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Abstract—The task of image registration is fundamental in
image processing. It often is a critical preprocessing step to many
modern image processing and computer vision tasks, and many
algorithms and techniques have been proposed to address the
registration problem. Often, the performances of these techniques
have been presented using a variety of relative measures com-
paring different estimators, leaving open the critical question of
overall optimality. In this paper, we present the fundamental per-
formance limits for the problem of image registration as derived
from the Cramer–Rao inequality. We compare the experimental
performance of several popular methods with respect to this per-
formance bound, and explain the fundamental tradeoff between
variance and bias inherent to the problem of image registration.
In particular, we derive and explore the bias of the popular
gradient-based estimator showing how widely used multiscale
methods for improving performance can be explained with this
bias expression. Finally, we present experimental simulations
showing the general rule-of-thumb performance limits for gra-
dient-based image registration techniques.

Index Terms—Bias, Cramer–Rao bound, error analysis, Fisher
information, gradient methods, image registration, motion estima-
tion, optical flow, performance limits.

I. INTRODUCTION

IMAGE registration is a fundamental inverse problem in
imaging. It represents a critical preprocessing step to many

modern image processing tasks such as motion compensated
video compression, multiframe image enhancement, remote
sensing, and many computer vision tasks, such as three-dimen-
sional (3-D) shape estimation and object identification. The
problem of image registration is a specific case of the more
general problem of estimating motion in an image sequence
wherein the observed data follows the form

(1)

where is the image function, is additive
white Gaussian noise with variance , and

is an unknown vector field character-
izing the evolution of the image sequence in time. In this paper,
the problem is constrained to that of estimating the relative
shift contained in a pair of frames. This generally nonlinear
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estimation problem is often referred to as image registration.
This model ignores other factors influencing the dynamics of
the images, such as variation in the illumination or specular
reflections.

In practice, we are given only sampled versions of the image
wherein the spatial sample spacing is and the temporal sam-
pling is determined by the frame rate of the imaging system. For
the remainder of the paper, we will use the indices to refer
to the sampled functions , formulating the data pro-
ducing model as

(2)

(3)

Here, the and refer to a pair of images of the sequence
observed at times and . In this paper, we focus

on image motion which is translational in nature, where the
unknown vector field is of the form where

and are constants. While this
model for image motion is very simple, we will suggest how
our analysis can be extended to more complex models of image
dynamics.

The overall goal of this paper is to quantify bounds on
performance in estimating image translation between a pair of
images. Because this problem is of such fundamental impor-
tance, many registration algorithms have been developed over
the years. In fact, there have been fairly comprehensive survey
papers describing and comparing the performance of such algo-
rithms [1]–[3]. Unfortunately, the benchmarks comparing the
performance of such algorithms tend to vary as widely as the
techniques themselves, and the typical performance measures
fail to address the problem in a proper statistical framework.
These performance measures have ranged from geometric error
criteria such as the mean angular error [1], to that of visual
inspection of the vector field for situations where ground truth
is not available. While these measures have been very useful in
advancing the methodologies of motion estimation, they fail to
evaluate estimator performance from a statistically meaningful
perspective. Furthermore, the performance evaluation has re-
lied on comparison between different algorithms leaving open
the important question of how close the algorithms come to
achievable limits.

The problem of image registration for translational motion es-
timation is analogous to the classical problem of time delay es-
timation (TDE), as found in the signal processing literature [4].
For the TDE problem, performance is measured based on the
mean square error (MSE) of a given estimator. We propose that
performance of image registration should be evaluated using the

1057-7149/04$20.00 © 2004 IEEE



1186 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 9, SEPTEMBER 2004

same measure. By using MSE, we can explore the fundamental
performance bounds using the Cramer–Rao inequality. Surpris-
ingly, while the Cramer–Rao inequality has been used widely in
the field of time delay estimation in communication, radar, and
Ssonar, except for a few isolated attempts [5], [6], it has not been
utilized to understand the problem of image registration in gen-
eral. In this paper, we analyze the form of the Cramer–Rao in-
equality as it relates to the specific problem of registering trans-
lated images.

Developing such performance bounds provides a mechanism
for critically comparing the performance of algorithms. We
will show how a great deal of the heuristic knowledge used in
motion estimation can be explained by examining this perfor-
mance bound. Furthermore, understanding these fundamental
limitations provides better understanding of the limitations in-
herent to the class of image processing problems that require
image registration as a preprocessing step. In addition, ana-
lyzing the details of the bound offers insight into the very
nature of the problem itself, thereby suggesting methods for
improvement. Particularly, we will present the inherent perfor-
mance tradeoff between bias and variance for several popular
motion estimators. While estimator bias is often difficult to
express, we will derive such bias expressions for the popular
gradient-based estimator. While the bias for gradient-based es-
timators has been addressed in previous works [7]–[11], these
works make overly simplified generalizations about the bias.
In this paper, we present and analyze more precise expressions
for the estimator bias. We will show that this bias limits accu-
rate registration for typical imaging systems. Finally, we will
use this bias function to propose a rule-of-thumb limit (based
on our analytical results) for image registration accuracy using
gradient-based estimators.

The organization of the paper is as follows. In Section II,
we derive the performance bounds in registering translated im-
ages, based on the Cramer–Rao inequality. We show how these
bounds depend on image content by analyzing the FIM. We
show the inherent problem of bias for the problem of image
registration. We present experimental evidence of such bias for
several popular registration algorithms. In Section III, we de-
rive and experimentally verify a specific bias expression for the
general class of gradient-based estimators. We present extensive
analysis of this bias function and show how it tends to dominate
the MSE performance limit for common imaging systems. In
Section IV, we present experimental results suggesting typical
performance limits for image registration. We conclude by sug-
gesting possible future extensions to the work derived in this
paper.

