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Mask Design for Optical Microlithography—An
Inverse Imaging Problem

Amyn Poonawala and Peyman Milanfar, Senior Member, IEEE

Abstract—In all imaging systems, the forward process intro-
duces undesirable effects that cause the output signal to be a
distorted version of the input. A typical example is of course the
blur introduced by the aperture. When the input to such systems
can be controlled, prewarping techniques can be employed which
consist of systematically modifying the input such that it (at least
approximately) cancels out (or compensates for) the process losses.
In this paper, we focus on the optical proximity correction mask
design problem for “optical microlithography,” a process similar
to photographic printing used for transferring binary circuit
patterns onto silicon wafers. We consider the idealized case of an
incoherent imaging system and solve an inverse problem which is
an approximation of the real-world optical lithography problem.
Our algorithm is based on pixel-based mask representation and
uses a continuous function formulation. We also employ the
regularization framework to control the tone and complexity of
the synthesized masks. Finally, we discuss the extension of our
framework to coherent and (the more practical) partially coherent
imaging systems.

Index Terms—Image synthesis, inverse lithography, inverse
problems, mask design, optical microlithography, optical prox-
imity correction (OPC), regularization, sigmoid.

I. INTRODUCTION

I N all imaging systems, the underlying physical process
introduces undesirable distortions which causes the output

signal to be a warped version of the input. To overcome this,
when the input is controllable, prewarping techniques can be
employed which consist of systematically modifying the input
such that it will cancel out the process losses. Thus, in effect,
we are precompensating for the process distortions to come.
This is an image synthesis [1], [2] problem which consists of
finding an image that when used as the input to a given imaging
system, results in the desired output image (to within some
prescribed tolerance).

The problems of image restoration (reconstruction) and
image synthesis (design) are related but not the same. In both
cases, the output and the imaging system are known but the
input is unknown [1], [2]. In the restoration case, the output
image results from an actual but unknown input image [3],
and, therefore, at least one solution must exist in the absence
of measurement error or noise. However, in the synthesis case,
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there may be no input capable of producing the prescribed
output, and, hence, existence of a solution is a concern [1], [2].
Furthermore, if a solution does exist, it may not be unique.

The image formation process can be mathematically ex-
pressed as

(1)

where is the forward model which maps the input inten-
sity function to the output intensity function . Let

be the desired output intensity function. We seek to
find a predistorted input intensity function which will give us an
approximation to the desired output . This is achieved
by searching the space of all inputs and choosing which
minimizes a distance , where is some
appropriate distance metric to be defined later. To summarize,
we write

(2)

In this paper, we focus on studying prewarping techniques
to design optical proximity correction (OPC) [4] masks for
microlithography. We follow the inverse imaging mask design
approach which consists of inverting the mathematical forward
model from mask to wafer. Section II discusses the optical
lithography procedure and introduces the forward model em-
ployed to simulate the distortion effects of the imaging system.
The optimization procedure is discussed in Section III, and, in
Section IV, we introduce two regularization functions to obtain
two-toned and easy to manufacture masks, respectively. We
discuss the weight mask and selected parameter optimization
in Section V, and present conclusive remarks and future exten-
sions in Section VI.

II. OPTICAL MICROLITHOGRAPHY AND OPC

A. Optical Microlithography

Optical microlithography, a process similar to photographic
printing, is used for transferring circuit patterns onto silicon
wafers and forms a very critical step in the IC fabrication flow-
chart [5]. As illustrated in Fig. 1, the pattern to be replicated
on the wafer is first formed on a reticle (stencil or mask). An
illuminator (UV source) is shone through this mask producing
an image of the pattern through the lens system, which is even-
tually projected down onto a photoresist-coated silicon wafer
using a projection system (typical reduction factor of 4X). The
photoresist is chemically sensitive to light, and, hence, only the
exposed regions are developed away leaving behind a likeness
of the mask pattern on the substrate (wafer).
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Fig. 1. Steps involved in optical microlithography.

In an ideal world, the output circuit pattern on the wafer will
be identical to the mask pattern. Unfortunately, the band-limited
imaging system introduces distortions caused by the diffraction
effects of the lens-projection system, particularly at higher reso-
lutions. The optical projection system acts as a “low-pass” spa-
tial frequency filter. These undesirable distortions lead to a loss
of pattern fidelity, and, hence, the output pattern obtained on
the wafer is a distorted (blurred) version of the input [4] which
can lead to short circuits, defects, and yield loss. The semicon-
ductor industry strives to adhere to the International Technology
Roadmap for Semiconductors (ITRS) [6] which has been driven
by Moore’s law for the past three decades. Moore’s law with
regard to lithography requires the critical dimension (CD)1 to
shrink by 30% every two years (currently nm). This
puts very stringent requirements on lithography thereby making
it one of the most challenging problems faced by the semicon-
ductor industry.

The resolution (Res) of the lithography system in Fig. 1 can
be expressed using Rayleigh’s criterion as follows:

(3)

The numerical aperture where is the refrac-
tive index of the medium, and is the half angle of the max-
imum cone of light that can enter the lens. Obviously, the reso-
lution can be improved by increasing the numerical aperture of
the imaging system or decreasing the wavelength and
these alternatives have been actively explored by researchers in
the lithography community. Immersion lithography is a very re-
cent advancement [7] which increases NA by using water or
other transparent fluid with higher refractive index. The current
values for and are 193 nm and around 0.9 (dry lithog-
raphy), respectively. Pushing the above parameters values be-
yond this limit is very costly, risky, and time consuming. There-
fore, it has been established that the most important, feasible,

1Critical dimension refers to the smallest dimension on the layout, typically
the microprocessor transistor gate length or the half-pitch of DRAM.

