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Abstract

Inverse lithography attempts to synthesize the input mask which leads to the desired output wafer pattern by inverting the forward
model from mask to wafer. In this article, we extend our earlier framework for image prewarping to solve the mask design problem for
coherent, incoherent, and partially coherent imaging systems. We also discuss the synthesis of three variants of phase shift masks (PSM);
namely, attenuated (or weak) PSM, 100% transmission PSM, and strong PSM with chrome. A new two-step optimization strategy is
introduced to promote the generation and placement of assist bar features. The regularization framework is extended to guarantee that
the estimated PSM have only two or three (allowable) transmission values, and the aerial-image penalty term is introduced to boost the
aerial image contrast and keep the side-lobes under control. Our approach uses the pixel-based mask representation, a continuous func-
tion formulation, and gradient-based iterative optimization techniques to solve the inverse problem. The continuous function formula-
tion allows analytic calculation of the gradient in O(MNlog(MN)) operations for an M X N pattern making it practically feasible. We
also present some results for coherent and incoherent imaging systems with very low k; values to demonstrate the effectiveness of our

approach.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction and background
1.1. Introduction to lithography

Circuit patterns are commonly transferred on to silicon
wafer using optical projection lithography, a process simi-
lar to photographic printing. Unfortunately, the optical
imaging system is bandlimited and the diffraction effects
result in severe loss of the higher frequency components
in the projected mask image. Furthermore, the lithography
system is subject to random (uncontrollable) process errors
in the form of dose and focus changes which affect the
repeatability of the lithography process. These coupled
with Moore’s law, which demands a 30% reduction in the
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critical dimensions of the printed circuit patterns every 18
months [1], make lithography one of the tightest bottle-
necks in the semiconductor industry.

The fundamental limit of the resolution of an optical
projection lithography system is given by

ki A

Wmin = N Av (1)
and is related to the Rayleigh criterion', where wyy, is the
minimum line-width of the printed feature. The resolution
can be improved by increasing the numerical aperture of
the imaging system (NA), decreasing the wavelength (1),
or decreasing the process constant (k). Current lithogra-
phy systems employ the ArF laser having wavelength
A =193 nm. Extreme Ultra-Violet (EUV) lithography is a

! The Rayleigh criterion for the resolution of two points sources is that
the first diffraction pattern minimum of the image of one source point falls
on the central maximum of the other. This corresponds to a separation of
0.61
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promising next generation lithography technique which
uses EUV waves at 13 nm [4]. Unfortunately, it suffers
from major technology, infrastructure, and cost challenges
making it practically unfavorable. The physical limit for
NA is equal to | for dry lithography systems. Recently,
immersion lithography has been successfully used to push
the NA beyond 1 by introducing a transparent fluid be-
tween the lens bottom and the wafer [25]. The focus of this
paper however, is on the third alternative, namely decreas-
ing the process constant k; using resolution enhancement
techniques (RETs) [41,40,16].

At the onset we would like to highlight that the resolu-
tion limits for pattern periodicity and pattern dimensions
are different [46,21]. A pitch is defined as the sum of line
and space width pair and determines the packing density
of the transistors. The process constant in this context is
referred to as kpien and is lower bounded by 0.5 [5]. On
the other hand, the smallest printable feature size is known
as the critical dimension (CD). It dictates the gate-length,
speed, and the power consumed by the individual transis-
tors. There are no theoretical limits on kcp and it ulti-
mately depends on our ability to control the CD [46]. In
general, lower values of kpjich and kcp make the lithogra-
phy process more sensitive to dose, focus, and other pro-
cess variations. They indicate a more aggressive
lithography strategy and necessitate the use of RETs.

RETs are based on exploring three properties of the
optical wavefront; namely, its amplitude, phase and direc-
tion; and are accordingly classified as optical and process
correction, phase-shift methods, and off-axis illumination
[47]. Optical and process correction (OPC) consists of care-
fully changing the sizes of the openings thereby controlling
the amount of light let through. This corresponds to adding
sub-resolution features to the mask pattern, which pre-
compensate for the process losses to come, thereby leading
to a general improvement in pattern fidelity [39,7,33].
Phase-shift masks (PSM) consist of treating the mask as
a three-dimensional structure and inducing phase-shift in
the transmitted electric field such that it causes favorable
constructive and destructive interference in the desired
bright and dark areas, respectively [39,18,34]. Finally, off-
axis illumination (OAI) consists of modifying the illumina-
tor (source) size and shape (e.g. quasar, annular, quadra-
pole, dipole, etc.), which affects the direction of the
incident light and ultimately the diffraction orders captured
by the lenses [47]. We will be studying the first two RET
approaches (OPC and PSM) in this paper.

1.2. Inverse lithography techniques (ILT)

The widely used approach for OPC mask design pro-
posed by Cobb and Zakhor [8] consists of parameterizing
the mask using polygons and fragmenting the mask pattern
into edges and corners. These geometric elements are then
nudged and moved around while simulating the output at
specified control sites (using the forward model) until cer-
tain criteria are satisfied. The above technique is local in

the sense that the changes are made only locally to the
edges or corners of the mask to correct the corresponding
edge locations at the output. A direct consequence of the
above is that assist bars cannot be automatically generated.
There is also a danger of printing side-lobes and hence an
extra verification step is required [17]. Furthermore, phase
assignments cannot be optimally carried out forming
another drawback for 65 nm and smaller nodes.

Hence, there has been a revival of interest in “inverse
lithography” or “layout inversion” techniques in recent
times which form the thrust of this paper. Inverse lithogra-
phy is an image synthesis or image design [37,38] problem,
which consists of finding an image that when used as the
input to a given imaging system results in the desired out-
put image (to within some prescribed tolerance).

The first step towards solving an inverse problem is to
define a forward (or process) model which is a (possibly
approximate) mathematical description of the given imag-
ing system. The lithography imaging system from the mask
to the wafer consists of two steps (see Fig. 1). The aerial
image calculations are based on the underlying optical sys-
tem model (coherent, incoherent, or partially coherent
[5,8]). The resist effects are simulated using Dills model
[6], Mack Model [20,36], constant threshold resist (CTR)
model [14], variable threshold resist (VTR) model [35], or
other models [2]. We use the CTR model in our analysis
(see Section 2 for more details on our imaging model).

