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A Model of the Effect of Image Motion
in the Radon Transform Domain

Peyman Milanfar,Senior Member, IEEE

Abstract—One of the most fundamental properties of the
Radon (projection) transform is that shifting of the image results
in shifted projections. This useful property relates translational
motion in the image to simple displacement in the projections. It is
far from clear, however, how more general types of motion in the
image domain will be manifested in the projections. In this paper,
we will present a model for this phenomenon in the general case;
namely, we develop a generalization of the shift property of the
Radon transform. We study various properties of the apparent
projected motion implied by the model, and study the case of
affine motion in particular. We also present illustrative examples,
and briefly discuss the inverse problem implied by the forward
model developed herein, along with some possible applications

Index Terms—Affine motion, optical flow, projection, Radon
transform, shift property.

I. MOTION IN THE PROJECTIONDOMAIN

T HE SHIFT property of the Radon transform has found
applications in many areas of image processing. For

instance, in translational motion estimation from a video
sequence [1], [2], and the related problem of image registration
[3]. More importantly, projections acquired while the subject
undergoes linear motion can be corrected using this property
before a reconstruction of the image is attempted.

The shift property of the Radon transform shows that
translational motion in the image domain results in transla-
tional motion in the projection domain. More specifically, if

is the projection of at angle defined
by

(1)

we have , where
and is a unit direction

vector.
To the extent that the underlying motion in the image do-

main can be adequately modeled as translational, this shifting
property of the Radon transform is exceedingly useful in
applications. More generally, however, one might naturally
wonder what happens in the projection domain if the motion in
the image domain isnota simple displacement. As an example,
respiratory motion during CAT scans can be modeled as a
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combination of expansion (magnification) and displacement
[4]. The shifting property of the Radon transform is no longer
adequate in describing the effect of general motion in the
image on the projections. Hence, a generalization is clearly
needed. In this paper, we will discuss such generalizations and
study some of their fundamental implications and properties. In
particular, we will study the case of affine motion and provide
some illustrative examples.

To begin our development of a model for projected motion,
we first state two useful differentiation properties of the Radon
transform, which will be invoked later in the paper.

P1—Transform of Derivatives:Let denote
a linear differential operator, and write the direction vector

. We have

(2)

In particular, if is a homogeneous polynomial of degree
with constant coefficients, then

(3)

For instance, a useful corollary is

(4)

P2—Derivatives of the Transform:For integers and

(5)

where it must be kept in mind that when derivatives with
respect to components of are computed, the vector is
initially not considered a unit vector. The derivatives may later
be evaluated for unit direction vectors.

Now, let us consider an image sequence , which
evolves in time according to the spatially varying motion
vector field . Also, consider its
corresponding Radon transform sequence , obtained
by computing the Radon transform of for every fixed .
What we aim to show is that, subject to some conditions,
the displaced image , , has
a corresponding Radon transform, which we can denote by

, , , where is the (scalar)
motion field induced in the projection domain by motion field
in the image domain. That is, we show thatlocally, the function

exists and is well defined, and that it adequately reflects the
behavior of motion induced in the projection domain.
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For a sufficiently small time increment , a first-order
Taylor series expansion of is as follows:

(6)

(7)

Next, we consider the Radon transform applied to both sides
of the above:

(8)

(9)

Now definethe function (henceforth referred to as
the projected motionby)

(10)

Clearly, this function is well-defined only when
, and when is differentiable.

We will discuss these requirements in more depth a bit later.
For now, assuming that is thus well-defined, if we replace
its definition into (9), we have

(11)

The right-hand side of (11) now appears quite similar to
a Taylor series expansion of . In fact, if
can be replaced by , we will have exactly the first-order
Taylor series of on the right-hand side. We can make this
substitution only when the differential equation

(12)

has a solution, for any fixed, over the support of . The
existence and uniqueness theorem for first-order ordinary
differential equations [5] states that a unique solution to (12)
will exist when is continuously differentiable (or

); that is, must exist and be continuous1 on a
compact subset of the-axis. Referring to the definition of

in (10), we can see that if we require that the vector field
be and that be , then exists, it is continuous,
and is given by

(13)

(14)
1This will imply that u and@u=@p are also bounded on the same interval.

where denotes the Laplacian of, and the last identity
follows by invoking the differentiation properties described
earlier. Note that, as before, we have assumed that .
We note here that, in practice, whereis to be computed from
the projections alone, (12) is the relevant equation. That is,
is considered a spatial transformation (or warping) over time
in the projection domain.

