are also
tested for comparison. It can be observed that, like MSE, the
change of the metric @) successfully reflects the change of the
image quality, while the sharpness metric JNB (whose value
drops as image becomes blurry,) failed in distinguishing quality
decay against noise.

In the next section, we show how to apply () to optimal pa-
rameter selection for some leading denoising algorithms.

IV. USING ) TO OPTIMIZE DENOISING ALGORITHMS

In this section, we will provide evidence that the proposed
metric () can be used to optimize the parameters of denoising
algorithms. In particular, like [10], the application of () to any
“black-box” denoising algorithm with parameters in need of
tuning is possible. We focus on two recent state of the art de-
noising algorithms.

One is the steering kernel regression (SKR) method of Takeda
et al. [20], where there are two main parameters to tune: the
global smoothing parameter h, and the iteration number. The



ZHU AND MILANFAR: AUTOMATIC PARAMETER SELECTION FOR DENOISING ALGORITHMS

3125

MSE optimized, 9th iteration

140 160
120 140
100 120
w 80 L 100
%) 1%}
b= = g
40 60
20 40
1
oL—t 20 \
0 5 10 15 20 0 5 10 15 20
Iteration number Iteration number
MSE (30dB) MSE (23dB)
34
32
30
28
26
(¢

5 10 15 20 0 5
Iteration number

Q (30dB)

10 15 20

Iteration number

Q (23dB)

@ optimized, 9th iteration

Fig. 11. Plots of MSE and metric () versus iteration number in SKR denoising experiments using image Squares, and optimized filtered images (23 dB input).
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Fig. 12. Plots of MSE and metric () versus the tuning parameter in BM3D denoising using image Squares, and optimized filtered images (23 dB input).

effect of these parameters is generally interdependent in that the
smaller the A is, the more iterations are needed to achieve the
best output image [20]. Hence, in practice, in makes sense to set
h to a fixed value (we set it to 2.0 throughout) and to attempt to
optimize the iteration number within a reasonable range (which
we select to be between 1 and 20.)

The second algorithm is the block-matching and 3-D filtering
(BM3D) algorithm [21], which is considered to be the state of
the art denoising algorithm at the time of this writing. In the

BM3D filter, a Wiener filter is employed for collaborative fil-
tering, which requires the estimate of a (variance) parameter
o2.,. The value of the parameter o..; can strongly affect the
output and, thus, needs to be tuned. In the following experi-
ments, we optimize this parameter in the broad range of 1 to
30.

In what follows, both simulated and real data are consid-
ered. In the simulated experiments, where the reference image

is available (but not used in our case), MSE is also computed for
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Fig. 13. Plots of MSE, metric () and JNB [12] versus iteration number in SKR denoising experiments using image Barbara, and optimized filtered images (23 dB

input).

the sake of comparison even though this calculation is not prac-
tical, and MSE is not a good visual metric anyway. Monte-Carlo
SURE [10], on the other hand, offers a way to access MSE
without a reference, and it is used for our experiments with a
real noisy image.

In order to obtain a practical procedure for parameter set-
ting, the strategy we take for computing the proposed metric
Q is slightly different from what we described in Section III-C.
Namely, we use the original noisy input image to estimate an
anisotropic patch set m, and use this reference set to compute
the metric Q on the output of the respective denoising filter. We
vary the value of the tuning parameter while observing the re-
sulting Q. The “best” value of the algorithm parameter is then
selected as that which maximizes the metric (2 on the output
(see Fig. 9). In all the following experiments for parameter op-
timization, we fix the patch size N = 8, and the significance
level § = 0.001 (or the threshold 7 = 0.2340). From a prac-
tical point of view, insofar as computing () is concerned, these
values are universally good and do not need to be varied across
images or in different context (or else this would defeat the very
purpose of automatic parameter selection!) So we can compute

the metric ) with the same patch size and significance level in
all the various experiments shown in this section. All the exper-
iments are carried out on a desktop PC with Intel Pentium D
CPU (3.00 GHz) in MATLAB. Computing @) for a 512 x 512
output image takes around 0.25 s.