The image formation process can be mathematically
expressed as

z(x,y) = T{m(x,y)}, 2)
where T{-} is the forward model which maps the input
intensity function m(x,y) to the output intensity function
z(x,y). Let z%(x, y) be the desired output intensity function.
The goal of inverse lithography technique (ILT) is to esti-
mate the input intensity function which will give us a close
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approximation to the desired output z*(x,y) (see Fig. 1).
This is achieved by searching the space of all inputs and
choosing m(x, y) which minimizes a distance d(z(x, y),z*(x,)),
where d(-,’) is some appropriate distance metric to be de-
fined later. Thus,

nlx,y) = arg min d[z" (x, ), T{m(x, y)}] (3)

In our case, 7¢{.} is the lithography forward (process) mod-
el, z¥(x, ) is the desired output wafer pattern, and 7ir(x, y) is
the estimated optical proximity correction or phase shift
mask pattern.

The pioneering work in ILT was by Saleh and his stu-
dents at the University of Wisconsin in the early 1980s. Say-
egh et al. [38] used linear-programming technique to do
OPC for a system modeled as a band-limited linear system
followed by hard threshold operation. Nashold and Saleh
[23] employed iterative alternating projections and Sherif
et al. [42] used mixed linear integer programming to synthe-
size binary masks for the above imaging system. Pati and
Kailath [27] approximated the more prevalent partially
coherent imaging to a coherent imaging system using opti-
mal coherent approximations and were able to use projec-
tion on convex sets (POCS) to synthesize phase shift
masks. Liu and Zakhor [18] formulated the mask design
problem as the minimization of the L, norm of the differ-
ence between the ideal and the actual wafer images, and
employed branch-and-bound and simulated annealing
algorithms to synthesize binary and phase shift masks.
Peckerar et al. [28,30,29] also employed L, norm based cost
function and proposed gradient-based optimization tech-
nique to solve the proximity effects arising in the related
e-beam lithography problem. Oh et al. [24] used random-
pixel flipping and Erdmann et al. [10] proposed genetic
algorithms to solve the joint mask and source optimization
problem. Granik [13] did a comprehensive review of the
past ILT work and discussed the reduction of the mask
design problem to linear, quadratic, and general non-linear
programming problems. Also Liu et al. [17] demonstrated
the commercial viability of inverse lithography techniques.

In [33], we (the authors) proposed a new framework and
employed gradient descent algorithm to design a binary
input image which reproduces the desired binary image at
the output of an imaging system. The above system was
modeled as a cascade of low-pass filtering using a Gaussian
kernel followed by a hard threshold type operation. We
had also introduced a regularization framework to guaran-
tee that the estimated masks were close-to-binary, with low
manufacturing complexity.

In this work, we generalize our earlier framework to per-
form inverse lithography for coherent, incoherent, and par-
tially coherent imaging systems. We have extended our
framework to incorporate the mask design for attenuated
PSM, 100% transmission PSM, and strong PSM with allow-
able chrome features. We also discuss a new two-step optimi-
zation strategy which favors the generation of assist bars.
The sizes of the assist bars and their placements are automat-

ically performed as part of the optimization process. The key
difference in our ILT approach (compared to our predeces-
sors) is that we model the mask-to-wafer process using a con-
tinuous transfer function. This enables us to formulate the
mask synthesis problem using continuous function optimi-
zation and use the gradient information to systematically
exploit the solution space described in (3). In this article,
we will discuss the analytic gradient calculations for coher-
ent and incoherent imaging systems. Furthermore, we dem-
onstrate the ability of the regularization framework
(introduced in [33]) to control the tone and complexity of
the estimated OPC and PSM masks. We also introduce the
aerial image penalty term to improve the aerial image con-
trast and keep the side-lobes under control. The extended
framework enables us to automatically arrive at low-com-
plexity, high fidelity, high contrast, discrete-toned OPC
masks or PSMs by effectively searching the solution space.
The preliminary analysis along with some results for coher-
ent imaging system were reported earlier in [34]. Here, we
will present results for the cases of both coherent and inco-
herent imaging systems for very low k; values. The OPC
masks for incoherent imaging systems will indicate very
interesting feature splitting in order to bring the contours
on target. The OPC and attenuated PSM examples for
coherent imaging systems lead to automatic generation of
assist features. Finally, the strong PSM significantly improve
the contrast while also achieving good pattern fidelity.

The process model and the optimization problem for
different types of imaging systems are formulated in Sec-
tion 2. The regularization framework and the OPC mask
design algorithm are discussed in Section 3. The framework
is extended to the three cases of phase shift masks; namely,
attenuated, strong, and 100% transmission, in Section 4.
Finally, we provide conclusive remarks in Section 5.

2. Process model and problem formulation

In this section we discuss the forward (process) model of
the lithography system from the (input) mask to the (out-
put) wafer. A typical lithography system can be seen as
comprising of two stages; namely the optical (aerial) image
formation, and the resist action (see Fig. 1). The aerial
image calculations are performed on the basis of coherence,
incoherence, or partial coherence of the underlying imaging
system and will be discussed in Section 2.1. The simplest
way to simulate the resist effect is using the CTR model
[14]. Thus, for positive resists, the areas having aerial image
intensity higher than threshold ¢, are completely removed
leaving behind a space in the wafer. The above operation
can be described using a Heaviside operator (hard thresh-
old) defined as

u <ty

ro={} @)

I, u>t.

The Heaviside operator brings us into the discrete domain
and necessitates the use of branch and bound or other integer
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optimization algorithms (like our predecessors [37,18]) to
solve the mask design problem. However, the focus of our
work is to solve the inverse problem in the continuous do-
main. With this in mind, we approximate the heaviside oper-
ator using a sigmoid: a smooth, continuous function [9]. The
approximated forward process model is illustrated in Fig. 2.
We employ the logarithmic sigmoid function,

1

- 1+ e—alu—t)’ (5)

where the parameter a dictates the steepness of the sigmoid.
The parameter ¢, is the threshold parameter of the sigmoid
and is set equal to the threshold level of the resist in accor-
dance with the constant threshold resist model. Fig. 3 illus-
trates the behavior of the sigmoid for different values of a
with ¢, = 0.5. A large value of « leads to a very steep sig-
moid which closely resembles the hard thresholding opera-
tion. Owing to the above approximation, the output
pattern z will not be binary, but a (continuous tone)
“close-to-binary” pattern. The above approximation en-
ables us to use gradient-based continuous function optimi-
zation techniques like steepest-descent to solve the mask
design problem.