Fig. 2. Simplified view of the lithography process.

and promising method to achieve the goal of enhanced resolu-
tion is by decreasing the process constant using resolution
enhancement techniques (RETs) [4], [8], [9].

The commonly employed RETs include off-axis illumina-
tion, phase-shift methods [10], and double-exposure techniques
[11]. Any type of RET, while allowing for an increased reso-
lution, introduces image distortions dependent on the geome-
tries within a certain proximity radius and the optical conditions.
OPC is a very commonly employed technique for compensating
the distortions caused by RETs in optical lithography. It is im-
portant to note that phase-shift methods and OPC are imple-
mented by making physical changes to the mask (reticle). Un-
fortunately, these changes increase the complexity, data-size and
cost of the masks (currently in several millions for a complete
mask set having approximately 32 levels), and, hence, the chal-
lenge is to implement RETs while taking the above factors into
account.

B. Optical Proximity Correction

In this paper, we focus on designing OPC masks to overcome
the distortions occurring in optical microlithography. OPC
consists of adding subresolution features to the original layout.
Thus, we precompensate for the process losses by modifying
the original layout, which leads to better pattern fidelity and
improved resolution (see Fig. 6) [4], [12].

OPC has been carried out mainly using two approaches; rule-
based, or model based. These are often used in conjunction de-
pending on the speed, accuracy, throughput, cost, and manufac-
turability requirements. As the name suggests, in the rule-based
OPC scheme, empirical rules are developed to counteract the
commonly occurring problems around pattern corners, edges,
local interactions, etc. [13]. These are then applied throughout
the pattern to provide a general improvement in pattern fidelity.
Rule-based OPC techniques are simple to implement, and have
relatively low-cost and high throughput. They are very popular
in the semiconductor industry and are widely employed in sev-
eral technology nodes. However, they only compensate for local
features and do not optimize global performance depending on
the overall layout.
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Fig. 3. Approximated forward process model.

Model-based methods, on the other hand, use a mathematical
description to represent the warping process (forward model).
As such, they are more universal and represent a more aggres-
sive OPC strategy which will be required for 45- and 32-nm
nodes [14]. The success of these methods relies heavily on
accurate modelling of the distortion process which has been
studied carefully by physicists, chemists, and other researchers
in the lithography community [15]. Fig. 2 illustrates a simplified
view of the lithography process. It consists of two functional
blocks; namely, the projection optics effects (aerial image
formation), and the resist effects. The former is simulated using
the Hopkins scalar (or vector) model for partially coherent
imaging systems [16], [17]. The resist effects are simulated
using Dill’s model [5], Mack’s Model [18], [19], the constant
threshold resist (CTR) model [20], the variable threshold resist
(VTR) model [21], or other models as in [22]. We use the
simplest (CTR) model in our analysis.

Model-based OPC itself has two flavors. The forward model-
based OPC techniques suggested by Cobb and Zakhor [23] pa-
rameterize the mask pattern using edges and corners and pro-
ceed by nudging these geometric elements while simulating the
output wafer pattern (using the forward model) until certain
criteria are satisfied. Backward (or inverse) model-based tech-
niques (which form the topic of interest of this article) invert
the mathematical model and attempt to directly synthesize the
optimized mask pattern [10]. In the past, Sherif, et al. [24],
Liu-Zakhor [25], and Pati-Kailath [26] used branch and bounds
methods, simulated annealing, and projection on convex sets
(POCS), respectively, to synthesize the mask. More recently,
Oh et al. [27] used random-pixel flipping and Erdmann et al.
[28] proposed genetic algorithms to solve the above problem.
Granik [29] recently used nonlinear programming to solve the
above problem.

In our approach, initially reported briefly in [30], and sig-
nificantly expanded here, we depart from our predecessors by
formulating the mask synthesis problem using continuous func-
tion optimization and using the gradient information to sys-
tematically search the solution space. We use the pixel-based
parametrization which results in more flexibility in mask repre-
sentation. However, this approach also suffers an inherent draw-
back in that the synthesized masks are very difficult to man-
ufacture and inspect. Therefore, we employ the regularization
framework and use an norm-based penalty function to curb
the mask complexity. Furthermore, we also employ a quadratic
penalty term to ensure that the synthesized mask is restricted to
be binary. The gradient of the cost function can be calculated an-
alytically, and has a computational complexity
for pixels.

Fig. 4. Sigmoid function sig(u) = 1=(1 + e ).

C. Proposed Method for Mask Synthesis

In this paper, we treat the problem as an “inverse” problem,
and focus on developing fast and efficient methods for backward
(or inverse) model-based OPC. We use a pixel-based mask rep-
resentation; hence the input, output, and desired patterns are all
represented using discrete 2-D images. We employ the approx-
imated forward process model illustrated in Fig. 3 in our anal-
ysis.2 Note that the aerial image formation step from Fig. 2 is ap-
proximated using the convolution of the input pattern with a 2-D
Gaussian kernel for the sake of simplicity. Second, we employ
the sigmoid type transfer function instead of the hard-thresh-
olding (heaviside) operation to simulate the resist effect. Using
a Heaviside operator (hard threshold) defined as

(4)

would result in a discrete combinatorial optimization problem.
A sigmoid, however, is a smooth, continuous function which
can arbitrarily closely approximate the Heaviside function [31].
With this choice, we can use gradient-based continuous function
optimization techniques like steepest-descent to solve the mask
design problem.