A. Simulated Experiments

In this set of experiments, we simulated noisy data by adding
white Gaussian noise to three clean images shown in Fig. 10;
namely, Squares (256 x 256), Barbara (512 x 512) and Flower
(384 x 384). Experiments are conducted at peak signal-to-noise
ratios!? (PSNR) of 30 dB, and 23 dB, to test the performance of
the metric in a range of noise strengths.

Plots of the experimental results are given in Figs. 11-16. We
can observe that the metric () was consistently effective in cap-
turing the changing trend of quality in the output as the (SKR
and BM3D) algorithm parameters were varied. As a result, the
maximum value of ) yielded a very good result in every case

10peak signal-to-noise ratio is defined as 101log,,(2552/02), where o2 is
the variance of noise.
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in a completely unsupervised fashion and without access to a
reference image or an estimate of the MSE. The behavior of @
provides not only an optimized value for the algorithm parame-
ters, but also tends to reveal interesting behavioral characteris-
tics of the algorithms to which it is applied. As a case in point,
we observe that as the value of the parameter being optimized
(number of iterations for SKR, and o, for BM3D) increases,
the overall visual quality of the output image rises first due to
the suppression of random noise, and then goes down because of
the blurring effect of the filter. This phenomenon happens most
strongly in the experiments using two natural images (Barbara
and Flower)—see Figs. 13—16. In the Squares case, where the
image content is relatively simple, the edges are successfully
preserved by the BM3D filter even when the 0. is set to be
very large. This feature is also seen in the curves of both MSE
and @ (see Fig. 12), where we can see the curves flattening out
as the image quality changes little. The SKR algorithm, on the
other hand, is more sensitive to increasing number of iterations,
even when the content is relatively simple as in the Squares case,
as can be seen in Fig. 11. For the sake of completeness, we also
tried the no-reference sharpness metric JNB [12] to test its be-

havior and found that in general it fails to capture the trend of
quality change since it cannot handle noise well. Examples are
provided in Figs. 13 and 14.

B. Real Noise Experiments

Fig. 17 illustrates a test image JFK (367 X 343) that suf-
fers from real noise. The noise comes from film grain, scan-
ning and compression processes, and is not Gaussian—indeed
its variance is space varying. For lack of a better yardstick,
we use the Monte-Carlo SURE [10] method for comparison,
where the standard deviation of the noise (assumed to be glob-
ally constant) is estimated through the median absolute devia-
tion (MAD) method [22]. The measured values for the previous
testimage is 0 = 4.2. In implementing the Monte-Carlo SURE,
the standard deviation of the probing noise is set to be 0.1 as rec-
ommended in [10].

Again, SKR and BM3D filters are employed in this set of ex-
periments. The plots of SURE and () versus the tuning param-
eter for the BM3D algorithm, and the corresponding optimized
output images are provided in Fig. 19. For the SKR algorithm,
plots of SURE and @ versus the iteration number and the cor-



3128

250

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 12, DECEMBER 2010

200

150

MSE optimized, 13th iteration

w 50 w
g g
40 100
30
50
20 :
| |
109 — 10 15 20 % 5 10 15
Iteration number Iteration number
MSE (30dB) MSE (23dB)
40
39
38
37
T 36

35
34
33

32

10
Iteration number

Q (30dB)

15 5

10
Iteration number

Q (23dB)

(Q optimized, 15th iteration

Fig. 15. Plots of MSE and metric () versus iteration number in SKR denoising experiments using image Flower, and optimized filtered images (23 dB input).

350

300
250

L 200

)

= 150
100

50

10 15

Testo
MSE (30dB)

20 25 30

42

10 15

Testo
MSE (23dB)

20 25 30

MSE optimized, oest = 18

10 15

Testo
Q@ (30dB)

20 25 30

10 20 25 30

15
Testo
Q@ (23dB)

Q@ optimized, o5t = 20

Fig. 16. Plots of MSE and metric () versus the tuning parameter in BM3D denoising experiments using image Flower, and optimized filtered images (23 dB

input).

responding optimized output images are provided in Fig. 18.
For the SKR method, the optimal iteration number suggested
by SURE is 1, which is clearly inadequate for denoising, as ob-
vious noise can be observed in the output image. Meanwhile, the
Q optimized iteration number shows good visual performance
in balancing between denoising and detail-preservation. A sim-
ilar phenomenon can be observed in the BM3D test (Fig. 19).