Taking both and to be defined over the same compact
region of the plane (the image region), the following propo-
sition, which is the main result of this paper, follows directly
from the above definitions and arguments.

Proposition 1—Projected Motion:Consider the image se-
quence , assumed to be twice continuously differen-
tiable (or ), which evolves according to the vector field

. Then, for any ( ), for which , there
exists a function such that, to first order

(15)

for sufficiently small . Furthermore, the function is given
by the identity

(16)

We term this relationship thedifferential projected motion
identity (PMI).

A straightforward corollary of the above result is that under
the same assumptions, we have

(17)

That is, locally, the projection of the total derivative ofis
the total derivative of the projection of ( and the total
derivative operation commute). An immediate consequence is
that if the optical flow brightness constraint is
assumed to hold in the image domain, then (17) implies that
this constraint also holds in the projection domain: ,
with motion in this domain given by (16).

The PMI is a natural generalization of the shift property
of the Radon transform and is reduced to the standard shift
property if the motion vector is spatially invariant. In partic-
ular, if the motion vector is spatially invariant, then
property P1 gives

(18)

which, when compared to (16), yields , as
expected. Furthermore, it is worth noting that as with the
shift property, the PMI holds in any dimension. That is, if
the Radon transform of a scalar function ofreal variables is
defined as its integrals over hyperplanes of dimension ,
the arguments presented above would yield the same result
except that would be an -dimensional vector field.
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II. PROPERTIES OF THEPROJECTEDMOTION

Several interesting properties and implication of the pro-
jected motion, and the model in (16) are worth considering.
First, we note that may be time-varying even if the vector
field is not. This is due to the dependence ofon the gradient
of the image, which varies with time. Another observation
worth making is that by invoking the directional derivative
property P1, we can rewrite in the image domain and
express the PMI as follows:

(19)

The insight we gain here is that is expressible as theratio
of two projections; namely, the projection of the directional
derivative of the image parallel to (sometimes called the
advectivederivative of ), and the directional derivative of
the image parallel to the unit vector , when the latter
projection is not zero. Intuitively, at points where
vanishes, there is no perceived motion in the projection taken
at angle , and hence, as expected,is not well defined. It is
also interesting to note that in each direction of projection, the
correspondence between the vector fieldand the function
is not unique. Namely, for a given, both and yield
the same if is such that .

It is important to note that another (less general) form of
the PMI, based upon more restrictive global conservation as-
sumptions, is also possible. Namely, Fitzpatrick [6] considered

and both , where is to represent the density of some
conservedquantity. That is

div (20)

which is the familiar continuity equation of fluid dynamics.
Write

div (21)

Taking the Radon transform of both sides of (21), and applying
property P1, we have2

(22)

(23)

Now if we define

(24)

whenever , and replace this definition into (23), we
obtain a continuity equation for:

(25)

The identity (24) is the PMI implied by the conservation
assumption (hence, the subscripton ). Similar to (16), (24)
also implies a description of as theratio of two projection:

2This is a generalized rederivation of Fitzpatrick’s result in [6].

. That is, is the ratio of the projection
of the flux ( ) in the direction of , to the projection of

itself in the same direction. The issue of whether (16) or
(24) should be used in describing the nature of motion in
the projection domain is a matter of which assumptions are
most adequate in describing the application at hand. However,
while the differential form of PMI makes slightly stronger
smoothness assumptions on, it is more generally applicable
as it is not based on a global conservation assumption. We
note that naturally, as with any differential model of motion,
the motion in the projections is not well-defined in (16) when
the local gradient is null. If (16) is to be used as a means
of measuring from image data,then additional assumptions
such as smoothness may have to be invoked to compute
when the gradient is near zero. Alternatively, other models
of the projected motion such as the one described above can
be invoked, if the underlying assumptions are appropriate. We
distinguish the two models of projected motion by referring
to (24) as theintegral (or conservative) PMI, whereas without
this qualification, we understand PMI to mean thedifferential
version in (16).