In particular, we employ the logarithmic sigmoid function

(5)

where the parameter dictates the steepness of the sigmoid. A
large value of leads to a very steep sigmoid which closely
resembles the hard thresholding operation. The parameter is
the threshold parameter of the sigmoid and is set equal to the
threshold level of the resist in accordance with the CTR model.
As an example, Fig. 4 illustrates the behavior of a sigmoid with

and .

2
m in Fig. 3 denotes the mask which plays the part of the input intensity

function i(x; y) used in (1) and (2).
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D. Limitations and Goals of This Work

Before we delve into the details of our algorithm, we would
like to discuss some goals and shortcomings of our work.
Sayegh et al. [1], [2] formulated the image construction (or
the inverse lithography) problem in the early 1980s and saw
parallels with the well-known image restoration problem. Our
objective here is to demonstrate how some of the well studied
tools for image restoration like regularization and nonlinear
optimization can be employed to solve the inverse lithography
problem. Most of the past work on pixel-based mask design
employed techniques like numerical differentiation, integer
programming [24], [32], simulated annealing [25], POCS
[33], and random-pixel flipping [27]. Our goal is to formulate
mask design as a continuous function optimization problem
and analytically calculate the gradient. The gradient (when
calculated analytically) has a computational complexity of only

making this an attractive approach.
The current work takes the idealized view of the lithography

system consisting of a band-limited linear shift-invariant (in-
coherent imaging) system followed by a hard-limiter. We em-
ploy a very generic Gaussian convolution model to calculate the
aerial image. Note that this does not capture the physical effects
in real-world microlithography systems which are partially co-
herent in nature. Aerial image calculations for partially coherent
imaging systems employ the Hopkins model [16] which is non-
linear. The CTR model is a simplified way of matching the aerial
image contours. Typical lithography simulators model the re-
sist effect using the VTR [21] or empirical resist models which
are analytically noninvertible. Hence, CTR model is commonly
employed for contour matching while solving the inverse lithog-
raphy problem [2], [24], [29], [34].

Our algorithm in its present form cannot be directly employed
to solve the practical real-world lithography problem and ful-
filling all the rigorous industry requirements. However, our goal
is to solve an inverse imaging problem which is a represen-
tative of the optical lithography problem. We want to demon-
strate the potential and applicability of the vast pool of inverse
imaging techniques and nonlinear programming to solve the
mask design problem. Finally, we would like to highlight that
our proposed framework is not limited to the Gaussian model. In
Section VI-A, we discuss the extension of our framework to the
more general cases of coherent and partially coherent imaging
systems.

III. MODEL-BASED OPTIMIZATION

We define vectors , , which are obtained by
sampling and lexicographic ordering of , , and

respectively. Throughout our discussion, represents
the prescribed (desired) binary pattern, represents the gray-
level output pattern, and represents the input pattern fed to
the imaging system (can be binary or gray-level). The forward
model in Fig. 3 can be mathematically represented as

(6)

where is the blur matrix representing
the point spread function (PSF) of the imaging system,

, and . Thus, every

pixel undergoes a cascade of convolution followed by the
sigmoidal transformation. To write (6) another way

(7)

for .

A. Optimization Problem

To begin, we formulate the OPC-mask design problem as
finding the optimized mask layout that minimizes the cost
function , defined as the norm of the difference be-
tween the desired pattern and the output pattern . That is

(8)

Later, in Section IV, we refine this approach by introducing the
regularization terms and augmenting the cost function. We can
write (8) as

(9)

where is defined using (7).3

Note that consists of the transmission values of a binary
mask which can only take values 0 or 1, resulting in a combi-
natorial optimization problem. However, to make the problem
analytically tractable, for the time being, we relax the param-
eter values to lie in the range [0,1]. This is achieved by imposing
the following inequality constraints on the optimization problem
given in (8):

for (10)

The bound-constrained optimization problem can be further
reduced to an unconstrained optimization problem using the fol-
lowing parametric transformation

for (11)

where is the unconstrained parameter
vector. The re-parameterized cost function can be formulated
in terms of the parameter vector as follows:

(12)
We now employ the steepest-descent method to find the solu-

tion of the above problem which involves finding the first order
derivatives of (12). As shown in the Appendix, the gradient

3As an alternative, it is also possible to consider the weighted least squares
approach where weights are chosen according to the importance of different
parts of the pattern. This may be viewed as a mix of model-based and rule-based
approaches, where the rules determine weights in the model. We discuss this
approach in Section V.
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Fig. 5. Flowchart showing the sequence of operations required for calculating the gradientrF (���). Note that multiply indicates element-by-element multiplica-
tion of 2-D arrays.

