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Accurate registration of images is the most important and challenging aspect of multiframe image

restoration problems such as super-resolution. The accuracy of super-resolution algorithms is quite

often limited by the ability to register a set of low-resolution images. The main challenge in register-

ing such images is the presence of aliasing. In this paper, we analyse the problem of jointly register-

ing a set of aliased images and its relationship to super-resolution. We describe a statistically

optimal approach to multiframe registration which exploits the concept of variable projections to

achieve very efficient algorithms. Finally, we demonstrate how the proposed algorithm offers

accurate estimation under various conditions when standard approaches fail to provide sufficient

accuracy for super-resolution.
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1. INTRODUCTION

The problem known as super-resolution, namely combining a

set of aliased, noisy, low-resolution and blurry images to

produce a higher resolution image or image sequence, has

received much attention in recent years. We refer the intere-

sted readers to [1–3] for a broad review of recent algorithmic

development in this area. Perhaps, the most fundamental

component to multi-frame super-resolution is the accurate

registration of aliased images.

The difficulty of registration for super-resolution is the pre-

sence of aliasing inherent to most modern digital imaging

systems. In traditional sampling of electronic waveforms,

analog engineers have a fair amount of control over the band-

width properties of electric signals. Because of this, one

rarely encounters the problem of aliasing in traditional one-

dimensional sampling. When sampling optical fields,

however, control over the spatial frequency bandwidth is

limited by the nature of optics.

Designing optical low-pass filters using lenses and filters

require finding a delicate balance between excessively blur-

ring an optical image and introducing spatial aliasing artifacts

into the lens system. The typical approach to designing optical

systems involves first designing high-quality optics with large

enough apertures to increase the amount of light, and hence

signal, sampled by a focal plane array (FPA). Suppose for

the time being that the optical lens is a diffraction-limited

lens with a modest aperture size corresponding to an F# of

4.0. In the visible spectrum (�500 nm wavelength), such

optical system has diffraction limits of �500 line pairs per

millimeter (lp/mm) [4]. The dashed curve of Fig. 1 shows

the modulation transfer function (MTF) of such an optical

system. In current technologies, FPAs have pixel dimensions

ranging from 3 to 15 mm, which correspond to Nyquist

sampling rates ranging from �160 to �35 lp/mm.

Thus, we observe that the sampling rate of modern FPAs

arrays is significantly lower than the spatial frequencies

passed by optical systems. That is, the apertures associated

with these pixels are often insufficient to eliminate higher

spatial frequencies. To make matters worse, the effective aper-

ture or fill-factor of modern pixels is rarely the same as the

pixel dimension. For example, low-cost CMOS detectors,

without the benefit of expensive microlens technology, may

have fill-factors as low as 40–50%. Furthermore, by adding

a color filter array (CFA), the effective fill-factor is reduced

by a factor of two. For example, the dash-dot line in Fig. 1

shows the effective MTF of a 4 mm square pixel having a fill-

factor of 50%. The solid line shows the effective imaging MTF

for the system. We observe that the imaging system passes
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many spatial frequencies above the Nyquist rate (indicated by

the black line) associated with the detector. Even in expensive

optical systems when optical low-pass filters (often based on

birefringent optical materials [5]) are added to the system, a

significant amount of spatial frequencies above the Nyquist

rate is passed by the optical system.

Because the imaging system almost invariably passes

spatial frequencies above the Nyquist, almost all digital

images contain varying amounts of aliasing artifacts. In fact,

it is these aliasing artifacts which enable multiframe super-

resolution enhancement. Multiple captured images which

contain phase variations allow super-resolution algorithms to

unwrap these aliasing artifacts, reconstructing the high-

resolution image. While there exist motion free super-

resolution algorithms, which utilize variations in the ampli-

tude of the optical transfer function [6, 7], the more

common form of super-resolution relies on variations in the

phase of the optical transfer function in the form of inter-frame

subpixel shifts contained in a set of low-resolution images.

It is phase information, which allows super-resolution algor-

ithms to reconstruct the high-resolution image.

The standard mathematical model describing a set of

captured images is given by

yk ¼ DHFðvkÞxþ ek; ð1Þ

where x represents the unknown NH � NH, bandlimited

high-resolution image lexicographically ordered as a NH
2
� 1

vector. The bandlimited nature of the high-resolution image

is assured due to the diffraction limit of the optical system.

The warping operator F(vk) of size NH
2
� NH

2 is comprised of

shifted periodic sinc functions. The shifts for each pixel in

the image are defined by the vector of motion parameters vk

for the kth frame. Matrix H of size NH
2
� NH

2 represents the

blurring operator due to the combined effect of the imaging

system optical and pixel point spread functions (PSF). The

downsampling operator D of size NL
2
� NH

2 captures the

undersampling of the detector by an integer factor M.

The NL
2
� 1 vector yk is created by lexicographically ordering

the kth NL � NL low-resolution image. We assume that super-

resolution is applied given K þ 1 such low-resolution images.

Finally, ek of size NL
2
� 1 represents the noise inherent in the

analog-to-digital conversion. For our purposes, we assume

this noise to be uncorrelated zero-mean Gaussian noise with

standard deviation s. Without loss of generality, we assume

that the initial image y0 defines the coordinate system of the

high-resolution image so that y0 ¼ DHx þ e0 and hence, we

only have to estimate K unknown motion vector parameters vk

during the super-resolution process for a given set of K þ 1

low resolution frames. The set of all such unknown motion

vectors is represented as v ¼ [v1,. . .vK]T.