A number of interesting properties of projected motion can
be derived directly from the properties of the Radon transform
stated earlier and in [7]. For instance, it follows from the
linearity of the Radon transform that for a given image,
if and are the projected motions resulting from the vector
fields and , respectively, then the projected motion field
resulting from is simply , where and are
arbitrary scalars. This, in turn, implies that if a given vector
field is decomposed according to Helmholtz’s theorem [8]
into its irrotational and solenoidal components as ,
the projected motion field has a decomposition of the same
kind: . Other useful properties3 of include
periodicity: , andanti-symmetry:

. Finally, it is well known [7],
[9] that the moments of the projections are linearly related to
the moments of the image. Of particular interest is the case of
zeroth-order moments of a function and its Radon transform,
which are, in fact, equal. That is, if is thought of as a density,
then the total mass given by the integral ofover its domain
of definition is equal to the total area under any projection in
an arbitrary direction. Applying this result to thedifferential
PMI, we obtain

(26)

which states the intuitively pleasing result that projection
conserves the average advective derivative of. Applied to
the integral PMI, we get

(27)

which means that the total flux in any direction is conserved
by projection.

3Linearity, periodicity, and antisymmetry properties are also satisfied by
uc.
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III. A NALYSIS OF AFFINE MOTION

IN THE PROJECTION DOMAIN

Any motion field can be locally approximated (to first order)
by affine motion. Hence, it is important to consider the class
of motions given by

(28)

where is a fixed vector denoting translational motion.
To see specifically how affine transformation behaves in the

projection domain, let us consider warping an image
by such a transformation. Letting , if we
compute the derivative of both sides of the differential PMI
with respect to and invoke P1 and the linearity property of
the Radon transform, we get

(29)

(30)

Writing the direction vector and using property
P2, we can rewrite (30) as follows:

(31)

(32)

(33)

tr (34)

Integrating both sides of (34) with respect towe get4

tr (35)

Much can be learned about the general structure of affine
motion in the projection domain by considering the repre-
sentation of images using Hermite polynomials. In particular,

4The indeterminate constant resulting from indefinite integration is easily
shown to be zero by lettingf = 0.

consider

(36)

where ; is the orthogonal
basis5 of Hermite polynomials.

It can be shown (see [10] for details) that for this choice of
, and for sufficiently large :

and (37)

Substituting these approximations into (35) and solving for
we obtain the following neat asymptotic expression for:

(38)

Expanding the quadratic form in , we have

(39)

in which, interestingly, no term corresponding to pure rotation
(i.e., the curl strength ) appears. In fact, what occurs is that
the influence of any pure rotation in the image plane decays
essentially as or faster away from the vertex of rotation
in the projection domain, and is therefore not reflected in the
above asymptotic formula.

IV. SOME EXAMPLES OF PROJECTEDMOTION

In this section we present two examples. In the first,
algebraic expressions for for an analytic image
sequence and vector field are derived. In the second example,
we apply the motion model developed here to an image
sequence and verify that the resulting estimates of the motion
in the projection domain are consistent with our proposed
model and our intuitive expectations.

A. Example 1

Let , and
. Computing the gradient of, we have

(40)

which yields (see [7])

(41)

(42)

5While a shortcoming of this representation is that the basis functions
Hk(x)Hl(y) are not compactly supported when real images are, the inclusion
of the exponential factor makes this representation somewhat more realistic
for image processing.
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and

(43)

(44)

Invoking the differential PMI, and solving for, we obtain

(45)

which has (removable) singularities at and where
vanishes. For this example, the singularities can be

explained rather easily. For instance, at , has
null gradient and hence there is no perceived motion at all. The
explanation for the singularity at is a bit more subtle.
Namely, for , and regardless of the angle, all pixels in
the image are moving in a perpendicular direction to .
Hence, no motion can be measured in the projections.