Fig. 6. Top row (input masks), left to right: Original pattern, optimized gray pattern, and binary pattern obtained using an optimum global threshold t . The middle
and bottom rows indicate the corresponding aerial images and binary output patterns. The parameters are a = 90, t = 0:5, 15 � 15 filter with � = 5 pixels,
s = 0:4, and number of iterations = 200.

vector can be calculated using the following
expression:

(13)
where is the element-by-element multiplication operator.
Note that the computational complexity of the gradient calcu-
lation is governed by the convolution operation. Therefore, the
algorithmic complexity is where is the total
number pixels in the image.

The iteration of steepest descent is given as

(14)

where is the step-size. The flowchart in Fig. 5 illustrates the
steps involved in calculating the gradient given by (13). We

would like to highlight the useful fact that due to the structure
of (13), the steepest descent iterations can be quickly and di-
rectly carried out on the 2-D image array (matrices) with no
need for the (algebraically convenient) raster scanning opera-
tion (see Fig. 5). More importantly, since we know the solution
to be a perturbation of the prescribed pattern, the iteration can
be initialized with the prescribed pattern, leading to quick con-
vergence. The optimized pattern can finally be obtained from

using (11).
We note that the pattern obtained using the above method

is not binary. Instead each pixel can have gray values anywhere
in [0,1]. This makes the resulting mask practically unrealizable,
and, hence, we need a postprocessing step to obtain the syn-
thesized binary OPC mask . The simplest way to obtain
from is using a global threshold parameter , such that the
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Fig. 7. Cost function versus steepest-descent iterations for Fig. 6.

error between and the output binary pattern obtained using
(as the input) is minimized. The optimum value of can

be obtained using a simple line search operation [35]. How-
ever, the above approach for binarization is suboptimal and, in
Section IV, we propose an alternative method for this step.

B. Some Results

We now present some simulations for the OPC masks synthe-
sized using the aforementioned method.

The bottom row in Fig. 6 illustrates the binary output pat-
terns (after resist thresholding) obtained using (left) the orig-
inal pattern (i.e., ), (center) the optimized gray pattern

, and (right) the binary pattern as inputs.
The corresponding aerial images (which form an intermediate
step in the process flow) are illustrated in the middle row. The
PSF effect was simulated using a Gaussian filter of size 15
15 with pixels, with the sigmoid parameters ,

and the gradient descent iterations were carried out
with step size . The final output binary patterns were
obtained by thresholding the aerial images using the heaviside
operator given in (4) with . Fig. 7 illustrates the cost
function behavior for the first 200 iterations of steepest descent,
indicating quick convergence. The algorithm was coded using
Matlab and the execution time was 7 s on a 1.4-GHz Pentium-M
processor.

The cost associated with the above three input patterns
can be calculated using (8), where, for this example,

, , and . However, for the
given imaging system (see Fig. 2), the aerial image is actually
subjected to the Heaviside operation to obtain the binary output
image. Hence, it is more appropriate to express the error using
the binary output image instead of the sigmoidal transformed
(gray level) output image. We employ a metric we call pattern
error, defined as the total number of pixels which are not faith-
fully reproduced in the binary output pattern4

(15)

where is the heaviside operator defined in (4). From
Fig. 6, we observe that , , and

.
Note that the imaging system was incapable of rendering the

two bars distinguishable if the desired image is itself used as the

4Although we define (15) using L norm, note that for binary patterns, L ,
L , and L norms are all the same.

input mask (i.e., ). However, the patterns are reproduced
very faithfully using the synthesized OPC mask. The results also
indicate a perfect corner reproduction which is physically unre-
alizable. The perfect resist reproduction appears because of the
coarse sampling of the underlying pattern coupled with the hard
thresholding operation. The current pixel-size is too big to cap-
ture the rounding at the corners. However, if we choose a smaller
sampling interval, the corners wont be perfectly reproduced.

Fig. 8 illustrates the input and output patterns obtained by
directly solving the bound-constrained optimization problem in
(8) instead of performing the parametric transformation. We em-
ployed the gradient projection algorithm described in [36] and
utilized the code provided by the author for this experiment. The
experimental parameters are exactly the same as Fig. 6 and 200
iterations were performed. We observe that the optimized mask

is structurally very similar albeit much more gray compared
to one obtained in Fig. 6. As a result, the pattern error increases
from 4 to 40 after the binarization step rendering it ineffective.
A similar behavior was observed even for other test patterns.
The above comparison illustrates that the parametric transfor-
mation technique also has an added indirect advantage; the un-
constrained optimization routine tends to produce near-binary
results, thereby easing the postprocessing binarization step. We
attribute this to the cosine term in (11), which results in a non-
linear mapping onto [0,1] while favoring values closer to the
extremities. Note that the above example is only for illustration
purposes and all the remaining simulations in this article are car-
ried out using (13) and (14).

Fig. 9 illustrates the input and output patterns for a more com-
plicated circuit pattern. The Gaussian filter employed has size
11 11 with pixels (the high value of gives the
effect of a severe averaging filter), while the sigmoid param-
eters are , , and . We observe that
our algorithm performs an excellent job in prewarping and the
output is extremely faithful to the desired pattern (pattern error
447 versus 1 pixel). Note that the binarization step employed
from Section III-A increases the error from 1 to 18. Fig. 10 il-
lustrates the cost function behavior for the first 200 iterations
of the steepest-descent procedure. Note that the long vertical
bar (on the extreme left) in the prescribed pattern in Fig. 9 is
completely missing when reproduced using . However,
our optimization procedure starts adding prewarping elements
to correct it at around 85th iteration, which results in a steep de-
crease in the cost function observed in Fig. 10. The kinks in the
curve are owing to the large step size and can be overcome by
choosing a smaller .

