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A Model of the Effect of Image Motion
In the Radon Transform Domain

Peyman Milanfar,Senior Member, IEEE

Abstract—One of the most fundamental properties of the combination of expansion (magnification) and displacement
Radon (projection) transform is that shifting of the image results  [4]. The shifting property of the Radon transform is no longer
in shifted projections. This useful property relates translational adequate in describing the effect of general motion in the

motion in the image to simple displacement in the projections. Itis . th ect] H lization is clear]
far from clear, however, how more general types of motion in the Image on the projections. Hence, a generalization IS clearly

image domain will be manifested in the projections. In this paper, needed. In this paper, we will discuss such generalizations and
we will present a model for this phenomenon in the general case; study some of their fundamental implications and properties. In
namely, we develop a generalization of the shift property of the particular, we will study the case of affine motion and provide
Radon transform. We study various properties of the apparent some illustrative examples

projected motion implied by the model, and study the case of To begi d | f del f . d .
affine motion in particular. We also present illustrative examples, 9 €gin our deve opm_ent 0 "_" r_no etfor pTOJeCte motion,
and briefly discuss theinverse problem implied by the forward We first state two useful differentiation properties of the Radon
model developed herein, along with some possible applications transform, which will be invoked later in the paper.

Index Terms—Affine motion, optical flow, projection, Radon I?l—Trgnsform of DerivativesLet L(Q/@x, 8/.83;) Fienote
transform, shift property. a linear differential operator, and write the direction vector

w(f) = [wy, wa]*. We have

[. MOTION IN THE PROJECTION DOMAIN Re[Lf] = L(w18/3p, w28/Ip)ag(p, w). (2

HE SHIFT property of the Radon transform has found . e .
applications in many areas of image processing. FB} particular, if L is a homogeneous polynomial of degnee

instance, in translational motion estimation from a vide\‘)"th constant coefficients, then

sequence [1], [2], and the related problem of image registration " g(p, w)
[3]. More importantly, projections acquired while the subject RolLf] = L(w) T opm (3)
undergoes linear motion can be corrected using this property
before a reconstruction of the image is attempted. For instance, a useful corollary is
The shift property of the Radon transform shows that 9g(p, w)
translational motion in the image domain results in transla- Rod V] =viw %. (4)

tional motion in the projection domain. More specifically, if
g(p, 6) = Re[f] is the projection off (z, y) at anglef defined  p2_perivatives of the TransfornFor integersk and?

by k41
*+g(p, w) AN
— — = - Ro [z*4 f(x, 5
9(p, 0) =Rs[f] Gk ] < 8p> o[z"y' f(z, )] (5)
- //D P, w)olp =@ cos(l) —y sin(@) drdy (1) here it must be kept in mind that when derivatives with

. respect to components ef are computed, the vectar is
we haveRy [f(g — Vo Y — Voy)] = g.(p ~ % w(b), 6), where injtially notconsidered a unit vector. The derivatives may later
vo = [vo, vou]" andw(#) = [cos 6, sin 6] is a unit direction pe evaluated for unit direction vectors.
vector. . o _ Now, let us consider an image sequerfce, v, t), which

To the extent that the underlying motion in the image dasyolves in time according to the spatially varying motion
main can be adequately modeled as translational, this shiftigctor fieldu(z, ) = [v1(z, y), va(z, y)]¥. Also, consider its
property of the Radon transform is exceedingly useful igorresponding Radon transform sequentg ¢, t), obtained
applications. More generally, however, one might naturally, computing the Radon transform gf for every fixed .
wonder what happens in the projection domain if the motion ifyhat we aim to show is that, subject to some conditions,
the image domain igota simple displacement. As an exampleje displaced imagef(z + v1At, y + v2At, ¢ + At) has
respiratory motion during CAT scans can be modeled asaacorresponding Radon transform, which we can denote by
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For a sufficiently small time incremenAt, a first-order where V2 f denotes the Laplacian gf, and the last identity
Taylor series expansion gf is as follows: follows by invoking the differentiation properties described
earlier. Note that, as before, we have assumedihaty # 0.
We note here that, in practice, wherés to be computed from
~ f(z, y, t) + v af At + vy af At + of At (6) the projections alone, (12) is the relevant equation. That is,

flx 4+ v AL, y + v AL, t+ AT)