Since we employ the pixel based approach, the first step
is to represent the input, output, and the desired patterns
using 2D  discrete images. We define vectors
z',z,m € W' which are obtained by sampling and lexi-
cographic ordering of z*(x,y), z(x,y), and m(x,y), respec-
tively. The number of samples along the horizontal and
vertical directions are given by M and N, respectively. Note
that the edge placement error is related to the sampling
interval 5, nm and is upper-bounded by (5,/2) nm. Smaller
pixels enable better edge placement but also increase the
number of samples M and N which are related to the algo-
rithmic complexity by O(MNlog(MN)). Thus, there is a
trade-off between speed and accuracy. Throughout our dis-
cussion, z* represents the prescribed binary pattern, z repre-
sents the gray-level output pattern, and m represents the

sig(u)

Input {m} . Aerial
— NJOptical System . .
Model o > Sigmoid [——— > Output (z}

“aerial image
formation process”

“approximates the hard

N A “close to binary”
thresholding (resist effect)”

Fig. 2. Approximated forward process model.
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input pattern fed to the imaging system (which can be bin-
ary or gray-level).

2.1. Modelling the imaging system

We now discuss the individual aerial image calculations
and the forward models for the three imaging systems of
interest.

2.1.1. Coherent imaging system

In the case of coherent imaging system, the spatial distri-
bution of the output electric field amplitude e(x,y) is line-
arly related to the input electric field amplitude generated
by the mask m(x, y). This can be mathematically described
as
e(x,y) = m(x,y) * h(x,y) (6)
where /i(x, y) is referred to as the amplitude spread function
(ASF) of the given imaging system [45].

Typical lithography systems employ a circular lens aper-
ture, where the coherent imaging system now acts as an
ideal low pass filter with cutoff frequency NA//. The higher
frequency components of the diffracted mask image are lost
by the finite lens aperture stop thereby causing a blurry ver-
sion of the mask image at the imaging (wafer) plane. The
convolution kernel %(x,y) is defined as the Fourier trans-

form of the circular lens aperture with cutoff frequency
NA/A [5,45]. Therefore,

h(x,v) = jinc (rN_ﬁ> _ % -

where r = /x? +)? and J;(*) is the first-order Bessel func-
tion of first kind.

The photo-resist responds to the intensity of the electric
field, where intensity is defined as the square of the complex
amplitude e(x,y). Therefore, the forward model is defined
as

(8)
where z° represents the output pattern for coherent imaging
systems. The sigmoid function simulates the resist behavior
and acts on the aerial image [Hm|? (square of the ampli-
tude), giving the output pattern z°. Two important points
to note: the kernel H € RY™' is the jinc function
h(x,y) sampled using the same sampling rate as z°, and
|'|> operator here implies element-by-element absolute

z° = sig(le|*) = sig(|Hm[),

a=10 a=30 a=50 a=70
1 1 1 1
0.5 0.5 0.5 0.5
0 0 0 0
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

Fig. 3. The effect of the steepness parameter a on the sigmoid function sig(u) = 1/(1 + e~ ““~%),
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square of the individual vector entries. Finally, for partially
coherent imaging systems, the optical kernel A(x,y) can be
instead substituted by the optimal coherent approximation
proposed by Pati and Kailath [27].

2.1.2. Incoherent imaging system
An incoherent imaging system is linear in intensity (or
irradiance) and can be mathematically described as [5],

le(e,)* = Im(x, )" * |, y) ©)

The kernel A(x,y) is defined in (7), and Hz once again im-
plies absolute square of the individual elements. Note that
the phase of the input electric field does not contribute to-
wards the output. Hence, for incoherent imaging systems
we restrict our attention to only binary masks. The
photo-resist directly responds to the above electric field
intensity and the forward model for a binary mask is de-
fined as

7 = sig(H|m|*) = sig(Hm), (10)

where z' represents the output pattern for incoherent imag-
ing systems. The filter H in (10) is known as the point
spread function of the imaging system and is a jinc-squared
function. It is defined as the square of the PSF shown in
(7). Also, since the mask is binary, |m|* = m.

2.1.3. Partially coherent imaging system

Real-world lithography systems are partially coherent
and can be modelled using the Hopkins diffraction model
[5]. Pati and Kailath [27] proposed an approximation to
the above model called the sum-of-coherent-system (SOCS)
by using the singular value decomposition of the transmis-
sion cross-coefficient matrix. In their approach, the Pth
order approximation to the aerial image formulation can
be calculated using the weighted sum of P coherent sys-
tems. The forward model now becomes,

P
2’ =sig (Z ¢/|Hjm|2> ; (11)

=1

where H; for j = 1,. .., P are the amplitude spread functions
(also referred to as optical system kernels) of the coherent
systems, and oy,...,0p are the corresponding singular val-
ues. The singular values quickly decay to zero, thereby
facilitating an accurate reduced order approximation.

2.2. Optimization problem formulation

In this article, we focus on the mask synthesis problem
for fully coherent and incoherent imaging systems. Every
pixel m; of the mask can be represented as a complex term
m;=p;+ iq; where i =+/—1. In our analysis we restrict
ourselves only to strong (180°) phase shift. Therefore,
g;=0 for j=1,...,MN thereby requiring us to estimate
only the real part (p;) of the mask (which we henceforth
refer to as m; for notational convenience). We formulate
the mask design problem as finding the optimized mask

layout m that minimizes the cost function F(m), defined
as the L, norm of the difference between the desired pattern
z" and the output pattern z. That is,

f = argmin{F(m)} = argmin ||z" — z[;
m m

= argmin Z (z —zk)z. (12)

= k=1

Later in Section 3, we refine this approach by introducing
the regularization terms and augmenting the cost function.

2.2.1. Coherent imaging system
For coherent imaging system z =z and the cost func-
tion can be formulated using (12) as follows:

F(m) = F*(m) = argmin ||z’ - 2°||;

MN )
= argmin Z (zz —z)" (13)
=

From (8) we observe that every pixel in a coherent imaging
system undergoes a cascade of convolution, squaring, and
sigmoidal operation. Therefore, the output pixel z; in (13)
can be represented as

%= 1 , (14)

MN 2
l4exp |—a| > hym; | +at,
=

for k =1,..., MN where hy; are the elements of the kth row
of H, which is the jinc function defined in (7).