Super-resolution algorithms for estimating the unknown

high-resolution image can generally be divided into two

classes of approaches. In the first, the problem is broken up

into separate tasks of registering the low-resolution images

with respect to the coordinate system of the desired high-

resolution image (estimating v), followed by a reconstruction

or fusion of the low-resolution data combined with deblurring

and interpolation (estimating x). The majority of the effort in

this class has tended to focus on the reconstruction and restor-

ation aspects of the super-resolution problem. In much of these

works, it is assumed that relatively high quality estimations of

the inter-frame sampling offsets can be estimated to an arbi-

trary degree of accuracy. In the second class of algorithms,

researchers have attempted to solve both estimation problems

of image registration and super-resolution in a joint fashion

[8–11].

The first class makes the implicit assumption that regis-

tration of aliased images is possible without concern for the

original high resolution x from which the captured low-

resolution images are derived. After estimating the motion

parameters for a set of images, a second step uses these

estimates to reconstruct an estimate of the high-resolution

image x̂ [12–14]. The simplest, and most common, approach

for estimating the set of motion parameters is to apply a

pairwise registration technique between a reference frame

(y0) and the other low-resolution frames. The pairwise sub-

pixel registration is often based on either standard registration

techniques such as gradient-based approaches [15] or algor-

ithms especially designed for aliased images [16–18].

In [19], it was shown that from a maximum likelihood

(ML) perspective (i.e. no prior information), pairwise image

FIGURE 1. Graph showing the diffraction-limited lens system. The

dashed curve shows the optical MTF of an F# 4 diffraction-limited

lens system at 500 nm wavelength light. The dash-dot curve shows

the pixel transfer function for a 4 mm square detector with 50% fill-

factor. The solid line represents the total imaging system transfer

function. The black line indicates the Nyquist rate associated with

the detector. In this case, we observe that the imaging system is

undersampled by a factor of M ¼ 4 without any zero-crossings up

to the diffraction limit.
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registration of aliased images is ill-posed. Consequently, all

pairwise registration algorithms will exhibit certain amounts

of estimator bias. This estimator bias relates to either the

implicit or explicit assumptions made when constructing the

pairwise registration algorithm. For instance, applying stan-

dard registration techniques designed for non-aliased images

(e.g. gradient-based methods [15]) assumes intensity is con-

served over the set of images. This assumption obviously

breaks down in the presence of aliasing. Again, the robust

phase estimation algorithms of [16, 17] make assumptions

about the spectral decay of a typical image. The effects of

such bias in pairwise algorithms have been noticed motivating

robust approaches to minimize the effects of poor registration

estimates on the final image reconstruction [13]. While the

pairwise estimation approach has proven to be a computation-

ally tractable and reasonably effective approach, it is import-

ant to understand its inherent limitations.

Another approach to registering low-resolution images

attempts to estimate the set of motion parameters using the

entire collection of observed images [20–23]. These papers

operate under the assumption that the combinatorial set of

pairwise estimated motion vector fields are constrained to lie

in a space whose geometry and structure is conveniently

described via an algebraic group structure (a Lie algebra).

Such constraints dictate that the operator describing the

motion between any pair of frames must be the composition

of the operators between another pair of frames. These

models, however, do not consider the presence of aliasing in

the captured images, limiting their applicability to image

registration for super-resolution [23].

The second class of algorithms combine the registration

problem into the super-resolution estimation problem

[8, 11, 24]. In [19], such a joint method was shown to be

statistically optimal. To date, all of these algorithms use

some form of cyclic coordinate descent or a form of the

Expectation–Maximization (EM) algorithm [11, 24]. Such

algorithms iterate between estimating the high-resolution

image x (expectation step) and the set of unknown motion

parameters (maximization step). Often the methods rely

on either an initial guess of the high-resolution image x
using interpolation of a single low-resolution frame, or by

using a standard pairwise registration algorithm to find an

initial guess for the set of motion parameters. While this

second approach is more principled than the two-stage

approach, we show that the use of cyclic coordinate

descent is not the most efficient search strategy. It has

been shown [25], that optimization using the coordinate

descent approach is numerically less well conditioned and

likely to become stuck in local minima.

In this paper, we propose an alternate framework for

solving the joint registration/reconstruction aspect of

super-resolution. Our approach is a multiframe registration

solution based on the principle of variable projections [25].

In Section 2, we describe how to avoid the shortcomings of

the cyclic coordinate descent using this variable projection

formulation and present an efficient implementation for the

case of translational motion. We use this estimator as a pro-

totypical registration algorithm to analyse the performance of

general aliased image registration. In Section 3, we conduct a

series of experiments aimed at describing the applicability of

this approach to various registration scenarios where the

standard approaches to registration perform poorly. Finally,

in Section 4, we conclude and show some future directions

of this work.

2. REGISTERING ALIASED IMAGES

In this section, we describe a method for efficiently registering

a set of aliased images using the concept of variable projec-

tions. We first introduce the multiframe estimation problem

in the ML framework where no prior information about the

high-resolution image is known. Later, we describe how the

ML solution can be extended to incorporate prior information

[Maximum a posteriori (MAP) estimation] in an efficient

manner. We conclude this section by describing a fast

implementation for the case of translational motion.