Ox dy ot is considered a spatial transformation (or warping) over time
= fla, y, ) + 0TV AL+ ﬁAt. @) in the. projection domain. .
at Taking both f andv to be defined over the same compact
Next, we consider the Radon transform applied to both sideggion of the plane (the image region), the following propo-
of the above: sition, which is the main result of this paper, follows directly
from the above definitions and arguments.
Ro[f(z +viAt, y +v2At, t+ At)] Proposition 1—Projected MotionConsider the image se-
af quencef(z, y, t), assumed to be twice continuously differen-
—~ T 7 b b ’
~ R @,y ) 0T VAL ot At ® tiable (orC?), which evolves according to th&* vector field

dg(p, 6, t) v(z, ). Then, for any %, 6, ), for which 8¢/dp # 0, there
=g(p. 0, 1) + Re [v" V] At + — 5 At (9 exists ac? functionu(p, 6, t) such that, to first order

Now definethe functionu(p, 6, t) (henceforth referred to as
the projected motionby) Rolf(z + v, y + w28, t+ At)]

Ro[o7V (2.1, 1)] . ~ g(p+ult, 6, t + At) (15)
9g(p. 6, )/dp for sufficiently smallAt. Furthermore, the function is given

Clearly, this function is well-defined only whenby the identity

dg(p, 6,t)/dp # 0, and whenf(z, y, t) is differentiable.

We will discuss these requirements in more depth a bit later.

For now, assuming that is thus well-defined, if we replace

its definition into (9), we have

u(p, 0, t) =

up, 0,0 B0 Ry [TV f g ). 9)

We term this relationship thédifferential projected motion
Ro[f(z + viAt, y + v2 AL, ¢t + At)] P Pro)

identity (PMI). O
~g(p, 0, t) +u(p, 6, t) M At A straightforward. corollary of the above result is that under
dp the same assumptions, we have
+ 99(p. 9. t) At. (11)
or 99 _ g {ﬁ} (17)
The right-hand side of (11) now appears quite similar to at — Cat)

a Taylor series expansion @{p, 6, t). In fact, if u(p, 6, t)
can be replaced byp/d¢t, we will have exactly the first-order That is, locally, the projection of the total derivative ffis
Taylor series ofg on the right-hand side. We can make thighe total derivative of the projection of (Rs and the total

substitution only when the differential equation derivative operation commute). An immediate consequence is
dp that if the optical flow brightness constraidf /dt = 0 is
i u(p, 0, t) (12) assumed to hold in the image domain, then (17) implies that

this constraint also holds in the projection domaip/dt = 0,
has a solution, for any fixed, over the support of;. The ijth motion in this domain given by (16).
existence and uniqueness theorem for first-order ordinarythe PMmI is a natural generalization of the shift property
differential equations [5] states that a unique solution to (13} the Radon transform and is reduced to the standard shift
will exist when u(p, ¢, t) is continuously differentiable (or property if the motion vector is spatially invariant. In partic-

C1); that is, du/dp must exist and be continucun a yjar, if the motion vectow = v, is spatially invariant, then
compact subset of the-axis. Referring to the definition of property P1 gives

u in (10), we can see that if we require that the vector field

be C* and thatf be C?, thendu/Jp exists, it is continuous, dg
and is given by Re[vg V.f] = v§ w(®) e (18)
P
du _ (ORe["V 11/0)(99/0p) — (9°9/Op*)Re[u7 V 1]
ap (8g/0p)? which, when compared to (16), yields = vd'w(f), as