II. MSE BOUNDS FOR IMAGE REGISTRATION

In this section, we quantify the fundamental MSE perfor-
mance bounds for registering images utilizing the Cramer–Rao
lower bound (CRLB) [12]. Essentially, the CRLB character-
izes, from an information theoretic standpoint, the “difficulty”
with which a set of parameters can be estimated by examining
the given data model. In general, the CRLB provides the lower
bound on the mean square error of any method used to estimate
a deterministic parameter vector from a given set of data.

Specifically, the Cramer–Rao bound on the error correlation ma-
trix for any estimator is given by

(4)

where the matrix is referred to as the FIM, and
represents the bias of the estimator [13]. We refer to the

error correlation matrix as since the diagonal terms
of represent the MSE. The inequality in-
dicates that the difference between the MSE (left side) and the
CRLB (right side) will be a positive semidefinite matrix. From
this formulation, we see that the mean square error bound is
comprised of two terms corresponding to a variance term and a
term which is the square or outer product of the of the bias as-
sociated with the estimator.

Ideally, we wish to have unbiased estimates. Assuming such
an estimator exists, the bound (4) simplifies to the more familiar

(5)

Thus, for any unbiased estimator, characterizes the min-
imum variance (and hence MSE) attainable. Because the FIM
plays such a central role in bounding estimator variance for the
classes of both biased and unbiased estimators, we now explore
the details of the FIM for the problem of image registration.

A. Fisher Information for Image Registration

The FIM provides a measure of the influence an unknown
parameter vector has in producing observable data. In our case,
the unknown vector is the translation vector . The
FIM is derived by looking at the expected concavity of the like-
lihood function. Intuitively, a likelihood maximizing estimator
should have an easier time finding the maximum of a sharply
peaked likelihood function than a rather flat one. The joint like-
lihood function for the data is represented by where the
log of the likelihood function is given by

(6)

Specifically, the FIM measures the sharpness of like-
lihood peak where the matrix is defined as

. In deriving the FIM, we first
derive the form of the partial derivatives with respect to the
log-likelihood function

(7)
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To simplify the notation, we refer to the transformed image
as . Since only the term is random, the

negative expectation of (7) for each term becomes

Finally, we note that by way of the chain rule

Hence, we get the FIM where

The subscripts indicate the partial derivative in the direc-
tions.

A comment is in order regarding these partial derivatives. The
FIM and, hence, the performance bound, depend on the par-
tial derivatives of the shifted version of the continuous image

evaluated at the sample locations. While this is simple
to present theoretically, in practice, the partial derivatives of
the image function are not available. In fact, only samples of
the image function are available presenting a practical chal-
lenge when trying to compute the FIM. There are a few ap-
proximations that can be made in order to calculate the FIM
depending on the information available prior to estimation. For
instance, if a relatively noise-free image is available, preferably
of higher resolution than the images being registered, then the
partial derivatives might be approximated using derivative fil-
ters. For situations where the scene being observed is known
prior to estimation, such as in industrial applications, a contin-
uous image function could be constructed to represent the scene
and differentiated analytically. Finally, if only the discrete im-
ages are available, then such an image function could be approx-
imated directly from the samples. One such method assumes
that the image is periodic and that

(8)

where are the coefficients of the
discrete Fourier transform (DFT) of the image. It is this last as-
sumption that we use throughout this paper for our experiments.

To gain further insight, we now consider the FIM in the
Fourier domain. To do so, we first must make certain general
assumptions about our underlying image function .
In particular, we assume that the image function is bandlim-
ited and is sampled at a rate greater than Nyquist. Then, the
discrete time Fourier transform (DTFT) of the samples of
the derivative function can be written
as and similarly for the partial
derivative. With such an image model, we then can write the
terms of the FIM using Parseval’s relation

Examining the FIM using this formulation, we see that it does
not depend on the unknown translation vector and depends
only on the image content. This observation depends on our
assumption that the image is periodic outside the field of view.

It is interesting to note that one can explain the well-known
aperture problem [1] by examining the FIM. This problem
arises when the spectral content of the image is highly local-
ized. An example of this occurs when all of the spectral energy
is contained along a slice passing through the origin of the
spectrum at an angle . Equivalently, in the spatial domain,
the texture of the image is one-dimensional (1-D) in nature. In
polar coordinates, such a spectrum looks like

else
(9)

The terms of the corresponding FIM in polar coordinates

Since the determinant of the FIM is

(where is a constant), is, therefore, not invertible, and
any unbiased estimator will have infinite variance. Essentially,
there is not enough information with which to register the
images.

Next, we further observe that the information contained in
a pair of images depends only on the gradients or the texture
of the image. The relationship between estimator performance
and image content has been noted in previous works and used
to select features to register [14]. This previous work, however,
provided only the heuristic suggestion that features with high
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Fig. 1. Experimental images (tree, face, office, and forest).

frequency content are better for tracking by looking at one spe-
cific estimator. Here, we suggest that the trace of the inverse
FIM (which is the sum of the eigenvalues of ) to be a
scalar predictor of performance as it relates to image content. In
general, as the trace of decreases, improved estimator per-
formance is expected. Fig. 2 shows the square root (to maintain
units of pixels) of the trace of versus image bandwidth for
the images shown in Fig. 1. The image spectral bandwidth was
controlled by filtering the images with a low-pass filter whose
radial cutoff frequency was constructed to be a percentage
of the full image bandwidth. All of the images were normalized
in that they were cropped to the same size and scaled to have
the same intensity range. As seen in Fig. 2, the trace of
decreases as the image bandwidth increases. This corroborates
the general intuition that highly textured images are easier to
register.

Furthermore, we see from the left graph in Fig. 2 that,
while the performance may continue to improve with greater
frequency content, the improvement tapers off as the bandwidth
increases beyond about a quarter of the full bandwidth. This
observation can be explained by the
spectral amplitude decay commonly found in natural images
[15]. This suggests that the trace of could be approximated
by a term such as where is the radial cutoff frequency
(or bandwidth of the image). The left graph in Fig. 2 exhibits
a type behavior. These results also suggest that
the inherent bandwidth limitations induced by the imaging
system affect the fundamental performance limits for image
registration. Since the spectral bandwidth of the image predicts
the ability to register the image, the inherently bandlimited
nature of imaging systems eventually dominates the achievable
performance limits.