2.1. Multi-frame ML registration

Given the forward imaging model of Equation (1), the natural

ML estimate of the high-resolution image x and the set of

motion parameters v ¼ [v1, . . . , vK]T is a function of the

entire set of captured low-resolution images. Since the noise

terms are uncorrelated Gaussian random variables, the ML

estimate of the unknown parameters is defined as the

minimum of a non-linear least squares (LS) cost function

JMLðx; vÞ ¼
1

s2

X
k

kyk � DHFðvkÞxk
2: ð2Þ

To simplify the notation for the moment, we can think of

building one single measurement vector y ¼ [y0
T, . . . , yK

T]T

and one large system matrix B(v) ¼ [(DH)T,. . .,
(DHF(vK))T]T. Using this formulation we can rewrite Equation

(2) as

JMLðx; vÞ ¼
1

s2
ky� BðvÞxk2: ð3Þ

The cost function of Equation (3) falls into the class of what

are known as separable non-linear LS problems [26]. Ignoring

the possible ill-posedness of the system for the time being, the

solution to the ML reconstruction problem (were the motion

parameters v known) would be given by the LS

x̂ ¼ ðBðvÞTBðvÞ�1BðvÞTy: ð4Þ
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Plugging the estimate of Equation (4) back into the original

ML cost function of Equation (3) we obtain

JMLðvÞ ¼ ky� Bð v ÞðBð v ÞTBð v ÞÞ�1Bð v ÞTyk2

¼ kðI � Bð v ÞðBð v ÞTBð v ÞÞ�1Bð v ÞÞTyk2: ð5Þ

After some additional algebraic manipulation, we see that mini-

mizing Equation (5) is equivalent to maximizing the functional

JMLð v Þ ¼ yTBð v ÞðBð v ÞTBð v ÞÞ�1Bð v ÞTy: ð6Þ

After minimizing Equation (5) or maximizing Equation (6),

the estimates for the motion parameters v can be used to recon-

struct the estimate of the high-resolution image x using

Equation (4).

The form of Equation (5) is known as the variable projec-

tion functional [25] as the operator B(BTB)21BT is a projec-

tion operator. This form of the cost function has several

advantages over the original cost function of Equation (3).

Namely, the search space is a function of far fewer unknowns.

In fact, in the case of any parametric motion model, often the

dimension of the unknown motion parameters v is much

smaller than the dimension of the unknown image x. More

importantly, it can be shown that minimizing the variable pro-

jections cost function of Equation (5) converges in far fewer

iterations than trying to minimize Equation (3) directly or

via cyclic coordinate descent. Furthermore, the minima of

Equation (5) and hence Equation (6) are better defined. This

model was further supported by work in [27] published

while our paper was under review. We refer the interested

reader to [25] for more information on variable projections.

While efficient minimization of Equation (5) for large

images is difficult due to the shear size of the matrices involved,

the problem is tractable for small images. In fact, it is precisely

such scenarios (where the observed images are very small or

the undersampling factors M are very large) that the traditional

approaches to aliased image registration break down.

2.2. Multi-frame MAP registration

If we have some prior information about the unknown high-

resolution image x, we may incorporate this into the cost func-

tion to regularize the estimation problem. For instance, one

common assumption about the unknown signal is that it is a

Gaussian random variable with a covariance matrix Cx.

Assuming for the time being that the signal is zero-mean,

the MAP estimate of the high-resolution image and motion

parameters is the minimum of the cost function1

JMAPðx; vÞ ¼
1

s2
ky� BðvÞxk2 þ lxTC�1

x x: ð7Þ

It is this equation that the authors of [8, 11, 24] attempt to

minimize using iterative cyclic coordinate descent type

algorithms.

Using the variable projection approach described for the

ML solution, we can find the analogous non-linear cost func-

tion for the MAP estimator. For a given estimate of the motion

parameters v, the MAP estimate of the high-resolution image

is given by

x̂ ¼ ðBð v ÞTBð v Þ þ lC�1
x Þ
�1Bð v ÞTy: ð8Þ

Plugging this into the MAP function of Equation (7), we

obtain a variable projection maximization functional of the

form

JMAPðvÞ ¼ yTBðvÞðBð v ÞTBðvÞ þ lC�1
x Þ
�1BðvÞTy: ð9Þ

The form of this functional is very similar to the ML function

of Equation (6).

Addition of the term lCx
21 not only act as a form of regular-

ization, but also stabilizes the search for a global minimum. In

fact, an unexplored area of research is in adapting the tuning

parameter l during optimization to define a trust region in a

type of Levenberg–Marquardt optimization [29] to more effi-

ciently and accurately find the global optimum of Equation (9).

2.3. The case of translational motion and space

invariant blur

We examine the case of simple translational motion or shift

where the unknown motion parameter has shifts in the two

directions, v ¼ [v1, v2]T. This is perhaps the most commonly

utilized motion model for aliased image registration algor-

ithms [16]. Using this assumption, we can simplify the

problem and produce a very fast algorithm. The translational

model is often fairly well justified for small image patches

where even complicated global motion fields will appear as

approximately translational. Also, the blurring model for

such local patches is very likely to be spatially invariant.