The estimated mask is either two or three tone depend-
ing on the employed RET. Therefore, the transmission val-
ues m; for j=1,...,MN should be allowed to take only
specific values as summarized in the table below

RET Allowable transmission
values
OPC 0 or +1
6% Attenuated PSM —0.2449 or +1
18% Attenuated PSM —0.4243 or +1
Strong PSM (100% —1 or +1
transmission)
Strong PSM (with chrome) —1lor0or+1

The optimization problem (13) is therefore subject to the
constraints given by the allowable transmission values of
m;. This unfortunately makes the search space discrete
thereby again reducing our problem into an integer optimi-
zation one. To overcome this issue and move back into the
continuous domain, we relax the parameter values to lie
within a range [m, m]. Thus, the discrete equality constraints
are substituted by the inequality (bound) constraints and
the optimization problem in (13) is made subject to

m<m;<m forj=1,...,MN. (15)
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The above procedure reduces the mask design problem into
a bound constrained optimization problem which will be
henceforth employed in our discussion.

2.2.2. Incoherent imaging system )
For an incoherent imaging system z=1z' and the cost
function can be formulated using (12) as follows:

F(m)

= F'(m) = argmin ||z* — Z/||;
m

= argmln Z - zk (16)

From (10) we observe that every pixel in an incoherent
imaging system undergoes a cascade of convolution fol-
lowed by a sigmoidal operation. Therefore, the z, in (16)
is given as,

; 1
z, = v , (17)
1 +exp | —a) hym; +at,
=1
for k=1,...,MN where hy; are the elements of the kth row

of H, Wthh is the jinc-squared function.

As discussed earlier, we are only interested in binary
masks, and the optimization problem in (16) is subject to
the bound constraints

0<m<1 forj=1,...,MN. (18)

3. OPC mask design algorithm and regularization
framework

In this section, we discuss the proposed optimization algo-
rithm for synthesizing OPC masks for coherent and incoher-
ent imaging systems. We also discuss the regularization
framework to guarantee near binary results, ease of manu-
facturing, and good quality aerial images. Finally, we will
present results for OPC mask synthesis for the above cases.

3.1. Mask optimization algorithm

In the case of OPC masks, the transmission values are
restricted to either 0 or 1. For coherent imaging systems,
the optimization problem is defined in (13) subject to the
constraints in (18). The above problem can be solved using
constrained optimization algorithms like BFGS (Broyden,
Fletcher, Goldfarb, and Shanno) or gradient-projection
[15,33]. The bound-constrained optimization problem can
be further reduced to an unconstrained optimization prob-
lem using the following parametric transformation,

1 + cos(0;)

m;=———_—">
2

where 0 =1[0,,....0,n]" is the unconstrained parameter

vector. The re-parameterized cost function for the coherent

imaging case can be formulated in terms of the parameter
vector 6 as follows:

for j=1,...,MN (19)

MN 1

FO)=> |z~

k=1

2
1 +exp —a(Zh 1+cos(0)> + at,

(20)

We can now employ steepest-descent search to minimize the
above cost function. This requires the first-order derivatives
of (20), and the gradient vector d° = VF¢(0) € R can
be analytically calculated using the following expression:

VF{(0) = d°
=aH'[(z' — £) ©2° © (1 - £°) © (Hm)))

©sin(0), (21)

where © is the Hadamard product (element-by-element
multiplication) of the two vectors, 1 =[1,...,1]", and z° is
defined in (8). Note that the gradient calculation involves
two convolution operations which dictate the complexity
of our algorithm. Thus, the algorithmic complexity is
O(MNlog(MN)).

The cost-function defined in (20) is a quartic function
and is non-convex with multiple local-minima (as also
noted by Granik [13]). Since, we are using local gradient-
based search technique; there is no guarantee of reaching
the global minimum. However, ILT is an ill-posed problem
and it is often not necessary to arrive at the global optima
(see [26]). Any good local minimum (where the goodness is
defined using data-fidelity and user-desired properties),
can suffice as an acceptable solution. In the next section,
we introduce the regularization framework to incorporate
the above requirement.

Returning to the optimization problem at hand, the n'™
iteration of steepest descent algorithm is given as

071+1 - 0 cm (22)

where s is the step-size. The algorithm is initialized at
0° = cos~'(2z" — 1). Here, we would like to highlight the
useful fact that due to the structure of (21), the steepest des-
cent iterations can be quickly and directly carried out on
the 2D image array (matrices) with no need for the raster
scanning operation [33]. This saves valuable time and con-
siderably eases the implementation.

For incoherent imaging systems, the optimization prob-
lem is defined in (16) subject to the constraints given by
(18). We follow the parametric transformation approach
discussed above to obtain F () and the gradient vector
in this case is given as

VF(0) = d
—alH"(z' —Z) oz o (1-2))) osin(9).  (23)

Finally, we would like to highlight that the estimated mask m
using the above framework has continuous transmission
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values between 0 and 1. Therefore, we need a post-processing
operation to find the optimal threshold ¢, to convert m into a
physically realizable mask m, [33]. In the next section, we
propose an alternative to further simplify the above process.

3.2. Regularization framework

As we noted earlier, the inverse lithography problem is an
ill-posed problem [44]. The continuous function formula-
tion implies that there can be infinitely many input (gray
level) patterns all giving rise to the same binary pattern at
the output. Similarly, there may be many discrete-tone
masks all capable of providing good contour fidelity for a
given pattern. Since multiple solutions exist, our goal is to
choose a solution which is more favorable to us compared
to others. For example, continuous tone masks are physi-
cally not realizable and we are only interested in solutions
comprising of two or three tones. Furthermore, we want
the synthesized mask patterns to have low-complexity in
order to control the mask manufacturing costs. The user
may also have other requirements like low MEEF (mask
error enhancement factor), large process-window, mini-
mum feature spacing, etc. [26]. In general, we may want to
inculcate (or promote) certain desirable properties in the
solution. The regularization framework [44] incorporates
these requirements as prior information about the solution,
and helps us arrive at the preferred solution. The “regular-
ized” problem formulation can be described as follows:

@ = arg m“{nb)ﬁdF(m) + yregR(m)L (24)

where F(m) is the data-fidelity term, and R(m) is the regu-
larization function (or the penalty term) used to direct the
unknown parameter m towards the desired solution space.
76a and 7., are user-defined scalars for adequately weigh-
ing the first (data fidelity) term against the second (regular-
ization) term. The prior knowledge is contained in the
penalty term R(m) and solutions in closer agreement with
the prior are penalized less compared to others.