Another interesting way to explore the registration perfor-
mance limits as a function of image content is by examining the
bounds along particular directions. Instead of estimating both
the and components of translation, we consider the linear
combination of the un-
known parameters. The CRLB inequality (5) can be extended
to bound the performance in estimating a linear combination of
the unknown parameters. In particular, we have

. From this inequality, it becomes apparent that,
for a particular image, certain angles have better inherent per-
formance these optimal angles depending on the eigenvectors

of the matrix . The right graph of Fig. 2 shows the variance
bound on the estimation of the directional components of trans-
lation as a function of angular direction for the four example
images in Fig. 1. The face image and, to a lesser extent, the of-
fice image, have specific directions in which estimates are most
reliable. Specifically, the vertical bars in the face image provides
large amounts of spectral energy in the direction. This spec-
tral signature correspondingly suggests small estimator vari-
ance in this angular direction. Similarly, the office image is ro-
tated about 45 , so the dominant derivative energy is located
around 45 .

B. Bias in Image Registration

In this section, we show that unbiased estimators generally
do not exist for the inverse problem of image registration. This
implies that the bound given by (5) is overly optimistic and the
complete bound (4) must be used to accurately predict estimator
performance.

To understand the inherent bias associated with any transla-
tional motion estimator, we look at the maximum likelihood
(ML) estimators. Many image registration algorithms can be
shown to produce approximate maximum likelihood solutions.
To find the ML solution, we again look at the log likelihood
function for the shift parameters

Since only the second term depends on the unknown parameters,
the maximization problem can be expressed as a minimization
of the objective function

(10)

This is the general nonlinear least squares objective function
used in defining the ML solution. By expanding the quadratic
in (10), we get

(11)

Ignoring the first term since it does not depend on the parameter
, and negating the entire function, we can rewrite the objective

function as

(12)

By normalizing the entire cost function with respect to the en-
ergy in the image, the second term of (12), we obtain the direct
correlator objective function

(13)

In general, minimizing/maximizing these two objective func-
tions with respect to the unknown parameter provides the ML
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Fig. 2. Performance as it relates to image bandwidth and translational direction. (a) Trace of J versus image bandwidth. (b) Angular performance as a function
of image content.

solution. But, as previously noted, the function
is typically unknown. An approximate ML solution is found
using an estimate of the unknown function, most commonly
given by . It is easy to see that for very high
SNR situations, this estimate should be very close to

. Even in such high SNR (low noise) situations, how-
ever, the objective functions (10) and (13) can be evaluated for
only integer values of and , constraining the estimates to
that of integer multiples of pixel motion. While some progress
has been made to address this issue [4], [16], [3], the proposed
algorithms often are based on overly simplified approximations
that are known to produce biased estimates [17].

For many applications in image processing, accurate subpixel
image registration is needed. To register images to subpixel ac-
curacy, the image function effectively must be recon-
structed from the noisy samples of . In general, this re-
construction is an ill-posed problem. All estimators contain in-
herent prior assumptions about the space of continuous images
under observation. These priors act to regularize the problem
allowing solutions to be found. However, when the real under-
lying functions do not match the model assumptions, the estima-
tors inevitably produce biased estimates. There is only a small
class of images wherein the problem is not ill posed. The ex-
ception occurs when the underlying continuous image is con-
structed through the assumed process such as that of (8). Unfor-
tunately, this requirement is almost never satisfied in practical
image processing problems implying that all image registration
algorithms are inherently biased.

To verify the presence of this bias in existing algorithms, we
conduct a Monte–Carlo (MC) simulation computing actual es-
timator performance for a collection of image registration algo-
rithms. The estimators used in the experiment are the following.

1) Approximate Minimum Average Square Difference
(ASD) (2-D version of [4]). Samples of the average
square difference function

(14)

[an approximation to (10)] are computed for pixel shift
values of and in some range. Then, the subpixel shift
is computed by finding the minimum of a quadratic fit
about the minimum of the cost function given for integer
pixel shifts.

2) Approximate Maximum Direct Correlator (DC) [3]. A
sample correlation estimate is used to approximate (13).
Essentially, the denominator of (13) is assumed to be ap-
proximately constant independent of the underlying image
shift . Thus, the simplified sample correlation estimate

(15)

is computed for integer pixel shifts. Then, the subpixel
shift is estimated as the maximum of a quadratic fit about
the maximum of the sample correlation function.

3) Linear Gradient-Based Method (GB) [18], [19]. Essen-
tially, the differences between a pair of images is related
to the spatial gradients of the image to produce the linear
equation

(16)

Then, a system of linear equations is constructed for
a region within the image (or the entire image). These
equations are often called the optical flow equations.
The system is solved using least squares to produce an
estimate of the translation . We will explore this model
in more detail in the next section.

4) Multiscale (Pyramid) Gradient-Based Method (Pyr)
[20]. The images are first decomposed into a multiscale
(multiresolution) pyramid. The algorithm begins by
estimating the translation in the coarsest images in the
pyramid. Using this estimate, one of the images at the
next coarsest level is warped according to the estimate.
Essentially, this attempts to “undo” the motion. Then, the
residual motion is estimated again using the GB method
and combined with the previous motion estimate. This
process continues down the pyramid in a multiscale itera-
tive fashion. In our implementation, we use a cubic spline
based resampling scheme at each level of the pyramid to
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warp the images. In our experiments, we use a multiscale
pyramid with three levels.

5) Projection Gradient-Based Method (Proj-GB) [21].
The images are integrated along the and axis to
produce two sets of data and

. Then, a pair of equations
similar to those in the 2-D GB method are generated

Finally, two independent sets of linear equations are con-
structed and solved using least squares to obtain estimates
of the components of .