Given that both the motion and the blurring operators are

spatially invariant, H and Fk are block circulant matrices

and therefore commute. A natural transformation of the

unknown image x emerges as z ¼ Hx [12, 13], which maps

the unknown high-resolution image into a blurry version of

the high-resolution image z. The modified signal model

becomes

yk ¼ DFðvkÞz þ e0k: ð10Þ

Such an approach is justified by the invariance property of the

ML estimator [26]. For the remainder of this Section, we will

ignore the subsequent step of restoring the high-resolution

image x from an estimate of the reconstructed blurry image1Note that it is also possible to consider priors on the motion vectors [28].
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z and instead focus on the problem of registering the observed

aliased images with the intent to reconstruct the image z.

Thinking about the problem in this way offers a statistically

justifiable approach to separating the problem of estimating x
from that of jointly estimating the blurred high-resolution

image z and the unknown motion parameters v. Under

certain scenarios, this presents a natural alternative to the

more complex coordinate descent approach of [11], where

the coordinate descent optimization is employed to estimate

the motion parameters, high-resolution image, blur operator

and noise power. As shown in [19], when a sufficient

number of frames are available, the estimation of fz, vg is

often well conditioned. In other words, adding prior infor-

mation offers very little benefit when estimating fz, vg. This

suggests that the more complicated step of estimating the

high-resolution image, blur and noise power can justifiably

be considered after estimating fz, vg, which simplifies the

search space by reducing the number of unknowns. Further-

more, such a two-stage approach would benefit from allowing

much more powerful (yet highly non-linear) priors such as

[30] to be incorporated into the second step, resulting in accu-

rate reconstruction of the high-resolution image x.

2.4. Efficient implementation

In this section, we describe an efficient implementation of the

variable projection functionals of Equations (5) and (9) for

the case of translational motion with spatially invariant blur.

The algorithmic efficiency is achieved due to fast and

memory efficient inversion of the matrices in the Fourier

domain. We note that the efficiency of treating the problem

in the Fourier domain has been noted previously [11, 14, 31].

To distinguish the Fourier representation from the spatial

domain representation, we utilize the tilde (�) to indicate

matrices and vectors in the Fourier domain. Thus, the simpli-

fied model of (Equation 10) is represented in the frequency

domain as:

~yk ¼
~D ~FðvkÞ~z þ ~ek: ð11Þ

The matrices and vectors in Equation (11) have the same

dimensions as those in the spatial domain. By virtue of their

spatial-invariance, these operators are block-diagonalized in

the Fourier domain. The downsampling and shifting operators

become

~D ¼ ð1T
M � INL

Þ � ð1T
M � INL

Þ; ð12Þ

~F ¼ diagfe jðv1u1þv2u2Þg; ð13Þ

where � represents the Kronecker tensor product (kron in

Matlab), INL
represents the identity matrix of dimension NL

and 1M represents an M-dimensional vector of all ones.

The u vectors represent the spatial frequency indices.

Computing the ML variable projections functionals of Equ-

ation (6), involves two steps. First, we must compute the vector

~gð v Þ ; ~B
H
ð v Þ~y ¼

X
k

~F
H
ðvkÞ ~D

H
~yk; ð14Þ

where B̃H denotes the Hermitian transpose of the matrix B̃.

Computing g̃(v) is very simple given that F̃ is a diagonal

matrix and D̃H is simply an M2 replication of the image ỹk.

Second, we must invert the matrix B̃H(v)B̃(v). As noted in

[14, 31], the spatial frequency components are decoupled in

the Fourier domain. This can be understood by looking at

the Kronecker tensor product used to build the matrices in

Equations (12) and (13). Because of these Kronecker products,

inverting the NH
2
� NH

2 matrix B̃H(v)B̃(v) is equivalent to

inverting an M2
� M2 matrix of the form

~QðvÞ ¼
XK

k¼0

eð jv2Þ=MAM � eð jv1Þ=MAM ¼
Xk

k¼0

~SðvkÞ: ð15Þ

The matrix AM is an M � M matrix capturing the spectral

folding of the downsampling operation. For example,

Equations (16)–(18) show the AM matrix for M ¼ 2, 3, 4.

A2 ¼
0 1

�1 0

� �
; ð16Þ

A3 ¼

0 �1 1

1 0 2

�1 �2 0

0
B@

1
CA; ð17Þ

A4 ¼

0 �1 2 1

1 0 3 2

�2 �3 0 �1

�1 �2 1 0

0
BBB@

1
CCCA: ð18Þ

We compute the LS estimate of the high-resolution image

(B̃H(v)B̃(v))21g̃(v) by building an M2
� (N/M)2 matrix G̃(v)

composed of the set of g̃(v) vector elements combined during

the spectral folding process. We represent the operations

involved in constructing such a matrix by the operator P.