The regularization framework was first employed in the
context of lithography by Peckerar et al. [30,29] to solve the
proximity effect problem arising in e-beam lithography.
The estimated dose was obtained by solving an uncon-
strained continuous function optimization problem using
gradient-descent. This led to impractical negative dose val-
ues which was overcome by employing a regularization
framework similar to (24). The above framework was also
successfully used by the authors of the present article for
designing low-complexity binary masks for optical microli-
thography in [33]. Here, we provide a brief review of the
earlier employed penalty terms, and also introduce a new
aerial image penalty term to improve the robustness of
the lithography process.

3.2.1. Discretization penalty term
The first regularization term is employed to ensure that
the estimated mask is near-binary. Every pixel m; now has

an associated penalty given by the quadratic function (see
Fig. 4)

r(m;) =1—(2m;— 1),

The penalty incurred is zero for transmission values 0 or 1
and increases as we move away from these values in either
direction (maximum at m; = 0.5). Thus, we favor the esti-
mated pixels to have values closer to 0 and 1 while exploit-
ing the search space. The regularization term is defined as
the sum of penalty of all pixels as follows:

MN MN

Ras(m) = r(m) =3 [1 — (2m; — 1)2}

=1 =1

= 4m"(1 — m). (25)

3.2.2. Complexity penalty term

The pixel-based approach allows tremendous flexibility
in representing the mask patterns but also suffers the inher-
ent disadvantage that the masks are rather complex and
hence difficult to manufacture and inspect. Liu and Zakhor
addressed this issue in the past using a cell-based approach
[19]. The cells are selected and moved around either ran-
domly or using the knowledge from previous moves.
Researchers in the past have also reverted to post-process-
ing operations to simplify the output [24], but this
approach is sub-optimal. We follow the regularization
framework and employ a penalty function to direct our
algorithm towards generating low-complexity masks. Iso-
lated perturbations, protrusions, etc are not preferred
because they increase the storage and manufacturing cost.
Hence we seek a penalty term which suppresses these
effects. Thus, we integrate a mask simplicity criterion into
the optimization objective and inherently favor low-com-
plexity masks while exploring the search space.

There are a variety of penalty terms that one can employ
depending upon how one defines mask complexity. Akin to
the idea of total variation (TV) [44] penalty, we choose to
penalize the mask complexity using the local variation of
the mask as follows [11]:

IVm||; = ||Qml|, +[|Qym|],, (26)

Penalty Cost
o o
o [e)

N
»

o
(¥

Fig. 4. Discretization penalty term for binary masks.
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where Qy, Qy € RMV represent the first (directional) deriv-
atives and are defined as Qy=1—-S and Qy,=1-S8,,
where Sy and S, shift the image represented by m along
horizontal (right) and vertical (up) direction by one pixel,
respectively.

We penalize the L; norm?® of the gradient of the synthe-
sized mask. Isolated holes, protrusions, and jagged edges
will contribute more towards the gradient and as such will
have higher associated penalty. The regularization term in
(26) suppresses these effects and forces the changes to be
spatially smoother and less abrupt. The L; norm based
penalty term inherently favors piece-wise constant features
thereby making the masks easier to print using e-beam and
laser pattern generators.

3.2.3. Aerial image penalty term

The lithography process needs to be robust to the pro-
cess errors introduced by undesirable focus and exposure
variations. This can be achieved by availing a good quality
aerial image; one with sharp contrast or steep transitions
along desired edge locations. Similarly, slight variations
in the lithography process should not result in printing
the side-lobes. To achieve the above goal, we employ a pen-
alty term defined as the L, norm of the difference between
the desired (binary) pattern and the aerial image obtained
using the input mask. For a coherent imaging system, the
penalty term is given as

Raerial(m) - ||Z* - |Hm|2||§ (27)
and the gradient VR, .(m) can be calculated as
vRaerial (m) = _H[(Z* - |Hm|2) © (Hm)] (28)

Note that the optimization problem (13) can also be formu-
lated using (27) as the data fidelity term, that is,
F(m) = F'(m) = R,.j.j(m). This will guarantee a high qual-
ity aerial image. However, the contour fidelity will be very
poor. The above approach is useful in case of isolated con-
tacts where the dose can be varied to bring the CD on tar-
get and hence contour fidelity is not an issue of concern.

The augmented cost function to be minimized is defined
as the sum of the data fidelity term and the regularization
terms:

J(m) = VﬁdF(m) + ’VaerialRaerial (m) + VdistiS (m)

+ pryRrv(m), (29)
where Yaerial, Ydis» and prv are the regularization weights
corresponding to their respective penalty terms.

3.3. An alternative two-step strategy for optimization

A closer look at the above regularization terms indicates
that on some occasions they tend to conflict and suppress
certain type of features in the estimated mask. For exam-

2 L, norm of a vector is defined as the sum of the absolute values of the
vector elements.

ple, assist bars have been long known to improve the con-
trast of the aerial image and making the lithography
process more robust [31]. The gradient descent optimiza-
tion is usually initialized at m’ = z*. In such cases, the assist
bar generation implies a switch from 0 to 1 in regions away
from the main feature in the estimated mask. However, in
the continuous domain, any movement away from 0 is
penalized by the quadratic penalty term Ry;(m). This tends
to counteract the generation of assist-bars. We also observe
from our experiments (see Fig. 8) that often the best con-
tour fidelity and aerial image contrast is obtained by break-
ing the feature into two disjoint ones. This effect is again
suppressed by both the complexity and discretization pen-
alty terms.

Hence, we propose an alternative optimization strategy
which involves distributing the optimization objectives into
two steps as described below.

Step 1 In the first step, the data fidelity are defined as the
aerial image fidelity and we aim to minimize the cost
function,

J(m) = Ruerial (m)

Since the only term employed is the aerial image penalty,
our goal is to estimate a mask which improves the overall
contrast of the aerial image. The steepest descent iterations
are initialized as m® = z*. Note that since the data fidelity
does not account for the contour fidelity, the resulting con-
tours will not be on target yet.
Step 2 We next minimize the augmented cost function
defined in (29) which consists of the contour fidelity,
complexity, discretization, and aerial image penalty
terms. The key point is that the steepest descent algo-
rithm for step two is initialized using the estimated mask
pattern obtained from step one. As stated earlier, the
phase assignments for strong PSM and generation of
assist-bars for binary and AttPSM masks occurs during
the first step. In step two, we start exploring the search
space from the above solution point and incorporate
the other objectives.