The imaging system given in Fig. 2 is a binary-in-binary-out
(BIBO) system. The binary output part is modelled by using the
sigmoid-based function (see Fig. 3) which guarantees that the
output pattern is always close to binary. The current setup does
not incorporate the fact that the estimated input pattern should
also be binary. The disadvantage is the need for an extra post-
processing step (binarization) which is suboptimal with no guar-
antee that the pattern error will be under control (see Fig. 9).
There is also a possibility to jointly optimize the binarizing
threshold and the gray pattern. In the next section, we use the
regularization framework to overcome these problems and com-
plete the binary-to-binary loop.
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Fig. 8. Top row, left to right: Original pattern, optimized gray pattern using the constrained optimization routine from [36], and the binary pattern obtained using
an optimum global threshold t . The bottom row indicates the corresponding binary output patterns. The parameters are a = 90, t = 0:5, 15 � 15 filter with
� = 5 pixels.

Fig. 9. Top row, left to right: Original pattern, optimized gray pattern, and binary pattern obtained using an optimum global threshold t . The bottom row indicates
the corresponding binary output patterns. The parameters are a = 80, t = 0:5, 11 � 11 filter with � = 14 pixels, s = 0:5, and number of iterations = 200.

Fig. 10. Cost function versus steepest-descent iterations for Fig. 9.

IV. REGULARIZATION

If we look back again at Fig. 6, we observe that both the gray-
level and binary input patterns give rise to the same (desired) bi-
nary pattern at the output. The BIBO mask design problem can
itself have multiple solutions and the continuous domain for-
mulation implies that now there can be infinitely many different
input patterns, all giving rise to the same binary pattern at the
output. However, we want our estimated pattern to satisfy cer-
tain properties which can be incorporated as prior knowledge
about the desired solution. These properties can constrain the
space of solutions to obtain a general desirable solution using
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Fig. 11. Quadratic penalty cost function R (m).

an appropriate regularization term [37]. In general, the formu-
lation can be described as follows:

(16)

where is the data-fidelity term, is the regulariza-
tion function used to direct the unknown parameter towards
the desired solution space, and is the user-defined scalar for
adequately weighing the first (fidelity) term against the second
(regularization) term.

In this section, we discuss two regularization terms corre-
sponding to two desirable properties we chose to promote in our
estimated solution. The first property discussed earlier is that
our estimated mask should be (close to) binary, and the second
is that our masks should be simple and, therefore, cheap and
easy to manufacture.

A. Quadratic Penalty Term

The first penalty term employed to obtain near binary patterns
is as follows:

(17)

where . Thus, every pixel has an
associated penalty given by the quadratic function (see Fig. 11)

As described earlier the mask transmission values will be con-
strained to lie in [0,1], and, hence, we are only interested in
the behavior of the cost function in that range. The penalty in-
curred is zero for transmission values 0 or 1 and increases as we
move away from binary region in either direction (maximum at

).
The gradient of the quadratic penalty

term is given by

(18)

which can be used in conjunction with (13) and (14) while car-
rying out the steepest-descent iterations as before.

Fig. 12 illustrates the results with the same prescribed pattern,
PSF and sigmoidal parameters used in Fig. 9 (Section III-B).
However, here we employ the quadratic regularization term and
minimize the overall cost function

where is defined in (8) and is defined in (17),
with . The masks in Fig. 12 were obtained using
200 iterations with . Note that unlike Fig. 9, the opti-
mized gray-pattern is very close to binary. Hence, there is no
need for the line search operation discussed in Section III-A to
find the optimal global threshold parameter . In fact, we can
simply obtain the synthesized binary pattern by thresholding

with . Note that the pattern error only increases
from 0 to 1 pixel due to the above step. We also mention that
the inclusion of the regularization penalty that promotes binary
results did not introduce any new error when applied to the pat-
tern in Fig. 6 and, therefore, due to space constraints, we do not
show the results for that case.

B. Complexity Penalty Term

A second penalty term we will incorporate will help ensure
that the resulting OPC mask is less complex and, therefore,
cheap and easy to fabricate and inspect. Isolated perturbations,
protrusions, etc., are not preferred because they increase the data
handling and manufacturing cost. Hence, we seek a penalty term
which suppresses these effects. To achieve this, let us first define
an auxiliary variable called the activation pattern where

for

The on pixels in indicate the positions where prewarping oc-
curred; so the prewarped pattern can be obtained by simply flip-
ping the corresponding pixels in from 1 to 0 or 0 to 1.

There are a variety of penalty terms that one can employ de-
pending upon how one defines mask complexity. Akin to the idea
of total variation (TV) [37] penalty, we choose to penalize the
mask complexity using the local variation of the activation pat-
tern as follows [38]:

(19)

where represent the first (directional) deriva-
tives and are defined as and where

and shift the 2-D mask represented by along (right)
horizontal and (up) vertical direction by one pixel, respectively.

This approach, while relatively simple, enables us to de-
couple the features of the underlying prescribed pattern
from thereby capturing only the changes occurring due
to prewarping. Isolated holes, protrusions, and jagged edges
have higher associated penalty. The regularization term in (19)
suppresses these effects and forces the changes to be spatially
smoother and less abrupt. This leads to simple, and easy to
manufacture OPC masks.