(13) expected. Furthermore, it is worth noting that as with the
T/ T T _ 9 T shift property, the PMI holds in any dimension. That is, if
_ Relw" V(v Vf)]R%[w ZQ Z%[V HRelv" V1 ihe Radon transform of a scalar functionofeal variables is
(Re[w™'V f]) defined as its integrals over hyperplanes of dimensienl,
(14)  the arguments presented above would yield the same result
1This will imply that w anddw/dp are also bounded on the same intervalexcept thaty would be ann-dimensional vector field.
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Il. PROPERTIES OF THEPROJECTEDMOTION ueReo[f] = Ro[fvTw]. That is,u. is the ratio of the projection

Several interesting properties and implication of the pr& the flux (fv) in the direction ofw, to the projection of
jected motion, and the model in (16) are worth considering. Self in the same direction. The issue of whether (16) or
First, we note thai: may be time-varying even if the vector(24) should be used in describing the nature of motion in
field v is not. This is due to the dependenceuain the gradient the Projection domain is a matter of which assumptions are
of the image, which varies with time. Another observatiof10St @dequate in describing the application at hand. However,

worth making is that by invoking the directional derivativéVhile the differential form of PMI makes slightly stronger
property P1, we can rewrit8g/dp in the image domain and smqo_thness assumptions @nit is more generally appllc'able
express the PMI as follows: as it is not based on a_global cpnservr_altlon assumptlon. We
note that naturally, as with any differential model of motion,
u(p, 0, )Re[w' Vf] = Re[vT V£]. (19) the motion in the projections is not well-defined in (16) when
the local gradientlg/dp is null. If (16) is to be used as a means
aif measuringu from image datathen additional assumptions
uch as smoothness may have to be invoked to compute
when the gradient is near zero. Alternatively, other models
X . of the projected motion such as the one described above can
the'|m§ge_parallel to the_gnlt vect@v(e), when theTIatter be invoked, if the underlying assumptions are appropriate. We
propcﬂon IS not'zero. Intwt!vely, at pom'ts wheﬁg[w .Vf] distinguish the two models of projected motion by referring
vanishes, there is no perceived motion in the projection takﬁp(m) as thentegral (or conservative) PMI, whereas without

at an_glee, ar_ld hence, as ex_pected;s _not yvell defm_ed. _It 'S this qualification, we understand PMI to mean tliferential
also interesting to note that in each direction of projection, t%rsion in (16)

correspondence between the vector fieldnd the function:

The insight we gain here is thatis expressible as thetio

of two projections; namely, the projection of the direction
derivative of the image parallel to (sometimes called the
advectivederivative of f), and the directional derivative of

) . N v f . both q iold A number of interesting properties of projected motion can
Is not unique. Namely, for a givefi bothv andv +v,, yie be derived directly from the properties of the Radon transform

. ; T -
the sameu if v is such thatRe[v] V] = 0. stated earlier and in [7]. For instance, it follows from the
It is important to note that another (less general) form ®

the PMI. based ricti lobal i inearity of the Radon transform that for a given image
€ , based upon more restriclive giobal conservalion gg: 54,/ are the projected motions resulting from the vector

sumptions, is also possib[e. Namely, Fitzpatrick [6.] consider?glds v and v/, respectively, then the projected motion field
f andv both C!, wheref is to represent the density of Someresulting fromav + b’ is simply au + bu/, wherea andb are

conservedquantity. That is arbitrary scalars. This, in turn, implies that if a given vector
af field v is decomposed according to Helmholtz’'s theorem [8]

ot +div(fv) =0 (20) into its irrotational and solenoidal componentsvas vy +vs,
which is the familiar continuity equation of fluid dynamics.the projected motion fiela has a decompo_smon of_the same
Write kind: « = u; + ug. Other useful properti€sof « include

periodicity: u(p, 8+ 2kr, t) = u(p, 4, t), andanti-symmetry:
of | div(fv) = af | 9(fun) N O(fv2) _ 1) u(p, 6, t) = —u(—p, 6 + =, t). Finally, it is well known [7],

ot SOt O dy [9] that the moments of the projections are linearly related to
Taking the Radon transform of both sides of (21), and applyiige moments of the image. Of particular interest is the case of
property P1, we have zeroth-order moments of a function and its Radon transform,
which are, in fact, equal. That is, ffis thought of as a density,
99 +Re {8(]‘1}1)} +Re {M} then the total mass given by the integralfobver its domain
ot o 9 of definition is equal to the total area under any projection in
dg d d an arbitrary direction. Applying this result to thifferential
== —R —R 22 :
ot + wy ap o[ fui] + w2 » olfv2]  (22) PMI. we obtain
dg 0 T
==+ —Rgl|fviw| =0. (23)
o + 5y RelFoTu) J[9re  ydedy= [up 6.0 @0)
P