3.4. OPC results

We now demonstrate some results for the case of binary
masks for both coherent and incoherent imaging systems.

3.4.1. Coherent imaging

Fig. 5 illustrates the estimated masks and the binary out-
put patterns obtained using a coherent imaging system with
=0, A=193nm, NA =0.85, and the resist threshold
t, = 0.3. The desired pattern consists of 90 nm random
logic contact holes sampled at 10 nm (k; = 0.39). We fol-
low the two step optimization approach and Fig. 5 illus-
trates the estimated mask obtained at the end of step
one. The result was obtained in 60 iterations with s =20
and the run-time was 22s (all run-times reported were
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Fig. 5. The synthesized masks (top row) and the output binary patterns (bottom row) for 90 nm random logic contact patterns. m, (left) is the estimated
mask at the end of Step 1 (Vuerial = 1), m, (center) is estimated at the end of Step 2 (g = 1, Vaeriat = 0.25, yais = 0.005, prv = 0) and m,, (right) is estimated

using the above parameters with yrv = 0.005.
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Fig. 6. Convergence curves for Fig. 5. The left curve indicates the cost function behavior for Step 1 and the right curve indicates the regularization cost
(Vais Rais(m) + pryvRry(m)) versus iteration number for Step 2 of the optimization.

calculated on a 1.3 GHz Pentium-M machine using Mat-
lab). The cost function behavior is illustrated in Fig. 6
and indicates quick convergence. We have observed that
the algorithm scales the center feature during the initial
iterations and adds assist bars during the remaining ones.’

3 The above effect of scaling of the main feature was also recently
reported in the ILT-based assist bar generation work in [22].

Note that the assist features are also shared between adja-
cent contacts and the mask has continuous tone. Further-
more, the output wafer pattern (bottom row) obtained
using the above mask does not have the contours on target.
This is not surprising since the contour fidelity was not con-
sidered as an optimization objective.

The estimated mask in the center in Fig. 5 illustrates the
result at the end of the second step. The parameters are:
Yad = 1, Vaeriat = 0.25, and y4is = 0.005. We observe that
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Fig. 7. Horizontal slice at row number 35 for the aerial image obtained
using the synthesized mask in Fig. 5. Note that the contrast has improved
and the side-lobes will not print.

the mask is having discrete tone and the output contours
for all the contacts are on target. Fig. 7 compares the aerial
image slices and indicates a tremendous improvement in
the peak intensity. We also observe that the side-lobes
are under control and the assist bars do not print. How-
ever, the assist features are broken, irregular, curvy, and
complex, making the mask very difficult to manufacture.
Hence, we repeat the second step by employing the com-
plexity penalty term (yrv = 0.005). This leads to a compar-
atively simple pattern (see m, on the right in Fig. 5) and the
assist bars tend to become square or rectangular in shape,
which are more preferable. The above result was obtained
by performing 100 iterations (see Fig. 6) with s = 8 and the
run-time was 60 s.

3.4.2. Incoherent imaging

Fig. 8 illustrates the estimated masks and the binary out-
put patterns obtained using an incoherent imaging system
with ¢ =1, A =193 nm, NA = 0.95, and the resist thresh-
old #, = 0.5. The desired pattern is a more complicated pat-
tern sampled at 5nm with features as small as 50 nm
(k1 = 0.25). The top row indicates the input patterns and
the bottom row indicates the corresponding output wafer
patterns. The center mask was obtained without any regu-
larization with only ygq = 1. We observe that although the
contours are on target, the mask itself is very choppy and
irregular, making it very hard to manufacture. Hence, we
employ the two step procedure outlined earlier and opti-
mize using the augmented cost function (29) with ypq =1,
v = 0.1 and yg4;s = 0.01. This results in an estimated mask
which is comparatively much smoother with little loss in
performance. It is also interesting to note that the algo-
rithm automatically decided to break some features into
two disjoint sections.* For example, the elbow on the

4 The above effect of breaking of features was also observed for partially
coherent imaging systems in [17].

top-left region is split into two parts in m,, but is repro-
duced accurately at the output. Such counter-intuitive
results are hard to obtain using edge-based parametrization
and would require extensive and tedious segmentation
scripts. The results were obtained using 100 iterations (run-
time 55 s) for each step.

4. PSM mask optimization

We now move our discussion to phase shift mask design
and demonstrate the extension of our framework to the
cases of attenuated PSM, 100% transmission PSM, and
strong PSM with chrome.

4.1. Attenuated PSM

Attenuated phase shift masks consist of quartz and
molybdenum silicide (MoSi) instead of chrome. MoSi
(unlike chrome) allows a small percentage of light intensity
(typically 6% or 18%) to pass through it. The thickness of
MoSi is chosen such that light which passes through is 180°
out of phase compared to the transmitting quartz regions.
In our discussion, we focus on the 6% intensity transmis-
sion AttPSM masks. Every pixel m; can now have only
two  amplitude transmission  values equal to
—+/0.06 = —0.245 (the 180° phase shift with weak trans-
mission) or 1 (100% transmission with no phase shift).
The optimization problem is formulated in (13) subject to
the constraints that m; = —0.245 or 1. We reduce it to a
non-linear optimization problem with the bound con-
straints —0.245 < m; < 1. The parametric transformation
should now map the unconstrained variable 0, to the above
range and is given as

m; = 0.6225(1 + cos (0,)) — 0.245. (30)

The steepest descent algorithm is initialized using the target
pattern (similar to the OPC case).

The quadratic penalty term is again employed where
pixels having values —0.245 and 1 have zero penalty and
the cost increases as we move towards the center of the
range (also see Fig. 9),

r(m;) = —m; 4 0.755m; + 0.245. (31)

The two-tone AttPSM m, is simply obtained by threshold-
ing the estimated mask m with ,, = 0.3775.