‘We note that since the noise is not white Gaussian, and the esti-
mate of its standard deviation is likely inaccurate, this can lead
to problems in the SURE calculation.

Through the previously shown real noise data experiments, it
can be seen that the SURE method did not give adequate param-
eters for the filters when testing on the image JFK. This example
is not entirely fair to the SURE method since the assumptions
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underlying that method are violated in this example. However,
the experiment does illustrate that the metric () is nevertheless
able to maintain its stable performance, indicating that our pro-
posed metric can be useful for a more general variety of practical
situations.

C. Correlation With Subjective Quality Scores

Finally we provide some tests based upon the TID2008 data-
base [23] to illustrate the correlation between subjective rat-
ings and the proposed no-reference parameter tuning system
using metric (). TID2008 database contains 25 reference images
[some are illustrated in Fig. 20(a)—(c)] and each reference image
pi (i =1,2,...,25) is degraded by several types of distortions
(Gaussian blur, Gaussian noise, quantization noise, JPEG com-
pression, etc.), where each type has four distortion levels. For
each distorted version p;; (j = 1,2,...), the corresponding
mean opinion score (MOS) is also recorded and included in the
database. In this section, we consider both Gaussian noise and
Gaussian blur distortions as these are related to our application
of interest. So for a given reference p;, we consider a set of
corresponding degraded images ¢; = {p;;|j = 1,2,...,8} in-
cluding four noisy and four blurry images.

As illustrated in Fig. 9, in the parameter tuning system all the
output images share the same anisotropic patch set m, which is
detected from the degraded input image, to compute the (Js. To
faithfully illustrate the behavior of the proposed tuning system
using @, for every p;; € ¢; we also use the same anisotropic
patch set m; to compute Q(P; j), where m,; is detected from the
most noisy version within the set. We consider this image as an
input, and other blurry or less noisy images the outputs from a
denoising filter.

All 25 image sets from the database were tested. For each set
©, Spearman rank-order correlation coefficient (SROCC) [24]
is employed to measure the correlation between MOS and the
target metrics, including ¢, MSE and JNB [12]. The average
SROCC scores and the standard deviations are given in Table I
(where test results using blurry image sets and noisy image sets
separately are also provided). It can be observed that the perfor-
mance of the proposed metric is as good as MSE: the magnitude
of the corresponding SROCC for both () and MSE are above 0.9
with low variances. Meanwhile, () outperforms JNB [12] since
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JNB fails in distinguishing quality decay against high frequency
components due to noise. As specific illustrations, plots of MOS
versus () corresponding to the sample images in Fig. 20(a)—(c)
are illustrated in Fig. 20(d)—(f), which show that the metric @Q’s
response to blur and noise is very close to the subjective quality
perception.

V. CONCLUSION

In this paper, we proposed an image content metric ) which
can be used in an unsupervised fashion for parameter optimiza-
tion of any image denoising algorithm. This metric is based
upon the singular value decomposition (SVD) of local image
gradients. It is properly correlated with the noise level, sharp-
ness and intensity contrast of the structured regions of an image
without any prior knowledge. Simulated and real data experi-
ments on denoising filters demonstrated that this metric can cap-
ture the trend of quality change during the denoising process,
and can yield parameters that show good visual performance
in balancing between denoising and detail preservation. Addi-
tional tests using blurred and noisy images from the TID2008
database confirm that the proposed metric is well-correlated
with subjective evaluations.

It is worth mentioning that because metric () only takes struc-
tured regions (anisotropic patches) into consideration, the range
of its applicability as a general no-reference measure may be
limited. For example, it cannot handle situations where noise
only appears in flat regions (isotropic patches). However, for the
parameter optimization application studied in this paper, imple-
menting () using only anisotropic patches is adequate.

Going forward, we envision extending the use of this metric to
the parameter optimization problem in other image restoration
algorithms, such as deblurring and super-resolution. Research
on designing a metric for video content within the same frame-
work is also worth pursuing.