More generally, considering affine motion as in (28); skip-
ping the details of the computation, we obtain theexact
expression

tr

(46)
which asymptotically agrees with our result in (38).

B. Example 2

In this example, thediverging treesimage sequence (cour-
tesy of Barronet al. [11]) is used to show that the PMI model
for motion agrees with actual measurements of motion in the
projections. The said image sequence consists of 40 frames,
each having 150 150 pixels, obtained as the camera moves
along its line of sight toward the scene, resulting in a divergent
motion field with the focus of expansion located at the center
of the image. The twentieth frame, along with some sample
motion vectors, are shown in Fig. 1. The exact motion vector
field is known,6 and is well described by
(in units of pixels per frame). Projections of the frames were
computed in the row and column directions, and from these,
using a Fourier transform-based technique described in [12]
(which is a refinement of the algorithm in [2]), the motion
in the projections was measured. These estimated values are
shown as the solid and dashed curves in Fig. 2. The asymptotic
model in (38), with and , then implies
that the predicted motion in the projections at any angle should
be . These predicted values are displayed in Fig. 2
as circles. It is evident that they generally agree quite well with
the directly estimated values while, not surprisingly, the largest
errors occur at the center of the plots near the projection of
the focus of expansion. Note that the model exhibits a certain
degree of robustness to the extent that it is accurate (at least for
this simple motion field) even though the images are neither

, nor necessarily well represented by the model (36) in
terms of Hermite polynomials.

6It can be downloaded, along with the image sequence from
ftp://csd.uwo.ca/pub/vision/TESTDATA/.

Fig. 1. Frame 20 and the optical flow field for Example 2.

Fig. 2. Measured and predicted motion in the projections for Example 2.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We considered the question of modeling the mapping be-
tween motion in an image (or image sequence) and its pro-
jections. To this end, we developed a local first-order model
(the differential projected motion identity) and showed that
it produces results that are reasonable and intuitive. We also
studied alternative global formulations of the PMI based on
conservation assumptions. We derived some basic properties
of projected motion, and studied the effect of affine motion
in the projection domain using the differential formulation,
particularly for a general class of images defined in terms
of Hermite polynomials. This analysis revealed that, at least
asymptotically, the projected affine motion is itself affine in
nature, and that the effect of rotation tends to dissipate as the
inverse distance from the vortex in the projection domain, and
is hence difficult to measure.
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More generally, the PMI can be considered as an indirect
measurement equation (orforward model) for motion flow in
the image domain. This implies an inverse problem. Namely,
given measurements of the projectionsand hence their
respective motion field (or ), how do we reconstruct
? The measurements implied by integral PMI, being

inner-product measurements, are transversal in nature [13]
and therefore yield information only about the irrotational
component of . The more general case of inverting for

from measurements implied by differential PMI seems
to be a more interesting and challenging inverse problem
since these measurements contain some information about
both solenoidal and irrotational components of the motion
field . Existing reconstruction algorithms [13]–[15] may be
successful in recovering the irrotational part of from
or . If is purely solenoidal div , however, the
continuity equation (20) invoked in the derivation of integral
PMI reduces to the familiar optical flow brightness constraint,
and conveysno information about in this case.

Generally, questions of existence and uniqueness of so-
lutions, along with numerically well-behaved algorithms for
performing the inversion, remain to be studied. This inverse
problem has a number of interesting applications. For instance,
it has been shown [1], [2] that using (two) projections, we
can efficiently estimate translational motion in the image. The
natural next step would be to ask whether computationally
efficient motion estimation algorithms using projections can
be obtained for more general types of motion. As we can see
in Section III (38), this appears to be possible in at least the
affine case.

A solution to the inverse problem implied by the PMI
is useful in any application where it may be difficult or
impossible to collect inner product measurements of a vector
field. In these cases, it may be possible instead to measure
ordinary line integral projections of the density field, compute
motion in these projections using existing motion estimation
techniques (applied in one dimension), and attempt to invert
for the desired higher-dimensional vector field. This is a
promising direction of research with many applications which
we are currently pursuing. A forthcoming paper will present
some of the results of this effort.
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