For example, if M ¼ 2 the matrix G̃ ¼ Pfg̃g is constructed as

~G ¼

f~gg1 f ~gg2 � � � f ~ggNHðNL�1ÞþNL

f ~ggNLþ1 f~ggNLþ2 � � � f ~ggNHNL

f ~ggNHNLþ1 f ~ggNHNLþ2 � � � f ~ggN2
H
�NL

f ~ggðNHþ1ÞNLþ1 f~ggðNHþ1ÞNLþ2 � � � f ~ggN2
H

2
664

3
775
ð19Þ

Such permutation can be very efficiently implemented using

the Matlab command im2col. For more information on this

spatial frequency decoupling, we refer the reader to [14].
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By defining W̃(v) ; Q̃21(v) G̃(v), we compute the cost

function of Equation (6) as

JMLð v Þ ¼ Re
X
a;b

~Gð v Þ � ~Wð v Þ

( )
; ð20Þ

where � represents the elementwise multiplication of two

complex matrices with indices a, b and Re represents the

real part of the complex number. The gradient of this cost

function is given by

@JMLð v Þ

@vk

¼ Re

2j
P
a;b

Q1 � ð~pðvkÞ � ~W ð v Þ

� ~W ð v Þ � ~SðvkÞ ~W ð v ÞÞ

2j
P
a;b

Q2 � ð~pðvkÞ � ~W ð v Þ

� ~W ð v Þ � ~SðvkÞ ~W ð v ÞÞ

2
6666664

3
7777775
; ð21Þ

where

Qi ¼ Pfdiagfuigg ð22Þ

~pðvkÞ ¼ Pf ~F
H
ðvkÞ ~D

H
~ykg ð23Þ

In this way we can very efficiently and quickly compute the

ML cost function and its derivative.

We use Matlab’s generic non-linear optimization routine

fminunc to maximize the variable projection functional of

Equation (6). We find that the rate of convergence depends on

the downsampling factor M. We find that the number of required

iterations scales approximately linearly with the downsampling

factor M. For example, we also find that only 20–30 iterations

are needed to converge for the M ¼ 2 case, whereas 80–100

iterations are needed when M¼ 4. As predicted in [19], as the

number of frames K increases, the problem typically becomes

better conditioned leading to faster convergence albeit with

increased complexity per iteration.

Up to this point, we have described an efficient method for

computing and optimizing the ML cost function. The same

computational tricks described above do not readily transfer

when we consider the MAP cost function of Equation (9).

Applying the same ideas to computation of the MAP cost

function is difficult because of the typical form of the matrix

C̃x. Typically, the signal x (and hence z) is assumed to be a

wide sense stationary random process. In this case, the

Fourier domain terms C̃x̃ and C̃z̃ are diagonal matrices

~C ~x ¼ diagfXðu1; u2Þg; ð24Þ

~C ~z ¼ ~H ~C ~x
~H

H
; ð25Þ

where X(u1, u2) represents the power spectral density (PSD) of

the random signal x. For example, in [3], the signal x is

assumed to come from a distribution with a PSD implicitly

defined by the Laplacian image operator. The implicit PSD

is given by

Xðu1; u2Þ ¼

l

j10� 4 cosðu1Þ � 4 cosðu2Þ � cosðu1 þ u2Þ � cosðu1 � u2Þj
2

ð26Þ

In the ML case, we capitalized on the fact that the matrix

B̃H(v)B̃(v) could efficiently be represented by a smaller

matrix Q̃(v). The diagonal elements of C̃z̃ vary smoothly as

a function of spatial frequency, eliminating the possibility

for compact representation of B̃H(v)B̃(v) þ C̃z̃
21.

We propose approximating the full PSD function with a

piecewise constant function. For example, the solid line of

Fig. 2 shows an example of a one-dimensional version of

the Laplacian-based diagonal prior matrix C̃21
x̃ . The other

curves show piece-wise constant approximations to the

signal PSD with decreasing resolution. We denote the accu-

racy of the piecewise constant approximation by the number

of tiles used to approximate the PSD. Assuming that the

PSD is approximated using R2 such tiles, computing the

MAP cost function of Equation (9) requires R2 inversions of

a M2
� M2 compressed matrix of the form

~QðvÞ þ l ~L
�1

r ; ð27Þ

FIGURE 2. An example of the one-dimensional Laplacian-based

signal PSD. The solid line shows the prior information term C̃x̃
21 pro-

vided for a one-dimensional version of the Laplacian-based prior. The

additional dotted and dash-dotted lines show the successive piecewise

constant approximations have each time reducing the number of pie-

cewise constant approximation tiles by a factor of two. We verify that

such PSD approximations have very little effect on the registration

accuracy of the multi-frame algorithm.
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where L̃r
21 represents the elements of the matrix C̃21 corre-

sponding to the rth tile in the approximated PSD. To

compute the MAP functional of Equation (9), we construct

R2 matrices G̃r associated with each of the approximation

tiles. In this way, we can achieve similar computational

efficiencies in the MAP case as in the ML case with only a

linear increase in complexity.

As we shall show momentarily, this piecewise constant

approximation of the prior matrix does not significantly

affect the image registration accuracy. The accuracy of the

prior information plays a much more important role in recon-

structing the high-resolution image. We find that we can use

these simple PSD approximations during multi-frame regis-

tration followed by reconstruction using the full PSD matrix

form of Equation (8).

3. EXPERIMENTS

In this section, we describe different conditions where the

traditional approaches to registering aliased images become

inadequate. We demonstrate that by using the multi-frame

registration algorithm described above, we can effectively

handle these difficult conditions. The matlab software used

in the experiments may be downloaded from www.soe.ucsc.

edu/�dirkr/Publications/PublicSRCode.zip.