6) Projection Multiscale Gradient-Based Method
(Pyr-Proj) [22]. The image is first decomposed into
a pyramid as in the multiscale gradient-based (Pyr)
method. At each level of the pyramid, instead of using
the 2-D GB method, the motion is estimated using the
projection gradient-based (Proj-GB) method.

7) Relative Phase (Phase) [23]. Using the shift property of
the Fourier transform, it is noted that

. The vector is estimated by
finding the solution to the set of linear equations of the
phase function

(17)

where represents the DFT of the input images
and indicates the measured phase angle. We used the
implementation of [23] wherein the solution is found
using weighted least squares.

To generate a pair of images for the experiment, we use
the discrete Fourier transforms (DFT) approach following the
method of [10]. This effectively generates an image pair as-
suming the continuous model is given by (8). The image used in
this experiment was the trees image from [1]. White Gaussian
noise was added to the image pair prior to estimation and the
entire process was repeated 500 times at each SNR value. We
explore SNR situations ranging from 0 dB (very noisy) to
70 dB (effectively noiseless). To capture a single representation
of error, we computed the square root of the trace of the MSE
matrix for each of the estimators and the bound of (5). The
square root of the trace of the MSE matrix is a valid measure
of the mean magnitude error and is useful for comparing with
the performance bounds given by the CRLB [24]. Fig. 3 shows
the actual estimator performance as a function of of SNR.
The dashed line indicates the performance bound using (5) for
the class of unbiased estimators. While this bound suggests
continued improvement as the noise decreases, above certain
SNR values, the performance of each estimator levels out. This
flattening of the performance curves is indicative of the bias
present in each of the estimators.

While we can see the effect of this bias experimentally, the
actual bias function for a given estimator typically is very dif-
ficult to express. The bias is often a combination of both the
deterministic modeling error and the statistical bias of the esti-
mator. If the estimator is an ML estimator, the estimates should
theoretically be asymptotically unbiased, leaving only the bias

Fig. 3. Magnitude error performance versus SNR, v = [:5; :5] .

stemming from modeling error. This appears to be the domi-
nant bias for high SNR situations as seen in Fig. 3 where the
bias is independent of the noise in the images. This modeling
error has been only infrequently addressed in the image registra-
tion literature. In [25], the approximate direct correlator method
(DC) produces biased estimates resulting from the quadratic ap-
proximation about the peak of the correlation function. Basi-
cally, the DC method using the quadratic approximation about
the mean of the sample correlation function makes implicit as-
sumptions about the underlying continuous function. In [25],
and similarly in [17], the resulting bias is derived for situa-
tions where the likelihood function is not quadratic about its
maximum as typically assumed. The gradient-based estimators
have been studied in the context of bias as well [7]–[10]. Nev-
ertheless, an accurate functional expression describing the es-
timator bias is not available. In the next section, we describe
these attempts at understanding gradient-based estimator bias
and derive and verify a new functional form of bias inherent to
gradient-based estimators.

III. BIAS IN GRADIENT-BASED ESTIMATORS

To understand more clearly the effect of estimator bias, we
now derive the functional form of bias inherent to gradient-
based estimators. We show how the approximations used to gen-
erate a simple linear estimator produce inherent estimator bias.
We show that in almost all situations, the gradient-based esti-
mator contains bias. To maintain focus and facilitate the exposi-
tion, we derive and later analyze the bias expression for the 1-D
analog of the gradient-based image registration algorithm. The
full derivations for the two-dimensional (2-D) case are included
in the Appendix.

A. Gradient-Based Estimators

For the 1-D case, we suppose that the measured data is of the
form

(18)

(19)

In the derivation of the gradient-based estimator, we must refor-
mulate the data as

where is a Gaussian white noise process with variance .
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Fig. 4. (Left) Plot of f(k) and (right) estimator bias; continuous is predicted.

Gradient-based methods solve this equation for by lin-
earizing the function about a point in a Taylor
series. This expansion looks like

(20)

where is the remainder term in the Taylor expansion. This
remainder has the form . Thus,
the new data model becomes .
When the remainder term is ignored, the linearized model of
the data becomes . Using the derivative
values, we obtain the linear estimator for the velocity using
least squares

(21)

where the sum is taken to be over some region which may be
the entire image. This type of estimator is commonly referred
to as the gradient-based or differential estimation method [19],
[18]. This estimator derivation assumes that in addition to the
samples of , we also have samples of the derivative of the
function . Later, we show how this assumption is relaxed.

It is interesting to note that the variance of the gradient-based
estimator is if, in fact, the
remainder term is zero. The variance is almost exactly
the same as the CRLB for unbiased estimators, which is

. This relationship implies that the
gradient-based estimator would be a maximum likelihood
estimator for the case when the remainder term is, in fact, zero.

B. Bias From Series Truncation

One source of systematic error or bias in the gradient-based
estimation method comes from the remainder term in
(20) originally ignored to construct a linear estimator.

When we include the remainder term in the estimator we ob-
tain as the expected value of the estimator (21),

. So, unless the second term is
zero, the higher order terms introduce a systematic bias into the
estimator.

This is somewhat more informative in the frequency domain.
First, we define the Fourier transform of the original function

as . Under the assumption that the function is sam-
pled above the Nyquist rate, the DTFT of the derivative se-
quence can be represented as . By Parseval’s rela-
tion, we can rewrite the estimator (21) as

(22)

As a side note, we can also arrive at the same estimator form
by modeling the data itself directly in the frequency domain, as
follows. The shifted sequence has a DTFT of
and the DTFT of the data model becomes

(23)

If we again expand the exponential in a Taylor series
and truncate after the linear term we

obtain the linear relationship . From
which we obtain the linear estimator as (22).