4.2. 100% transmission PSM

As the name suggests, 100% transmission PSM does not
use the opaque chrome features at all and is an extreme
case of AttPSM. It is an all transmissive mask consisting
of only zero and 180 degree phase shift features. Thus,
the synthesized mask can only have values —1 or 1. The
optimization problem is formulated in (13) subject to the
constraints that m; = —1 or 1. Once again we relax the con-
dition and impose the bound constraints —1 <m; < 1 and
perform the parametric transformation m; = cos(0)) to
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Fig. 8. The top row consists of the original pattern and the synthesized masks before and after regularization. The bottom row indicates the corresponding
output wafer patterns. m, (center) is estimated using ysq = 1 and m, (right) is obtained using 754 = 1, y4is = 0.01, and y1v = 0.1.
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Fig. 9. Discretization penalty term for AttPSM (maximum penalty is at
m; = 0.3775).

reduce the problem to an unconstrained optimization
problem. The quadratic penalty term now has zero penalty
at —1 and 1 and maximum penalty for m; = 0 (see Fig. 10)

r(m;) = —m/z. + L (32)

Hence, the transmission values are pushed towards —1 and
1 thereby easing the discretization step. The two tone 100%
transmission mask m, is obtained by thresholding the esti-
mated mask m with ¢,, = 0. It is important to note that in
case of strong PSM the estimated mask seldom resembles
the target (see Figs. 13, 16, and 17). Hence, the steepest des-
cent algorithm was initialized to all zeros, thereby allowing
the algorithm to automatically perform the phase assign-
ments for all the regions.
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Fig. 10. Discretization term for 100% transmissive PSM (maximum
penalty is at m; = 0).

-1 -0.5 0 0.5 1

Fig. 11. Discretization penalty cost for strong PSM (with chrome). The
minima are at —1, 0, and 1.
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4.3. Strong PSM with chrome transformation are similar to those employed in 100%
transmission PSM. The only difference occurs in the dis-

The final case we consider is for strong PSM where the  cretization regularization term since we now want a
mask features can have values 0 (chrome) or 1 (quartz with  three-tone mask. There can be different ways of formulat-
no phase shift) or —1 (quartz etched to provide 180 degree  ing the above regularization term. One possible approach
phase shift). The bound constraints and parametric is to divide the interval [—1 1] into three equal parts and
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Fig. 12. The estimated 6% AttPSM mask (left), the corresponding aerial image (center), and the final binary output pattern (right) for coherent imaging
system with 2 =193 nm and NA = 0.85. The black and white regions in m, correspond to —0.245 and 1, respectively.
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Fig. 13. The estimated 100% transmission PSM (left), the corresponding aerial image (center), and the final binary output pattern (right) for coherent
imaging system with 2 = 193 nm and NA = 0.85. The black and white regions in m, correspond to —1 and 1, respectively.
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Fig. 14. The estimated strong PSM (left), the corresponding aerial image (center), and the final binary output pattern (right) for a coherent imaging system
with 2 =193 nm and NA = 0.85. The black, gray, and white regions in m, correspond to —1, 0, and 1, respectively.
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employ a fourth order quartic penalty term where each  Fig. 11 is the plot of the above function. The above curve
pixel has an associated cost, was obtained by fitting a fourth order polynomial to an
. 5 over-determined linear system. The latter was formulated

r(mj) = —0.967mj +0.307m; + 0.655. (33)  to obtain stationary points at m; = —0.33, 0, and 0.33, zero
penalty at m;=—1, 0, and 1, and high penalty at

m;= —0.33 and 0.33. The required three-tone mask m,

can be finally obtained by quantizing 7, € [—1,—0.33),

h ' ' T ongma m; € [—0.33,40.33), and m; € [+0.33,1] to —1, 0, and 1,

respectively.

1.2k ='=100% Transmission PSM

- - - Strong PSM

4.4. Results for PSM

Attenuated PSM

o Desired Pattern

We now demonstrate some results for the above dis-

.08

g cussed PSM design framework.
£ 06
4.4.1. Experiment 1

o4 t=0:3 | In the first experiment, our goal is to print two 120 nm

ool thick bars separated by 50 nm (k; = 0.22) with high con-

. . tour fidelity. Fig. 12 illustrates the synthesized 6% attenu-

oL o X ated PSM for a coherent imaging system with ¢ =0,

° Distance 10 %0 A =193 nm and NA = 0.85. We employ the two-step opti-

mization strategy outlined in Section 3.3 and the experi-
mental parameters are as follows: a=25 ¢ =0.3,
Pad = L, Yaeriat = 0.25, y1v =0.01, 74is=10.01, and s=35.

Fig. 15. Horizontal slices along the center of the aerial images obtained
using the desired pattern 2" and the various synthesized PSMs in Figs. 12—
14 as inputs.
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Fig. 16. The top row consists of the desired pattern, the estimated strong PSM with chrome, and the 100% transmission PSM. The black, gray, and white
regions correspond to transmission values of —1, 0, and 1, respectively. The bottom row consists of the aerial images corresponding to the masks in the top
row. Here /=193 nm, NA =0.7, and ¢ = 0.
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The number of iterations for the two steps were 80 and 160,
and the run-times were 30 and 60s, respectively. We
observe that the optimization algorithm automatically
adds assist bars in all four directions. The width of the
assist bars and their placements from the center feature
are calculated as part of the optimization procedure.
Fig. 15 illustrates the central horizontal slice of the aerial
image. If the desired binary pattern is itself fed as the input
to the imaging system, the aerial image barely has any
modulation and the two bars are not distinguishable. How-
ever, the synthesized AttPSM mask causes good modula-
tion and the assist features do not print.

Fig. 13 illustrates the synthesized 100% transmission PSM
for the same imaging system. The experimental parameters
are as follows: a =25, t,=0.3, y5q = 0.75, Yaeria1 = 0.25,
y1rv = 0.01, y4;s = 0.01, and s = 5. The number of iterations
for the two steps were 120 and 240, and the run-times were
45 and 90 s, respectively. Note that our goal is to create a hor-
izontal separation between the two bars. However, the corre-
sponding region in the synthesized mask is a zero phase shift
fully transmissive (white) contiguous region. The destructive
interference is actually created by the two vertically sepa-
rated 180 degree phase shift (black) features giving a sharp
contrast aerial image as observed in Fig. 15. The result also
demonstrates that our algorithm can produce synthesized
masks which can be very different from the desired patterns.