The gradient of the TV penalty term is
given as

(20)
which can be used in conjunction with (13) and (14) while car-
rying out the steepest-descent iterations as before.

Fig. 13 illustrates the results with the same prescribed pattern,
PSF, and sigmoidal parameters used in Fig. 6 (Section III-B).
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Fig. 12. Left to right: Original pattern, optimized gray pattern, and binary pattern obtained using global thresholding with t = 0:5. The cost function minimized
was F (m) + 
 R (m) and the parameters are a = 80, t = 0:5, 11 � 11 filter with � = 14 pixels, s = 1:5, and number of iterations = 200, and

 = 0:015.

Fig. 13. Left to right: Original pattern, optimized gray pattern, and binary pattern obtained using global thresholding with t = 0:5. The cost function minimized
was F (m)+
 R (m)+
 R (m) and the parameters are a = 90, t = 0:5, 15� 15 filter with � = 5 pixels, s = 1, and number of iterations = 200,

 = 0:025, and 
 = 0:045.

However, here, we employ both the quadratic and TV regular-
ization terms and minimize the overall cost function

where is defined in (8), is defined in (17), and
is defined in (19) with and

. The masks were obtained using 200 iterations with
. We observe that the synthesized OPC pattern is much sim-

pler than the one in Fig. 6, yet the pattern error is still quite
small.

Similarly, Fig. 14 illustrates the results obtained using both
regularization terms with the same prescribed pattern, PSF,

and sigmoidal parameters used in Fig. 12 (Section IV-A) with
and . The above result was obtained

in 400 iterations with . In both of the above cases, we
observe that the isolated holes, protrusions, and jagged edges
are suppressed, and, hence, the resulting mask is simpler, and,
therefore, easier, and cheaper to fabricate and inspect.

C. More Results

In this section, we present two interesting results using square
and circular lens apertures.

1) Comparison With Past Work: Here we compare the results
obtained using our continuous function optimization method
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Fig. 14. Left to right: Original pattern, optimized gray pattern, and binary pattern obtained using global thresholding with t = 0:5. The cost function minimized
was F (m) + 
 R (m) + 
 R (m) and the parameters are a = 80, t = 0:5, 11 � 11 filter with � = 14 pixels, s = 1, number of iterations = 400,

 = 0:01, and 
 = 0:02.

Fig. 15. Top row indicates the synthesized masks obtained using Sherif et al. (from [24]) and our algorithm for a square pupil with d = 4:0 and d = 4:5 pixels.
The bottom row indicates the corresponding output wafer patterns assuming a hard-limiter with t = 0:2.

against those obtained by integer optimization. Sherif et al. [24]
employed mixed-linear integer programming to estimate the re-
sist threshold and the OPC mask for an idealized lithography
system with a square aperture. Their cost function is very sim-
ilar to the pattern error defined in (15) (note that we have used
the latter as a metric to evaluate the quality of our results). The
authors in [24] reduce the nonlinear cost function to a linear ob-
jective function with unconditional constraints by tripling the
number of estimated variables. The problem can then be solved
using branch and bound method.

In order to make a fair comparison, we choose the same
imaging system and target pattern as employed by the
authors in [24]. The imaging systems considered in [24] is an
incoherent imaging system with a square aperture. In this case,
the PSF is defined as

where is the width of the impulse response function in units
of pixels. The results for the cases of and are
illustrated in Fig. 15. The experimental parameters for our al-
gorithm are as follows: , , and .
We observe that the synthesized masks obtained using our algo-
rithm are different from those obtained by solving the combi-
natorial optimization problem. However, the output wafer pat-
tern is reproduced with 100% accuracy proving that our results
are correct. It is also worth noting that our masks were synthe-
sized in 5 s using a 1.4-GHz Pentium-M machine compared to
15–25 min reported in [24] (using the computational resources
available in 1995).

2) Circular Lens Aperture: Fig. 16 illustrates the results for
an incoherent imaging system having circular lens aperture with

and nm. The PSF for the above system
is the square of a jinc function with cut-off frequency
[16], [39]. The desired pattern is sampled at 5 nm and consists
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Fig. 16. Left to right: Desired pattern, the synthesized binary mask using no regularization (a = 40, t = 0:5), and the synthesized binary mask with 
 = 0:01

and 
 = 0:01 for a circular pupil with k = 0:34.

of 70-nm features giving . The top
row in Fig. 16 indicates the input masks and the bottom row in-
dicates the corresponding wafer patterns. We observe that the
synthesized mask significantly reduces the corner rounding and
brings the contours on target. It is also interesting to note that
the algorithm automatically decided to break some features into
two disjoint parts. For example, the two vertical bars are dis-
connected from the main feature in the synthesized mask, but
are accurately reproduced at the output. Such counter-intuitive
results are hard to obtain using edge-based parametrization and
would require extensive and tedious segmentation scripts. Inter-
estingly, the above feature-breaking behavior was also observed
very recently by Liu et al. (see [34, Fig. 4]).

V. WEIGHT MASK AND SELECTED PARAMETER OPTIMIZATION

In this section, we discuss two additional useful features
which can be incorporated in the above framework for solving
the OPC mask design problem.