Returning to the case where the complete data model is used,
we see that the expected value of the estimate is

(24)

where in the last equality we note that since
is an odd function, it integrates to zero. Using

the expected value of the estimate, we obtain a bias function of
the form

(25)

To verify this bias function experimentally, we measure the
bias in estimating translation for a randomly constructed func-
tion such that the actual derivative values were available to the
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estimator. The actual function used in the experiment is
plotted in the left graph of Fig. 4. The magnitude spectrum for
the function used was modeled after the spectrum
of natural images. The phase angle was drawn from a uniform
distribution. To measure purely the deterministic bias, no noise
was added to the data prior to estimation. Fig. 4 shows a plot
of the experimental estimator bias as it depends on translation

. The plot shows three different curves which indicate the bias
for the full bandwidth function as well as two filtered ver-
sions of wherein the functions were bandlimited to 50%
and 75% of the full bandwidth. The continuous curves repre-
sent the predicted bias using (25).

The bias function appears to follow the bias expression al-
most exactly. Furthermore, Fig. 4 indicates that as the bandwidth
of increases, the bias becomes more severe. This conflicts
with the unbiased CRLB which suggests that increased band-
width will improve estimator variance. Here, we begin to see
the tradeoff between bias and variance for the gradient-based
estimators. We will examine this notion more closely later in
Section IV.

C. Bias From Gradient Approximation

In the previous section, we assumed that the derivative values
at the sample points were known prior to the estimation process.
As mentioned previously, in most applications, the derivative
information is not available. Another source of error in gra-
dient-based estimation arises from the need to approximate the
gradient or the derivatives of the signal . Instead of using
the actual in (21), noisy approximations of the derivatives

are used instead
(where represents a convolution operation). This suggests that
the deterministic bias is a combination of the error in approxi-
mating , as well as the error introduced by truncating the
Taylor series and ignoring the remainder term .

The error resulting from such derivative approximation has
been noted before in the literature. For instance, in [10], the bias
function was derived only for the case when is a single si-
nusoid function. In addition, the works of [7] and [8] explored
the effect of approximation errors in estimating the gradient for
local estimation. Much of the analysis in these works, how-
ever, start from the assumption that the optical flow model ap-
plies to the image sequence exactly, or that the remainder term
is negligible. Specifically, in [8], the results qualitatively de-
scribed estimator bias in terms of image spectral content and
were based on overly simplified bias approximation by exam-
ining only the second-order approximation error specifically for
the forward difference gradient approximation. The authors in
[7] note that the gradient approximation error increases as the
image function exhibits higher energy in the second derivatives

. Using this observation, they propose an estimator post-
processing scheme which examines the second-order deriva-
tives of the image and rejects specific estimates according to
a thresholding scheme. Other works, such as [9], have noted
that errors in the gradient approximation tend to produce biased
estimates. In [9], however, it is assumed that these errors are
completely random in nature and drawn from some simple dis-
tribution. They develop overly simplified statistical bias models

based on these distributions for the gradient approximation er-
rors. Recently, the work of [11] investigates a method for min-
imizing the bias associated with such random errors for an ap-
plication in vehicle tracking. Instead of treating these errors as
random, as we shall show, approximation errors resulting from
deterministic systematic modeling error dominate the estimator
bias for gradient-based estimators at typical imaging system
SNRs.

When we use the gradient approximations, the estimator (22)
becomes

(26)

where represents the DTFT of and represents
the DTFT of the noise samples . In general, the derivative
filter is usually a symmetric, linear-phase, FIR filter and as
such its transform can be written as a sum of sinusoids
or . Unfortunately, taking the expectation
of (26) is very difficult. To simplify the equation, we ignore the
noise in the derivative approximation. This assumption is quite
reasonable for high SNR situations where basically we are ex-
amining the deterministic bias from modeling error as opposed
to statistical error. In Section V, we will show the SNR region
where this model accurately describes estimator performance
and that this SNR region is typical for imaging systems using
commercial video cameras. Thus, we approximate the bias func-
tion as

(27)

We can see here that the this equation differs from the original
(25) only in that the exact derivative operator is replaced by
the derivative filter with frequency response .

To verify this approximation of the bias function, we mea-
sure the actual estimator bias using the gradient kernel

on the same function shown in
Fig. 4. This derivative kernel comes from [26]. The left graph of
Fig. 5 shows the results of the bias. The experimental bias again
follows the bias predicted by (27) almost exactly. The measured
bias functions shown in [10] also appear to follow this trend
providing further validation of our bias expression. Again, we
note that the increased signal bandwidth produces increased es-
timator bias.

IV. ANALYSIS OF GRADIENT-BASED ESTIMATOR BIAS

In this section, we further explore the deterministic bias
approximation (27). We will show how the structure of the
bias function explains much of the heuristic knowledge about
gradient-based estimators and suggests methodologies for
improving performance. In particular, we will explore how the
image spectrum, translation, and gradient kernel affect the bias
of the gradient-based estimator.
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Fig. 5. Plot of actual estimator bias and predicted bias (solid lines) from (27) left graph and (32) right graph.

We begin by analyzing the bias function (25) wherein the
exact derivatives are available to the estimator. To understand
the bias, we expand the function in a Taylor series about

to get

(28)

where the terms of the sequence are
, and so on. Since the factorial in the

denominator dominates these functions, the coefficients of the
Taylor approximation die off quickly. Only for very large trans-
lations, often larger than is found in typical registration prob-
lems, will these higher order terms affect the bias function. This
suggests that for small , the bias can be approximated as a cubic
function of translation according to

(29)

This coefficient ratio can be interpreted as the energy in the
second derivative over the energy in the first derivative of .
In general, the Taylor series can be explained in the spatial do-
main as

(30)

Basically, these higher order terms depend on the smoothness of
the function . For sufficiently smooth functions, the energy
in these higher derivatives is negligible suggesting that the bias
is well approximated by the cubic function given in (29). The
accuracy of this bias approximation is evident in right graph of
Fig. 4.

We repeat this analysis for the more complete bias function
(27) expanding the function in a Taylor series about to
produce

(31)

where the terms are of the sequence are
and so

on. From this approximation, we see that the polynomial coef-
ficients depend on the relationship between the gradient kernel

and the image magnitude spectrum . Again, we sim-
plify the bias expression by truncating the power series to that
of a cubic function of

(32)

In the right graph of Fig. 5, we show the same experimental bias
curves as in the left graph of Fig. 5 this time using the cubic
approximation of (32). We see that the approximation is quite
close for the subpixel region of .