Now if we define
. T which states the intuitively pleasing result that projection

uc(p, 0, )g(p, 0, ) = Re [ fv" ] (24) " conserves the average advective derivativef ofApplied to

wheneverg # 0, and replace this definition into (23), wethe integral PMI, we get

obtain a continuity equation fog:

a A
dg | (ucg)

ot dp
The identity (24) is the PMI implied by the conservatio

assumption (hence, the subscriptn «). Similar to (16), (24)
also implies a description af. as theratio of two projection:

// f(z, y, tywlwdedy = /uc(p, 6, t)gdp (27)

—0. (25)

gvhich means that the total flux in any direction is conserved
by projection.

SLinearity, periodicity, and antisymmetry properties are also satisfied by
2This is a generalized rederivation of Fitzpatrick’s result in [6]. Ue.
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I1l. ANALYSIS OF AFFINE MOTION consider
IN THE PROJECTION DOMAIN

Fz,5,0) =Y fuHi(@) Hy)e™ =" (36)
k1

Any motion field can be locally approximated (to first order)
by affine motion. Hence, it is important to consider the class

of motions given by where {Hy(z)H(y); k,1 = 0,1, 2, ---} is the orthogonal
. 0 b basi$ of Hermite polynomials.
v=vo+M [y} ) M= L d} (28) It can be shown (see [10] for details) that for this choice of

/, and for sufficiently largep:
wherewy is a fixed vector denoting translational motion.
To see specifically how affine transformation behaves in the [ag/awl}
projection domain, let us consider warping an image, v) ag /0w

by such a transformation. Lettinf(z, v) = f(z, ¥, 0), if we o o _ _
compute the derivative of both sides of the differential PMPUPStituting these approximations into (35) and solving«for

with respect top and invoke P1 and the linearity property ofV€ obtain the following neat asymptotic expression dor
the Radon transform, we get

~2p°gw and dg/dp ~ —2pg. (37)

lw|=1

u vy w+ (wh Mw)p. (38)
a dg
p “ p Expanding the quadratic form i/, we have
a a a .
= — <Rg [(aa: + by) —f + (cx + dy) —f} u(p, 6, 0) =voy cos(f) + voy sin(f)
P dz dy
+ <a +d +2- d cos(26) + bre sin(29)>
+ Ro[vdV f]) (29) 2 2 2 P
(39)
~ dp 1\ " T C Ay in which, interestingly, no term corresponding to pure rotation
9 af af o ( , 9g (i.e., the curl strength—b) appears. In fact, what occurs is that
+ op Re [?J<b% + da_yﬂ + op <Uo w a_p> (30) ' the influence of any pure rotation in the image plane decays

essentially ad /p or faster away from the vertex of rotation
Writing the direction vectoty = w1, w»]* and using property in the projection domain, and is therefore not reflected in the

P2, we can rewrite (30) as follows: above asymptotic formula.
9(,%
Op " dp IV. SOME EXAMPLES OF PROJECTEDMOTION
0 d af] 9 af = of] In this section we present two examples. In the first,
oy Re [a ox te dy| wo Re [b Jz +d dy | algebraic expressions fou(p, 6, ¢) for an analytic image
o ( g sequence and vector field are derived. In the second example,
+a—p<vowa_p> B1) we apply the motion model developed here to an image
9 g7 9 g7 sequence and verify that the resulting estimates of the motion
=—— [(awl + cws) gl s {(bwl + dwy) . in the projection domain are consistent with our proposed
5 ) Pl w2 P model and our intuitive expectations.
+ — <v§w _g) (32)
Ip Ip A. Example 1
a[a a
=5 [— (awy + cws)g + — (bwy + dws)g Let f(z, vy, t) = exp(—(z — vit)? — (y — wot)?), and
plwL w2 v(z, y) = [z, y]¥. Computing the gradient of, we have
—viw @} (33)
°" ap Vf==201-1 exp(—(1 = 1)*(z" + ) [z, y]*  (40)
7, g/ 0w dg . .
=——(tr(M Tm —vaw—>). (34
ap < r(M)g +w [89/81112} Vo W ap (34) which yields (see [7])