A. Weight Mask

In many practical scenarios, it is of interest to reproduce cer-
tain regions or areas of the pattern more faithfully as compared
to others. Consider two parallel wires; the key requirement is
that they never fuse on the reproduced pattern, whereas we
are much less concerned about their actual reproduced shape.
Similarly the mask designer can mark other critical regions
depending on the shape, size and vicinity of the neighboring
features. The above information can be incorporated into a
weight pattern which can then be used for selective region
correction. The goal is that only the critically marked (high
priority) regions on the desired pattern should be faithfully
replicated using suitable prewarping. The unimportant (low
weight) regions of the underlying pattern may be reproduced
with relatively lower fidelity. The weight pattern is assigned

before running the OPC routine and can be generated heuristi-
cally or by the mask designer.

Let represent the weight mask where each ele-
ment signifies the importance (or weight) associated
with reproducing that particular pixel at the output. We refor-
mulate the optimization problem in (9) using the weighted cost
function as follows:

(21)

The gradient calculations and steepest-descent iterations can be
easily extended using (13) and (14) as follows:

(22)

Fig. 17 illustrates the weight mask (left), optimized OPC pat-
tern (center), and the final output pattern (right) using the same
parameters as in Fig. 16 with and . In
this case, we are not concerned about reproducing the corners
accurately at the output. However, we want the other features
of the pattern (length, width and separation of the bars) to be
accurately reproduced. The above objective can be achieved by
incorporating the information from the weight mask in Fig. 17.
Note that a 5 5 region around every corner has been assigned
zero weight, whereas the remaining regions have been assigned
a higher weight equal to one. The resulting prewarping is dif-
ferent from that occurring in Fig. 6 and all the regions, barring
corners, are perfectly reproduced.

B. Selected Parameter Optimization

All the algorithms discussed up to this point treat the entire
synthesized pattern to be completely unknown. The user (mask
designer) has no control over which regions of the underlying
pattern are allowed to be predistorted. The entire layout space
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Fig. 17. (Left) Employed weight mask, (center) synthesized mask pattern, and (right) the final output pattern. Note that 5 � 5 region around the corners have
zero weight whereas the weight is one everywhere else.

Fig. 18. Left to right: User-selected parameters (marked in white), the corresponding optimized mask pattern, and the final output pattern. The parameters are
a = 90, t = 0:5, 15 � 15 filter with � = 5, � = 0:01, and s = 1.

is not always at our disposal and some design rules may require
us to force our variations to fall only within a specified area or
region of the synthesized mask. In this section, we outline an
approach which provides the above flexibility. This may also be
beneficial in saving the computational time required to recon-
figure OPC solutions in the event of design re-spins, errors, etc.
Note that the focus here is on controlling the areas of the input
that undergo changes, whereas in Section V-A, the focus was on
controlling the areas of the output to be accurately reproduced.

The procedure starts with the mask designer (or the OPC en-
gineer) marking (or selecting) regions (or pixels) in the orig-
inal pattern where predistortion is permissible. Alternatively, the
above procedure can also be automated based on feature type,
density, vicinity, etc., and incorporated into the CAD software.
The above pixels are stacked together to form the unknown pa-
rameter . The remaining pixels will stay unchanged
in the synthesized mask and are stacked together to obtain the
known vector .

Note that an element in matrix denotes the contribu-
tion of the pixel towards the formation of the output .
The above matrix can be rewritten as
where represents the contribution of the
pixel towards the formation of the output vector . The s
corresponding to the pixels in are stacked together to form

and the remaining s are stacked to form
. Thus, is split into two components

where determines the contribution from pixels which are
unknown (allowed to be modified) and determines the

contribution from pixels which are fixed. The forward model in
(6) can now be rewritten as

(23)

Note that the second summation term inside the sigmoid is a
constant because remains unchanged. Finally, the steepest
descent iterations can be directly used to update the modifiable
pixels in as follows:

(24)

Fig. 18 illustrates a user-defined band (three pixel thick on
both side of the edges) indicating the region allowed to undergo
predistortion. The user-selected region is marked in white, and
the remaining region where predistortion is nonpermissible is
marked in black. The chosen parameters were used to solve for
the same experiment and pattern as in Fig. 6 albeit with

and . Fig. 18 also illustrates the optimized binary
OPC pattern and the final binary output pattern using the above
method. As expected, the changes are confined to lie within the
band and are very different (far less scattered) compared to the
synthesized OPC mask in Fig. 6.

VI. EXTENSIONS, OTHER APPLICATIONS, AND CONCLUSION

In this section, we discuss some extensions and future direc-
tion which will make our work more beneficial to the lithog-
raphy community. We also provide some concluding remarks.
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A. Coherent and Partially Coherent Imaging Systems

Practical real-world lithography systems are partially co-
herent imaging systems. Therefore, the inverse imaging
problem should be solved for the above case to have practical
value. In this section, we discuss how our proposed framework
could be possibly extended to synthesize masks for fully co-
herent and partially coherent imaging systems.