A. Bias and Image Spectrum

The spectrum of the image/function plays an important role in
the bias expression (27). One way to shape the image spectrum
is through the use of image filters. For instance, it is well-known
that presmoothing the images prior to estimation improves the
performance of the gradient-based estimators [1], [26]. This
presmoothing operation takes the form of a low-pass filter .
To understand this, in left graph of Fig. 6 we plot the functions
found in (31), again using the gradient kernel from [26].

Basically, the functions and the (where
) term control numerator and denominator of the co-

efficients of the bias polynomial. Looking at the left graph of
Fig. 6, we see that the term is larger than all of the func-
tions up to the frequency of about for for
and about for . If the spectrum of the function were
bandlimited such that the image contained no spectral energy
outside these frequencies, we know that the bias coefficients of
the bias function would be less than 1. Beyond these critical
frequencies, the numerator functions weight the spectrum
more heavily than the denominator function, which has
the effect of increasing the bias coefficients. As we will show,
this explains the well-known assertion that presmoothing the
images improves estimator performance. Intuitively, the image
presmoothing has the effect of minimizing the high frequency



1194 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 9, SEPTEMBER 2004

Fig. 6. (Left) Original and (right) filtered versions of � and jGj functions. The filter function h(k) = [0:035 0:248 0:432 0:248 0:035] is suggested in [26].

Fig. 7. Bias versus translation using different (left) prefilters and (middle and right) different gradient filters.

spectral components thereby reducing the numerator of the
coefficients more than the denominator. Furthermore, since
higher order terms place more emphasis on the high frequency
information than the lower order terms, the presmoothing also
has the affect of minimizing the higher order bias polynomial
terms more than the lower order terms.

For instance, the authors in [26] suggest using a five-tap pres-
moothing low-pass filter . Effectively, this presmoothing
changes the weighting functions into
and so on. In the right graph of Fig. 6, we show the filtered ver-
sions of the functions. Unlike the original functions, the
smoothed versions have much smaller magnitude than the
function and very small regions wherein the numerators would
weight the spectrum more than the denominator. This phe-
nomenon tends to minimize the bias polynomial coefficients.
For high SNR situations where the bias dominates MSE, pres-
moothing tends to minimize the bias in general. This is shown
in Fig. 7, where the bias is plotted as a function of transla-
tion wherein the function in Fig. 4 is filtered by different pres-
moothing filters. Each of the filters was a Gaussian kernel with
ten taps where the low-pass cutoff frequency was controlled by
the standard deviation (SD) of the Gaussian. These low-pass fil-
ters were not designed in any optimal fashion, and yet we still
see a significant reduction in bias. For this experiment, we ex-
tended the range of translation beyond subpixel translation to
show the dramatic improvement for larger values of .

Presmoothing an image has added the benefit of averaging,
essentially decreasing the variance of the noise. Again, this pres-
moothing would, however, decrease the Fisher information by
reducing the effective bandwidth of the signal. Interestingly, one

could pose an optimization problem of finding the prefilter
that minimizes the bias in a sense similar to [27]. Of course, this
optimization would only make sense for very high SNR situa-
tions as presmoothing the image would tend to minimize the
FIM thereby making the estimator more sensitive to noise. We
leave this interesting problem for future work.

B. Bias and Gradient Kernel

Another important ingredient in the bias function is the choice
of gradient filters . The gradient kernel defines the shape of
the functions which in turn controls the bias coefficients. The
middle graph of Fig. 7 exhibits the performance in estimating
translation using three different filters from [1] and [26] and also
the performance using the exact derivatives. The experimental
setup was similar to previous experiments wherein the function
used was shown in Fig. 4 and no noise was added to simulate
infinite SNR.

Examining the bias curves, it might appear that the
Nestares/Heeger filter minimizes the bias, even producing
better estimates than when the exact derivatives were known
prior to estimation. In the right graph of Fig. 7 we examine the
curves more closely in the range , and display abso-
lute value of the bias. In the subpixel range , we
see that the Nestares/Heeger filter, in fact, produces estimators
with largest bias magnitude.

We see from these plots that there is a tradeoff in performance
in estimating large and small translations. It appears that the
tradeoff concerns the linear term in the bias polynomial approx-
imation. The central difference and Fleet derivative filters of [1]
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are the second- and the fourth-order optimal approximations to
the infinite-ordered ideal derivative filter. Thus, these filters pro-
duce derivative estimates closer to the exact derivative than the
filter of Nestares/Heeger. This more accurate derivative approxi-
mation tends to minimize the linear term of the bias polynomial
leaving basically the cubic term as in the case of (29). The filter of
Nestares/Heeger, however, is not an approximation to the ideal
derivative filter and as such has a larger linear coefficient. This
larger linear coefficient explains its poor performance around
the subpixel range and yet produces a linear improvement for
larger translations. Again, this phenomenon suggests a certain
optimization framework similar to [27] where the gradient
kernel may be optimized over some range of translations.

C. Bias and Translation

Finally, we examine how the bias varies with the unknown
translation . As expected, the first-order approximation used to
generate the linear gradient-based estimator is accurate only for
small translations. Thus, with perfect knowledge of the image
derivatives, the magnitude of the bias tends to increase with
the translation and the estimates are always biased toward zero,
or underestimated. When the derivatives are only approximated
using a gradient kernel, however, there are essentially two re-
gions of operation wherein the estimates could be overestimated
and underestimated. These regions are easy to identify when ex-
amining the cubic approximation of the bias (32). The roots of
the cubic polynomial approximation are

(33)

Instead of biasing the estimates toward 0, as in the case where
the derivatives were known exactly, the estimator produces esti-
mates that are biased toward . Examination of the bias in the
right graph of Fig. 7 shows that these values are around
for Nestares/Heeger, for the central difference and
for the Fleet gradient filters. In fact, we found that these value of

do not vary much across different images, for each derivative
filter.