Finally, Fig. 14 illustrates the result using a strong PSM
with chrome. The experimental parameters are as follows:

800 1000 1200

a=25,1,=0.3, ya = 1, Yacrias = 0.25, yrv =0, y4;s = 0.01,
and s = 1.5. The number of iterations for the two steps
were 80 and 160, and the run-times were 30 and 60 s,
respectively. Once again the synthesized mask is quite dif-
ferent from the desired pattern. We also see three assist fea-
tures around the main pattern which improve the contrast
of the aerial image. The aerial image slices in Fig. 15 dem-
onstrate an improvement in the contrast. Furthermore the
side-lobes are below the resist threshold 7, and hence they
will not print.

4.4.2. Experiment 2

In the second experiment, our goal is to improve the
contrast of the aerial image and distinguish the 100 nm ran-
dom logic contacts (see Fig. 16) using strong PSMs. The
lithography system parameters are: ¢ =0, A =193 nm,
and NA = 0.7 (k; = 0.36). The first row in Fig. 16 indicates
the desired pattern (z*) and the estimated discrete tone
masks (m,) for strong PSM with chrome and 100% trans-
mission PSM. The colors black, gray, and, white corre-
spond to transmission values —1, 0, and +1, respectively.
Note that in this case we are only concerned about match-
ing the aerial image without worrying about the resist
effects. Hence, we set the contour fidelity term ygq = O.
The remaining experimental parameters for strong PSM
with chrome are 7V.era =1, 74is =0.03, ypv =0, s=7,
and number of iterations = 100. The parameters for
100% transmission PSM are 74is = 0.01,

Vaerial = 1 s

Fig. 17. The top row indicates the periodic target pattern and the estimated 100% transmission PSM. The bottom row indicates the aerial image and its

contour at 7, = 0.3. Here NA =0.85, ¢ =0, and k; = 0.35.
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yrv =0, s =7, and number of iterations = 100. The opti-
mization was carried out in a single step for both cases
and each had a runtime of 50 s.

The aerial images corresponding to the input masks are
illustrated in the bottom row of Fig. 16. We observe that
the PSMs bring tremendous improvement in the aerial
image contrast thereby making the contacts distinguish-
able. Note that the upper half of the desired pattern is a
contiguous zero region. The 100% transmission PSM deals
with such regions by placing the +1 and —1 assist bars in a
manner which destructively interfere leading to very little
energy deposition. The PSM with chrome blocks the
energy deposition by simply using chrome features.

4.4.3. Experiment 3

The final experiment is for a periodic dense pattern con-
sisting of phase conflicts as indicated in Fig. 17. The grating
pitch is 160 nm, NA = 0.85, k; = 0.35, and the pattern is
sampled using 20 nm resolution. The target pattern consists
of T-joints and line-ends, two commonly arising phase-con-
flict problems. In the past, researchers have proposed using
alternating phase shift mask with trim mask (double expo-
sure) [12] or layout modification using graph-cut methods
[3] to resolve the above problem. We employ our ILT
approach and solve for one period of the pattern (see the
dotted red box marked in the target pattern in Fig. 17).°
The boundary conditions are simulated using circularly
symmetric padding for the convolution operations. The
experimental parameters are ygq =1, 7q4is = 0.01, s =0.5,
number of iterations = 1500, and the runtime was 50 s.
The estimated 100% transmission mask corresponding to
one period of the pattern is indicated in Fig. 17. The results
indicate that the aerial image has low peak-intensity value
in the phase-conflict regions, but the overall contour fidelity
(at £, = 0.3) is good. As part of future work, we are working
on double exposure inverse lithography technique to further
improve the aerial image quality (particularly for low k; val-
ues with phase conflicts) [32,48].

5. Future work and conclusions

In this article, we proposed a new framework for fast
and efficient pixel-based binary, attenuated, and strong
phase shift mask design using inverse lithography. Due to
public unavailability of the optical kernels used in practice,
we have only presented results for the case of coherent and
incoherent imaging systems. However, our framework is
also applicable to the commonly employed partially coher-
ent imaging systems.

Our work primarily focuses on exploring feasibility and
limitation of ILT solutions that provide aerial image con-
trast necessary for patterning at k; < 0.35. Practical reduc-

5 For interpretation of the references in colour, the reader is referred to
the web version of this article.

tion of suggested ILT methods to synthesis of actual masks
would require computationally efficient treatment of thick
mask effects with partially coherent illumination as well as
use of robust resist models to account for complex effects
accompanying transformation of image intensity into 3D
distributions of dissolution rates of actual resists, both of
which are outside of the scope of this paper. The above
effects, if ignored from the modeling steps, may lead to ILT
solutions resulting in catastrophic patterning failures such
as bridging and pinching of features of interest, patterning
of side-lobes, and unacceptably high sensitivity to mask
errors as well as incorrectly assessed sensitivities to changes
in focus and exposure. Yet, we believe an improvement in
the aerial image modulation (contrast) provided through
the ILT path will point to a solution path that leads to an
overall improvement in process latitude, resist side-wall
angles and give better resist profiles as observed in [43], with
possible exception regarding sensitivity to side-lobe printing.

The integer RET constraints were substituted by bound
constraints thereby reducing the mask design problem to
an unconstrained non-linear optimization problem. We cur-
rently employ the steepest descent algorithm to solve the
above problem. The convergence behavior can be further
improved by exploring advanced optimization techniques
like conjugate gradient method, quasi-convex method, etc.,
which search the solution space more efficiently.

Note that we are employing a local gradient-based
method to optimize a non-convex function. We have
observed that for low k; dense patterns with several phase-
conflicts, the algorithm sometimes lands in bad local minima.
One possible approach to address this problem is to inspect
the local minima of a simplified QP problem, and choose a
good minimum as the initialization guess to the quartic cost
function optimization routine (as suggested in[13]). Another
alternative is to use double exposure ILT which automati-
cally splits the target pattern into two parts and resolves
the phase-conflicts. This forms part of our ongoing research
and the preliminary results are very encouraging [32,48].

We introduced the regularization framework and effec-
tively used it to control the tone and complexity of the esti-
mated masks. The regularization framework is a powerful
tool which can be further extended to incorporate other
user-defined criteria like mask error enhancement factor
control, process window optimization, minimum mask fea-
ture size control, alignment error control, etc. The pro-
posed technique can be readily extended to employ RETSs
for optical maskless lithography, proximity correction in
e-beam lithography, and diffractive optical elements
(DOE) source design for off-axis illumination.

The ILT approach presented in this paper represents a
very aggressive RET which will help enable 65 nm and
45 nm nodes using 193 nm exposure tools.
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