In all of our experiments, we use root mean-square error

(RMSE) as a measure of performance, for both image regis-

tration parameters v and the unknown image z. The RMSE

when estimating the translation parameters v is defined as

RMSEðv̂Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2TK
kv̂� vk2

r
; ð28Þ

where T is the number of Monte Carlo simulations used during

the experiment. Similarly, the RMSE when estimating the

high-resolution image is defined as

RMSEðẑÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

TN2
H

kẑ � zk2

s
ð29Þ

This type of measurement gives a measure of the image

quality over the entire image.

3.1. Performance vs image size

For large images with reasonable Signal-to-noise ratio (SNR),

most pairwise image registration algorithms will provide an

acceptable level of registration accuracy. As the captured

image size decreases, however, the ability of traditional regis-

tration algorithms to accurately estimate motion is severely

compromised. The reduced number of data points found in a

pair of images becomes insufficient for estimation.

To demonstrate this tendency, we compare the registration

performance of several pairwise estimation algorithms as the

size of the captured images shrinks. The left images of Fig. 3

show the original high-resolution images from which sets of

10 low-resolution images were generated. The images are con-

structed by low-pass filtering with a raised cosine filter [32]

followed by downsampling, forming a dyadic pyramid. The

size of the square images are NH � NH where NH ¼ 480,

240, 120, 60. In this way, we ensure that the image PSD is

the same across image scales. At each scale, a set of 10 low-

resolution images were generated by first shifting the source

images by a randomly selected set of shift vectors v drawn

from a uniform distribution over [0, M]K. The set of trans-

lations is shown in the right graph of Fig. 3. The images

FIGURE 3. An example of high- and low-resolution test images.

The images on the left show the set of high-resolution test images used to evaluate the registration performance of different estimators on images

of different sizes.

The set of images forms a dyadic pyramid where the image content at each scale is approximately equivalent. The graphic on the right shows the

set of K ¼ 10 image shifts v used to construct the test set of low-resolution images f ykg.
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were then downsampled by a factor of M ¼ 2. With so many

frames, the registration problem is well defined and prior infor-

mation is unnecessary for either registration or reconstruction.

In the process of creating the low-resolution images from the

high resolution ones, we did not incorporate any blurring

into this experiment. At each scale, a different amount of

uncorrelated Gaussian random noise was added to the

images so that the SNR was 20 dB (SNR ¼ 20 log10
(sx)/s

where sx is the standard deviation of the high-resolution

image signal x). This corresponds to standard deviations of

roughly s ¼ 4, 4, 3, 2, respectively. In this case, we performed

only a single experiment.

We applied the proposed multiframe registration algorithm

using Equation (6) as the cost function. We compared this

algorithm with the relative phase approach [16], a standard

iterative gradient-based approach for estimating global trans-

lation [15] and a cyclic coordinate descent type algorithm as

described earlier similar in spirit to [11, 24]. The tuning

parameters were modified to provide the best MSE possible

at each image scale. Both the cyclic-coordinate descent and

the variable projection algorithms used the gradient-based

estimate of the motion parameters as an initial guess.

The cyclic coordinate descent used about five optimization

iterations over the motion parameters for each estimate of the

high resolution image. For all image sizes, the algorithm

converged after 20 total coordinate descent cycles for a total

of �100–150 optimization iterations. The multi-frame algor-

ithm also used the gradient-based estimate as the initial guess

of the motion vectors. The proposed multi-frame algorithm

based on the variable projections functional required less

than 40 total iterations.

Table 1 shows the registration RMSE of the three algor-

ithms. We observe that all of the algorithms provide a high

degree of accuracy when applied to large images. The pairwise

registration exhibits accuracy down to about 1/20 of a pixel.

As the size of the captured images decreases, however, the

pairwise registration algorithms begin to fail. At the smallest

image size, both of the pairwise registration techniques

provide unacceptable estimates of the shift parameters. In

each case, the registration performance worsens as the size

of the image decreases. However, both multi-frame regis-

tration algorithms not only continue to offer better estimates,

but they also degrade more slowly than the pairwise algor-

ithms. The variable projection-based algorithm offers

improved performance possibly due to better numerical

conditioning.

Next, we took the set of motion estimates and reconstructed

a high-resolution image via Equation (4) using the estimates v̂

produced by the different algorithms. Table 2 compares the

image reconstruction performance of the three algorithms as

a function of image size. Again, we observe that for large

images, the pairwise registration performance is accurate

enough to provide approximately equivalent reconstruction

performance regardless of the registration algorithm. As the

size of the low-resolution images decreases, however, only

the multi-frame registration techniques continue to offer

good performance2.

Finally, Table 3 shows the length of time required for each of

the different algorithms as a function of the image size NL. The

experiments were performed on a Pentium 4, 2.0 GHz machine.

We observe from Table 3 that the iterative algorithms require

more cycles to achieve the greater level of accuracy. The

faster algorithm based on the variable projections is about

30% faster than a coordinated cyclic descent type algorithm.

From this experiment, we observe that while the traditional

approaches to aliased image registration, and hence super-

resolution, work well for large images, as the image size is

decreased, only the joint methods provide adequate

performance.

3.2. Effect of prior information on

registration performance

In this section, we explore the performance of image regis-

tration as a function of prior information or regularization.