Whichever gradient kernel is used, if the kernel approximates
the derivative, the magnitude of the bias will tend to worsen for
values of . In fact, the cubic approximation of bias
suggests that even the relative bias increases as a
quadratic function of . This partly explains the success of mul-
tiscale gradient-based methods in estimating large translations.
The multiscale pyramids are constructed through a process of
low-pass filtering and downsampling. We have already shown
how the low-pass filtering improves estimator performance. The
downsampling reduces the magnitude of the translation by the
downsampling factor, the common factor being 2. Using this
downsampling factor, the translation to be estimated at the th
level of the pyramid becomes . This synthetic
reduction in translation magnitude allows for estimation with
smaller relative bias. The reduction in bias is most effective
when the unknown translation is greater than a few pixels. In
this case, the downsampling maps the translation into a range of
reasonably small bias. In practice, the height of the pyramid

is designed such that the expected downsampled velocity at the
coarsest level is in pixels/frame where the magni-
tude of the relative bias is not very large.

The iterative nature of the multiscale pyramid raises an im-
portant question concerning the convergence in general of iter-
ative gradient-based estimators. Iterative methods for gradient-
based estimation have been used to improve performance [20],
[26], [19]. These methods work by iteratively estimating mo-
tion, undoing this estimated motion, and estimating the residual
motion not captured by the previous estimate. At very high SNR,
the residual motion is dominated by the estimator bias. In prac-
tice, different methods are used to undo the previously estimated
motion, often relying on some warping/resampling scheme. We
would like to know if these iterative methods will converge and,
if so, whether they will converge to an unbiased estimate of .

To simplify the analysis, we assume that the warping methods
work perfectly to synthesize a shifted version of the images
(unlikely, however, given the ill-posed nature of image resam-
pling). In fact, we see that the error in the gradient approxi-
mation could lead to oscillatory instability in the iterative gra-
dient-based estimator. To see this, assume that an initial estimate
of translation using the gradient based estimator was given by

. After warping, the residual translation would
simply be . The estimate of this residual motion
will be such that the updated mo-
tion estimate becomes . Thus,
if for all , then and so
on suggesting convergence to an unbiased estimate. Practically
speaking, we are only interested in this relationship for very
small since the residual motions are often within the range

. In this region, we use the cubic approximation of (32)
represented as

(34)

where the variables represent the numerator and denomina-
tors of the polynomial bias approximation. Because of the sym-
metry of the bias function, we must examine whether or not

for all . Since the function is a simple
polynomial, we first examine the existence of a root to the equa-
tion , which after some algebraic manipula-
tion gives the root as

(35)

Thus, if , then we can safely assume that
for small translations assuring that the iterative method will

converge to an unbiased estimate since the bias is reduced at
every iteration. If, however, then the estimator will
oscillate between .

Since the condition of convergence depends on

(36)

we plot in left graph of Fig. 8. For the itera-
tive estimator to converge, most of the spectral energy must be
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Fig. 8. (Left) Original and (right) filtered plot of �G(�) � 2G (�).

Fig. 9. Actual and predicted RMSE versus SNR as it relates to (left) translation and (right) bandwidth.

located in the low frequency range where the weighting func-
tion applies negative weight. If too much high
frequency content is present, the difference will be posi-
tive and the algorithm will not converge to an unbiased estimate.
Presmoothing the image minimizes the likelihood that

, since most of the weighting function is neg-
ative. In practice, multiscale iterative methods significantly de-
crease estimator bias as evidenced in Fig. 3, but may still contain
estimator bias.

V. MSE PERFORMANCE OF THE GRADIENT-BASED METHOD

Armed with an approximate expression for the bias function,
we can now examine the full performance bound given by (4)
for the gradient-based estimators. In examining this bound, we
find that the bias dominates the MSE performance for typical
imaging systems with high SNR. Finally, we show experimental
evidence justifying a general rule-of-thumb for performance of
2-D gradient-based image registration.

In order to use the performance bound given by (4),
we must first examine the derivative of the bias function.
Using the bias expression (27), we see that

. Using
these expressions, we see that the complete MSE performance
bound is given by

(37)

(38)

where the Fisher information is .
In practice, we calculate the Fisher information using derivative
approximations.

Here, we conduct a MC simulation to verify the accuracy of
our complete MSE bound. Ideally, at high SNR, the complete
bound given by (38) predicts actual estimator performance. We
construct a bandlimited signal

where is a fixed phase gener-
ated by drawing from a uniform distribution. We chose to use a
closed-form expression for so that that the exact values of the
function derivative are available to calculating the FIM which
we used to calculate the MSE bound (38). Actual estimator per-
formance is measured by performing 500 MC runs at each value
of SNR and averaging the error. The gradient kernel used by
the estimator is the filter from [26]. The results of the simu-
lation are shown in the left graph of Fig. 9, which compares
the RMSE for the gradient based estimator with both the un-
biased CRLB (5), which is just the inverse Fisher information,
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Fig. 10. Predicted and measured average performance measured by (39).

and the full bound (38). The actual estimator performance seems
very close to the performance bound predicted by (38) at high
SNR. This verifies that the bias function given by (27) is in fact
accurate. For low SNR, however, both bounds are overly opti-
mistic. This could be due in part to the approximation made in
obtaining the simplified bias function. In general, nonlinear es-
timation problems suffer from what is known as the threshold
effect [12]. This threshold effect is characterized by a significant
departure from the CRLB as the SNR degrades. Furthermore,
the apparent variation in performance between is predicted by
the right graph of Fig. 7 where it suggests that the bias should
be less for than for .

To understand the relationship between bandwidth and per-
formance bound, we plot the expected performance bound for

for different values of (which essentially encodes
the bandwidth in the definition of ) in the right graph of Fig. 9.
This figure shows the tradeoff between bias and variance as it
relates to image bandwidth where is the percentage of full
bandwidth. As mentioned before, energy in higher frequencies
tends to increase the Fisher information thereby improving esti-
mator variance, but tends to worsen the affect of bias. Overall, it
is apparent that bias dominates the MSE for images with much
high frequency spectral energy.