Re [vTVf] =Ryg [—2(3:2 +yH (1 —1)?
. exp(—(l — )2 (2? + yQ))] (42)
=0. (35) — —p3(1 — )2
S exﬂ’l( _pt|( Y) (2p%(1 —1)° + 1)
Much can be learned about the general structure of affine (42)

motion in the projection domain by considering the repre-

sentation of images using Hermite polynomials. In particular,?While a shortcoming of this representation is that the basis functions
H,.(x)H(y) are not compactly supported when real images are, the inclusion
4The indeterminate constant resulting from indefinite integration is easitf the exponential factor makes this representation somewhat more realistic
shown to be zero by letting = 0. for image processing.

Integrating both sides of (34) with respectiove gef

dg/ow, }

99
(v — vy w) == +tr(M)g+w" M {ag/an

Op

[w|=1
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and
dg(p, 0, t) 0 3 Vaexp(-PP(1-1))
LD = SRl = o (@3)
2 2 2
_ 2 - t)ll e_XZ(—p =97 4

Invoking the differential PMI, and solving fak, we obtain

1

0, 8) =p+ ——
u(p, 0, 1) A

(45)
which has (removable) singularitiesat= 0 andt = 1 where
dg/dp vanishes. For this example, the singularities can k
explained rather easily. For instancetat 1, f(z, y, 1) has
null gradient and hence there is no perceived motion at all. Tt
explanation for the singularity at = 0 is a bit more subtle.
Namely, forp = 0, and regardless of the angle, all pixels in
the image are moving in a perpendicular directionut(?).
Hence, no motion can be measured in the projections.
More generally, considering affine motion as in (28); skip
ping the details of the computation, we obtain theact

Y
N
\
A
\
\
\

expression Fig. 1. Frame 20 and the optical flow field for Example 2.
T 2 2
" et)_va+tr(M)+(w Muw) (2p*(1 —t)? — 1) ; ‘ , , , , ‘
p, 0, 0 2p(]_ — t)2 ———  Computed projection displacement (x-direction)
46 o8- | —— — Computed projection displacement (y-direction) © B
( ) o O Predicted projection displacement

which asymptotically agrees with our result in (38).

0.6}

0.4

B. Example 2

0.2r

ction (pixels per frame)

In this example, thaiverging treesmage sequence (cour-
tesy of Barroret al.[11]) is used to show that the PMI model ¢
for motion agrees with actual measurements of motion in the
projections. The said image sequence consists of 40 framés?ff
each having 150< 150 pixels, obtained as the camera movesg .
along its line of sight toward the scene, resulting in a divergerit
motion field with the focus of expansion located at the centgros+
of the image. The twentieth frame, along with some sample |
motion vectors, are shown in Fig. 1. The exact motion vector
field is known® and is well described by(z, y) ~ 1.1[z, y]© T P T Sy S
(in units of pixels per frame). Projections of the frames were Coordinate {p) of the projection
computed in the row and column directions, and from thesesg. 2. Measured and predicted motion in the projections for Example 2.
using a Fourier transform-based technique described in [12]