It is also possible to extend () as a general no-reference
image quality metric. However, it is worth noting that () mea-
sures image content rather than relative quality. For example,
we cannot use () directly to compare the quality of a distorted
version of Barbara with a similarly distorted Flower image.
A proper normalization would be required to design a metric
appropriate for cross-image assessment. This is an interesting
direction for further study.

APPENDIX
CALCULATION OF PROBABILITY DENSITY FUNCTIONS

If all components of the gradient matrix G are independent
standard Normal variables, the joint probability density function
for its singular values s; and s; is given by [25]

1 _1 S2 52 2_ 2
f51,52(31752):m6 2( it Q)Siv 2397 2(8%—3%),
(34)

In a more general case, where the variance of a N x N white
Gaussian noise image is 02, its G can be viewed as a N? x
2 Gaussian matrix with a variance equals to {02, where ¢ is
determined by the filters that we choose to calculate the discrete
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TABLE I
MEAN AND STANDARD DEVIATION OF THE SROCC VALUES
OF FULL-REFERENCE (FR) AND NO-REFERENCE (NR)
METRICS USING 25 IMAGE SETS FROM TID2008 DATABASE

SROCC blurry images noisy images blur + noise
mean | std. mean std. mean std.
MSE (FR) -1.0 0.0 | -0.992 | 0.039 | -0.930 | 0.091
Metric Q (NR) 1.0 0.0 0976 | 0.086 | 0.921 | 0.080
INB (NR) 1.0 0.0 | -0.840 | 0339 | 0452 | 0.171

image gradient. The joint density function of the singular values
s1 and so can then be derived from (34) as

2N?

1 _v2 s2 452 2 2
fsl,sz(81a82)=me 7 (i) o252 (s1—s3)
(35)

where v = 1/(c¢'/?).
The marginal pdf of s; is

fs.(s1)= [ [fs,s,(s1,t)dt
/

:71 e_s%;2 §2071,20
2(N2-2)! !
24 _e 8 2 siv?
“2(s1v)*Fe” T =2 (Zﬂ—sluz)'y G, 5

(36)

where 8 = (N?—1)/2, and y(a, x) stands for lower incomplete
gamma function, which is defined as:

x

v(B,z) = /tﬂfleftdt.

0

(37)

According to the definition of the sharpness metric H in (26)
and the formula (36), the density function of H becomes

1 _h_22 h2ﬂ—1 h 28 _h_22
fu(h) = 3N? 2)'6 2u 27 lQ <LL> e 2w
h2 h2
() ()] o
where
__¢&
=75 +e/o (39)

The ratio between s; and s» is called the condition number

K= z—; (40)
whose pdf is given by [25]
N2_1/pr2 K2—1 N2y
fK(ﬁ}):2 (N —1)mﬁ) y ISK/SOO
41

We note that the coherence R isrelatedto k by k = (1+R)/(1—
R). Using the formula of random variable transformation [26],
the pdf of R can then be derived as

(1 _ T2)N272

- 0<r<1
A+r2)N 0 ==

4(N? - 1)r (42)

Given the joint density function fs, s,(s1,52) in (35), the
conditional density of s, given s; can be derived as

f51,52(81,82)

Fs1 (1) )

fsy1s, (s2]81) =
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According to the definition (28), the relationship between s, and
Q) can also be written as

51— Q
Y+ Q

Again, using the random variable transformation, the condi-
tional density function of ) given s; becomes
d82

dq

S9 = S

(44)

fqis, (als1) = fs,s, (s2]51)

f < s1—q ) 2%

= S S .
52151 181 +4q ! (s1+0q)?
Then the joint density function of s; and @) can be written as

fq@.5.(a,51) = fs,(s1) fq|s, (qls1)

(45)

$1—q 25%
= . (46
f51,52 <5175181 +q> (81 +(])2 (46)
So the pdf of @@ becomes
fala) Z/fQ,51(q7t)dt
q
8ql/2N2
(V2 o2)!
7 N222  , b24q2
an?41(t—q) —t?2 )
X/t (t+q)N2+26 (+a)® dt. (47)
q
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