Last, we extend this complete MSE performance bound for
the case of 2-D image registration. The equations for bias de-
rived in Appendix I were used to construct the lower bound MSE
matrix. To provide a rule of thumb value for expected estimator
performance, we use the following performance measure:

(39)

This provides a measure of the average performance limit for
some range of unknown translations. We choose to examine esti-
mator performance for subpixel translation where

. Fig. 10 shows the performance predicted by (39) and ac-
tual performance using MC simulations for the tree image.

The tree image was again shifted synthetically as before
using the method of [10]. For each value of SNR, 500 MC
runs were performed and averaged to obtain the MSE matrices.
To evaluate the improvement using image presmoothing, we
apply a 9-tap Gaussian filter with standard deviation of 1 and 2
pixels. To compute the MSE bound, we estimate the spectrum

using the DFT coefficients. To take into account the noise re-
duction resulting from image presmoothing, we modified noise
variance used to compute the FIM by
where are the coefficients of the Gaussian filter. Again, the
gradient filter used was from [26]. The expected performance
bound seems to approximate the estimator performance for
high SNR situations. The estimator performance for SNRs at
about 20–40 dB shows unexpected improvement over the high
SNR situation. Most likely, this results from the statistical bias
present in the estimator for low SNR situations. It was shown
in [9] and [11] that the statistical bias for noisy images tends to
produce underestimates of translation or negative bias. Since
the deterministic bias using the [26] filter is positive for sub-
pixel motion, we deduce that these two biases tend roughly to
cancel one another out actually lessening estimator bias at low
SNR. As significant low-pass filtering is applied to the image,
estimator performance improves dramatically. Basically, the
deterministic bias again dominates estimator bias and we have
predictably improved estimator performance. This experiment
presents the possibility of subpixel image registration accuracy
down to almost one hundredth of a pixel for the gradient-based
estimator under ideal situations. Again, this experiment corre-
lates well with the results shown in Fig. 3. Thus, we can expect
a rule of thumb performance bound limiting the performance
of image registration under ideal situations accuracy above one
hundredth of a pixel for non iterative gradient-based estimation.

VI. CONCLUSIONS AND FUTURE WORK

This paper derives the fundamental performance limits for
image registration using the Cramer–Rao bound to estimate
MSE performance. We propose that MSE should be used as a
standard performance measure to prevent unfair comparisons
between algorithms and motivate statistically accurate analysis.
We show that studying this performance bound as it relates
to image registration provides much insight into the inherent
tradeoffs between estimator variance and bias. We presented
analysis as well as experimental evidence suggesting that in
general, all estimators are biased. In particular, we derived the
accurate expressions for the bias inherent to the very popular
class of gradient-based image registration algorithms. Fur-
thermore, in studying the form of this bias for gradient-based
estimators, we explained much of the heuristic knowledge
accumulated over the years.

This paper provides the foundation for much further work.
For instance, we focused on the estimation of image translation.
One could extend the analysis to more complex parametric mo-
tion models such as affine and bilinear motion. One could hope
that this type of analysis would offer guidance to the practitioner
choosing between complex motion models for large image re-
gions or simple translational models for smaller or more local
motion estimation. This type of performance analysis could be
extended to many other situation such as imaging systems with
sub-Nyquist sampling rates. Many applications such as image
fusion and multiframe image resolution enhancement require
accurate image registration as a critical preprocessing step. The
performance bounds on image registration are necessary to ex-
plain performance limits for these higher level image processing
tasks.
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With respect to gradient-based motion estimation, we pro-
posed several extensions using our bias expression. For instance,
using the complete MSE bound as a cost function, one could op-
timize various operational parameters such as derivative filters
and image presmoothers as in [27]. In general, understanding
the bias function should suggest methods for eliminating such
bias. While we examined the bias for the case of multiscale
iterative gradient-based estimation, the derivation of the com-
plete MSE bound for such iterative methods is yet to be done.
The extension of such a derivation would provide insight into
the performance of a variety of problems where simplified lin-
earized estimators are improved using iterative methods. We
hope that this type of analysis will establish a common frame-
work for evaluating motion estimation and other inverse prob-
lems in imaging.

APPENDIX I
COMPLETE 2-D CRLB FOR GRADIENT-BASED ESTIMATION

In this section, we derive the bias equations for the 2-D case
similar to Section III and incorporate this bias function into the
complete CRLB bound in (4). Here, we use vector notation.
Namely, and and .
Thus, we write the data model as

(40)

We proceed to derive the bias directly in the frequency
domain. The shifted sequence has a DTFT of

and the DTFT of the data model becomes
. We expand the exponential

in a Taylor series and truncate after
the linear term to obtain the formula
from which we obtain the linear estimator

(41)

where .
Similar to the 1-D case, the expected value of the estimate is

. To obtain this form, we
have made the same simplification as in Section III, wherein the
imaginary portion of the integrand is removed as it is an odd
function. Thus, we obtain the bias function

(42)

To analyze this bias function, we approximate the sinusoid func-
tion within the integrand as a truncated Taylor series expansion
about as . Noting that

where is the unit vector ,
we approximate the bias function as

(43)

where . Thus, the bias behaves as a
cubic function of the translation magnitude where the coefficient
depends on the spectrum of the image.

As with the 1-D case, in practice we must approximate the
gradients using gradient kernels and which have
corresponding frequency representations and or
in vector notation . This produces the estimator

(44)

where now . Using the same
low-noise assumptions that we made in Section III, we examine
only the deterministic bias which is

(45)

Using these equations for the bias, we can now de-
rive the full CRLB for gradient-based estimation of
2-D translation. We first note that

. Further, we
use the following representation . Using this
equation, we obtain for the full CRLB bound

(46)
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