1) Coherent Imaging System: In the case of coherent imaging
system, the amplitude of the output electric field is linearly re-
lated to the input electric field amplitude generated by the mask

. The photo-resist responds to the intensity of the elec-
tric field, where intensity is defined as the square of the ampli-
tude. Therefore, the forward model is defined as

(25)

The sigmoid function simulates the resist behavior and acts on
the aerial image (square of the amplitude), giving the
output photo-resist pattern . Note that operator here
implies element-by-element absolute square of the individual
vector entries. Typical lithography systems employ a circular
lens aperture, where the coherent imaging system now acts as
an ideal low pass filter. Therefore, the convolution kernel is
a jinc function with cut-off frequency . For partially co-
herent imaging systems, the optical kernel can be instead
substituted by the optimal coherent approximation proposed by
Pati and Kailath [26].

2) Partially Coherent Imaging System: Partially coherent
imaging systems are modelled using the Hopkins diffraction
model [16]. Pati and Kailath [26] proposed an approximation
to the above model called the sum-of-coherent-system (SOCS)
by using the singular value decomposition of the transmission
cross-coefficient matrix. In their approach, the order ap-
proximation to the aerial image formulation can be calculated
using the weighted sum of coherent systems. The forward
model now becomes

(26)

where for are the amplitude spread functions
(also referred to as optical system kernels) of the coherent sys-
tems, and are the corresponding singular values. The
singular values quickly decay to zero, thereby facilitating an ac-
curate reduced order approximation.

The optimization problem can be formulated as the norm
of the difference between and (or ) similar to (8) which
can be solved using our algorithm. All the elements of our
proposed framework such as the formulation of a continuous
function optimization, analytic gradient calculation, parametric
transformation, and regularization can also be employed to
solve for the above imaging systems. The analytic gradient
calculation would require and
operations for the coherent and partially coherent imaging sys-
tems respectively. Preliminary results using coherent imaging
system to synthesize binary and phase shift masks were recently
reported in [40]. Thus, we believe that our framework is generic
enough to account for the above cases.

B. Extensions in Microlithography

In this paper, we discussed the OPC mask synthesis problem
for an idealized microlithography system. An important exten-
sion (already discussed above) is to account for partially co-
herent imaging systems. With reducing values of , scattered
light also referred to as flare is becoming an important contrib-
utor to undesired CD variations [41]. Flare is lithography tool
specific. Therefore, the knowledge of the tool used for mask ex-
posure is also required. The forward model can be augmented
to incorporate the flare effects and we can then synthesize the
OPC mask to solve for both proximity and flare-induced er-
rors for the specified tool. Practical lithography systems are also
prone to random uncontrollable process errors causing focus
and exposure variations. These lead to loss in pattern fidelity
and reduction in yield. An important future direction would be
to synthesize masks which improve the robustness of the lithog-
raphy process. Another very promising extension is to synthe-
size phase shift masks where the estimated pixels now also have
a phase information associated with them. The proposed frame-
work will enable us to combine automated phase shift and OPC
mask design, a powerful combination of RETs [4].

Other attractive possibilities include maskless lithography
optimization [42] and diffractive optical element (DOE) design
for customized illumination [43]. Scaling our algorithm to
full-chip level forms another important direction. The compu-
tational complexity for estimating pixels is .
Therefore, as the size of the pattern increases, the run-time of
our algorithm scales in accordance to the above formula. For
full-chip level, there is a possibility of splitting the entire die
into smaller patterns, solving the individual subproblems in
parallel, and finally them stitching them together as observed
in [44]. Furthermore, explicit mask-manufacturing constraints
like fracture dimensions and minimum feature size/spacing
are not considered in our problem formulation; hence, the
resulting masks may not always be manufacturable. However,
the regularization framework can be extended to incorporate
the above as observed by Pang et al. in [45].

The proposed approach may also be beneficial to electron
beam lithography. Here, the desired pattern is directly written
by firing a focused beam of electrons onto a photoresist-coated
substrate. This process suffers distortions known as proximity
effects arising from forward and back-scattering of electrons,
beam density blurring, etc. The above effect is counteracted
using electron-beam proximity correction, a predistortion tech-
nique commonly adopted by the nanolithography community
[46]. Our proposed framework can be adopted to modify the
dose and/or shape of the input patterns in order to obtain a higher
pattern fidelity. However, the success of our method depends on
the availability of a faithful forward model which accurately de-
scribes the e-beam lithography process.

C. Conclusion

We demonstrated the application of well-studied tools for
image restoration like regularization and nonlinear optimiza-
tion to solve the inverse lithography problem for an incoherent
imaging system. The novelty of our method lies in the fact
that we used the continuous function formulation and use the
gradient information to systematically explore the solution
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space. The latter is calculated analytically having complexity
where is the total number of pixels. A

regularization framework was successfully used to control the
tone and complexity of the synthesized OPC masks. The results
demonstrated interesting feature breaking for low values.
The results were also compared with those obtained using
integer programming and were found to be equally good. Our
framework needs to be extended to partially coherent imaging
systems to solve the real-world microlithography problem.

With the critical dimensions hitting 45 nm, the semicon-
ductor industry is striving to find aggressive RET solutions.
This has led to a recent revival of interest in pixel-based RET
[27], [29], [34], [44]. The algorithms and framework presented
in this paper are promising and will contribute towards that
direction.

APPENDIX

GRADIENT DERIVATION

Here, we present the derivation for the gradient of the cost
function in (12). First, we rewrite (12) as

(27)

where

The partial derivative of (27) with respect to is given as

Therefore, the gradient vector can be calculated as

The above can be evaluated directly using 2-D matrices as
demonstrated in Fig. 5.
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