First, by way of experimentation, we verify that the piecewise

constant prior information approximation strategy described

in the previous section affects the performance of the multi-

frame MAP estimation very little. As a test image, we

cropped the smallest image shown in the image pyramid of

Fig. 3 to be 48 � 48 pixels. We estimated the prior image

TABLE 1. RMSE registration accuracy in units of pixels

(averaged over the number of frames) as a function of

low-resolution image size NL.

Algorithm NL ¼ 240,

s ¼ 4

NL ¼ 120,

s ¼ 4

NL ¼ 60,

s ¼ 3

NL ¼ 30,

s ¼ 2

Relative phase [16] 0.0442 0.0681 0.215 0.618

Gradient-based [15] 0.054 0.0685 0.203 0.455

Coordinate descent 0.011 0.0051 0.021 0.034

Variable projections 0.0018 0.0031 0.0090 0.0090

TABLE 2. Image reconstruction RMSE performance in terms of

gray levels as a function of the low-resolution image size NL.

Algorithm NL ¼ 240,

s ¼ 4

NL ¼ 120,

s ¼ 4

NL ¼ 60,

s ¼ 3

NL ¼ 30,

s ¼ 2

Relative phase [16] 1.763 1.879 2.161 3.569

Gradient-based [15] 1.838 1.989 2.859 3.027

Coordinate descent 1.687 1.687 1.348 1.217

Variable projections 1.684 1.673 1.310 1.077

2Lower reconstruction RMSE values for the smaller images are due to

incorporating less additive noise than that of the larger images to ensure con-

stant SNR over image size.
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PSD using a periodogram method [32] applied to the high

resolution large image shown in Fig. 3. Using this PSD esti-

mate, we constructed the diagonal prior information matrix

C̃z̃. We then computed a set of piecewise constant approxi-

mations to this prior information matrix for approximation

factors of R ¼ 2, 4, 6, 8, 12, 24. Then, we drew 100 random

sets of K ¼ 3 sampling shifts from a uniform distribution over

[0,2]K. For each set of motion parameters, we simulated the

set of low-resolution images for a downsampling factor of

M ¼ 2 and noise standard deviation of s ¼ 3 (SNR of 18 db).

We then computed the RMSE performance (RMSE(v̂)) when

using the complete prior matrix C̃z̃ as well as when approximat-

ing the prior matrices with quantization factors. Figure 4

describes the average difference between the registration

RMSE performance when using the MAP estimator with the

complete prior information matrix and the RMSE performance

when using the approximate prior information matrix. The

difference is negligible when the quantization factor is greater

than R ¼ 2. Using the approximate prior information, matrices

speeds-up registration performance significantly.

We also conducted an extensive Monte Carlo experiment

measuring both the reconstruction and registration performance

of the MAP estimator as a function of the number of captured

frames. We used the same 48 � 48 pixel image as in the pre-

vious experiments. For each value of K we randomly selected

100 motion vector sets v from a uniform distribution over

[0, 2] and simulated the captured images by adding noise

with s ¼ 1 (SNR¼ 28.2 db) for a downsampling factor of

M ¼ 2. The fast MAP algorithm uses the approximate prior

information matrix quantized to R2 ¼ 16. We also computed

estimates varying the prior information tuning parameter to

be l ¼ 0.1, 1.0 and 10. This entire process was repeated for

an increased noise power of s ¼ 5 (SNR¼ 14.5 db). The

graph on the left side of Fig. 5 shows the registration RMSE

averaged over the set of random motions for each value of

K þ 1. Also shown is the RMSE performance of the gradient-

based pairwise registration algorithm used to initialize the

MAP estimation. After obtaining estimates of the registration

parameters, the image z was reconstructed using either the

ML estimate of Equation (4) or the MAP estimate of Equation

(8). The complete prior information matrix C̃z̃ was used when

reconstructing the image using the MAP form. The graph on

the right side of Fig. 5 similarly displays the reconstruction

performance of the MAP estimator as a function of the

number of frames K þ 1. In this case, only the reconstruction

performance for l ¼ 1 is shown. Both graphs in Fig. 5 demon-

strate the superiority of the multiframe registration technique to

the pairwise gradient-based approach. Both graphs also show

the prior information to be unnecessary as the number of

frames increases. This is explained by well posedness of the

registration/reconstruction when sufficiently diverse sampling

offsets are present. As the number of frames increases, the prob-

ability that the set of sampling offsets is degenerate decreases

[19]. This suggests a two-stage approach that first estimates

the motion parameters using the ML formulation for its superior

computational efficiency followed by a more computationally

demanding MAP formulation. Overall, these performance

curves demonstrate the effectiveness of the multi-frame

approach for both registration and reconstruction.

3.3. Uncontrolled experiment

In this section, we apply the proposed multi-frame algorithm

on a very small portion of the well-known infrared tank

sequence generously provided by the US Air Force research

laboratory. We cropped the image to an NL ¼ 20 square

image patch around the personnel carrier. The image sequence

has 15 frames with unknown, yet apparently translational

motion. We applied the variable projections cost function

TABLE 3. Timing requirenments (seconds) for the different

algorithms as a function of low-resolution image size NL.