(which is a refinement of the algorithm in [2]), the motion V. CONCLUSIONS AND FUTURE DIRECTIONS

in the projections was measured. These estimated values aige considered the question of modeling the mapping be-
shown as the sol_id and dashed curves in Fig. 2. The_ asymptmen motion in an image (or image sequence) and its pro-
model in (38), withuo = [0, 0" and M = 1.1/, then implies jactions. To this end, we developed a local first-order model
that the predicted motion in the projections at any angle shoilfle gifferential projected motion identity) and showed that
beu(p) ~ 1.1p. These predicted values are displayed in Fig. i nroduces results that are reasonable and intuitive. We also
as circles. Itis evident that they generally agree quite well withgied alternative global formulations of the PMI based on
the directly estimated values while, not surprisingly, the largeéghnservation assumptions. We derived some basic properties
errors occur at the _center of the plots near the.p_rojection (9,1‘ projected motion, and studied the effect of affine motion
the focus of expansion. Note that the model exhibits a certajp the projection domain using the differential formulation,
de_gre_e of robus_tnes§ to the extent that it is gccurate (at Iea}stF{SFticularly for a general class of images defined in terms
this simple motion field) even though the images are neithgf ermite polynomials. This analysis revealed that, at least
C?2, nor necessarily well represented by the model (36) ¥kymptotically, the projected affine motion is itself affine in
terms of Hermite polynomials. nature, and that the effect of rotation tends to dissipate as the

Sit can be downloaded, along with the image sequence frofiverse distance from the vortex in the projection domain, and
ftp://csd.uwo.ca/pub/vision/TESTDATAV. is hence difficult to measure.

ok
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More generally, the PMI can be considered as an indirect
measurement equation (forward mode)l for motion flow in 2]
the image domain. This implies an inverse problem. Namel;},
given measurements of the projectiopsand hence their
respective motion field: (or «.), how do we reconstruct
v? The measurements. implied by integral PMI, being
inner-product measurements, are transversal in nature [106]
and therefore yield information only about the irrotational

component ofv. The more general case of inverting for  june 1996.

1281

environments,”"Comput. Vis., Graph., Image Processingl. 21, pp.
280-293, Feb. 1983.

P. Milanfar, “Projection-based, frequency-domain estimation of super-
imposed translational motionsJ. Opt. Soc. Amer. Ayol. 133, pp.
2151-2161, Nov. 1996.

] S. Alliney and C. Morandi, “Digital image registration using projec-
tions,” IEEE Trans. Pattern Anal. Machine Intellyol. PAMI-8, pp.
222-233, Mar. 1986.

C. Crawford, K. F. King, C. J. Ritchie, and J. D. Godwin, “Respi-
ratory compensation in projection imaging using a magnification and
displacement model,JEEE Trans. Med. Imag.yol. 15, pp. 327-332,

v from measurements implied by differential PMI seems [5] J. E. MarsdenElementary Classical Analysis.San Francisco, CA: W.

to be a more interesting and challenging inverse problerns]
since these measurements contain some information about
both solenoidal and irrotational components of the motiorh]
field v. Existing reconstruction algorithms [13]-[15] may be
successful in recovering the irrotational part offrom «

or u.. If v is purely solenoidaldiv(v) = 0), however, the

continuity equation (20) invoked in the derivation of integral
PMI reduces to the familiar optical flow brightness constrainti
andu,. conveysno information about in this case. (10

Generally, questions of existence and uniqueness of 3ot
lutions, along with numerically well-behaved algorithms fo
performing the inversion, remain to be studied. This inver
problem has a number of interesting applications. For instan¢es]
it has been shown [1], [2] that using (two) projections, we
can efficiently estimate translational motion in the image. They)
natural next step would be to ask whether computationall
efficient motion estimation algorithms using projections caﬁ/
be obtained for more general types of motion. As we can see July 1992.
in Section 1l (38), this appears to be possible in at least the
affine case.

A solution to the inverse problem implied by the PMI
is useful in any application where it may be difficult o8
impossible to collect inner product measurements of a vec ‘*
field. In these cases, it may be possible instead to meas
ordinary line integral projections of the density field, comput
motion in these projections using existing motion estimatid
techniques (applied in one dimension), and attempt to inv
for the desired higher-dimensional vector field. This is
promising direction of research with many applications whid

(8]
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