Algorithm NL ¼ 240 NL ¼ 120 NL ¼ 60 NL ¼ 30

Relative phase [16] 0.431 0.110 0.041 0.021

Gradient-based [15] 0.791 0.180 0.060 0.030

Coordinate descent 254.6 54.19 18.41 8.45

Variable projections 103.2 37.78 11.07 3.70

FIGURE 4. Graph showing the average difference between the

registration performance RMSE(v̂) when using the MAP estimator

with the complete prior information matrix C̃x̃ and the MAP estimator

when using the approximate prior information matrix with different

quantization defined by R. The errorbars show the standard deviation

between the RMSE performance using the quantized prior matrices

and the full prior matrix. The performance loss when using the quan-

tization factor of R ¼ 4 or greater is small enough to justify using the

much more computationally efficient method.

The performance results were averaged for each value of R over 100

random motion sets with K ¼ 3, M ¼ 2, s ¼ 3, for the smallest image

shown in Fig. 3.
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using 30 iterations. We initialized the translation estimates

using gradient-based estimation. To build an image prior

PSD, we randomly selected 50 NL � NL patches from the

fine-scale satellite image shown in Fig. 3 and estimated

the PSD using periodogram estimation. This PSD estimate

was used to construct the prior applied during our MAP

registration and reconstruction.

As a first step, we assumed a downsampling factor of M ¼

2. Given 15 frames, we could apply the very efficient ML

version of the estimator without any prior information.

While 15 frames should theoretically be sufficient for M ¼

3, we found in practice that the estimator converged to more

reasonable estimates when incorporating the prior information

in a MAP formulation. This is explained by the fact that the

motions vectors do not span the entire range [0, M] as M

increases, leading to more degenerate matrices.

The graph on the left side of Fig. 6 shows a scatter plot of

the motion vectors in units of the captured low-resolution

images. The similarity of the motion estimates for each down-

sampling factor M suggests an efficient strategy for registering

a set of images. Since the optimization requires far fewer iter-

ations for smaller downsampling factors, one could start with

small downsampling factors and gradually increase M as

needed. For example, one could apply the ML version of the

FIGURE 6. Scatter plotter and low-resolution images of the motion vectors. The graph on the left shows a scatterplot of the estimated sampling

offsets for M ¼ 2 (filled square box), M ¼ 3 (filled circle), M ¼ 4 (filled triangle) in units of the low-resolution captured image. We observe that

the estimates at each downsampling factor are similar. The images on the right show the reconstructed images at each downsampling factor. Also

shown is a sharpened version of the reconstructed image for M ¼ 4. The effectiveness of this simple restoration method demonstrates the ability to

jointly register and reconstruct the captured images independently of the restoration.

FIGURE 5. Comparison of registration and reconstruction RMSE performances. The graph on the left shows the registration RMSE as a function

of the number of frames K þ 1 while adding noise with standard deviation s ¼ 1 and 5. We observe that the prior information is very useful when

the number of frames are low. When sufficient number of frames become available, the prior information is unnecessary. The graph on the right

compares the corresponding reconstruction RMSE performance showing a similar phenomenon.
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estimator for M ¼ 2 (assuming non-degenerate motion) and

use the scaled version of the estimates as a reasonable initial

guess for M ¼ 3.

The images on the right side graph of Fig. 6 show the result-

ing reconstructed images for each downsampling factor. For

each enhancement factor, the image was reconstructed using

the translation estimates for that particular level. The prior

information PSD described above was applied at each scale to

regularize the solution. We observe that at each enhancement

factor, the resolution of the reconstructed image is improved.

The gain in resolution between M ¼ 3 and 4 is, however, slight.

As a point of reference, Fig. 7 shows the reconstructed

images using both the relative phase [16] and gradient-based

[15] pairwise registration algorithms. While the gradient-based

approach is clearly superior to the relative phase approach, both

reconstructions exhibit slightly jagged edges due to inconsistent

motion estimates. Such artifacts would be much more pro-

nounced for images having more high frequency image content.

Applying our reconstruction algorithm provides an estimate

of the blurry high resolution ẑ. To obtain an estimate of the

original high resolution x one must apply a deblurring algori-

thm. The image in the far right of Fig. 6 shows a very simple

deconvolution filter applied to the image based on Matlab’s

deconvwnr function assuming a Gaussian PSF with standard

deviation of 1.5 pixels. While one might argue that the result-

ing restored image is not optimal, the efficacy of this simple

method 21 suggests that much more powerful, possibly

blind, deconvolution strategies such as [11] might be applied

with improved results.

4. CONCLUSION

In this paper, we described an efficient approach to solving

both ML and MAP registration of a set of aliased images.

By exploiting the idea of variable projection functionals, we

decoupled the registration and resolution enhancement pro-

blems, increasing the computational efficiency of the iterative

approach. We demonstrated the further efficiency gains for the

case of translational motion wherein the more difficult

problem of image restoration may be decoupled from that of

registration and reconstruction. In this way, fast registration

based on simple quadratic penalty functions may be utilized

without need to incorporate the non-linear signal priors

shown to be successful for image restoration. We analysed

the conditions under which the performance of such accurate

motion estimation technique is considerably better than the

competing techniques. Our experiments showed the proposed

method to be effective even for traditionally challenging con-

ditions such as small image size, low SNR and significant

aliasing.
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