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Practical Bounds on Image Denoising:
From Estimation to Information
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Abstract—Recently, in a previous work, we proposed a way to
bound how well any given image can be denoised. The bound was
computed directly from the noise-free image that was assumed to
be available. In this work, we extend the formulation to the more
practical case where no ground truth is available. We show that the
parameters of the bounds, namely the cluster covariances and level
of redundancy for patches in the image, can be estimated directly
from the noise corrupted image. Further, we analyze the bounds
formulation to show that these two parameters are interdependent
and they, along with the bounds formulation as a whole, have a
nice information-theoretic interpretation as well. The results are
verified through a variety of well-motivated experiments.

Index Terms—Bayesian Cramér-Rao lower bound, image clus-
tering, image denoising, image patch model, mutual information,
Rényi entropy, Shannon entropy.

I. INTRODUCTION

ITH recent advances in imaging technology, image

denoising has found renewed interest among both re-
searchers and camera manufacturers. Faster shutter speeds and
higher density of image sensors (pixels) result in higher levels
of noise in the captured image, which must then be processed
by denoising algorithms to yield an image of acceptable quality.
This is especially true when images are captured in unfavorable
lighting conditions. The goal of such image denoising algo-
rithms is to reduce noise artifacts, at the same time retaining
details such as edges and texture in the image. Considerable re-
search has been devoted towards achieving these contradictory
goals leading to the varied collection of current state-of-the-art
denoising methods [2]-[7]. Despite their differences, the best
of these methods perform quite comparably. This led us to
study the performance limits of denoising to understand how
close the current state-of-the-art is to the fundamental limits
for this problem [1]. There we showed that modern denoising
methods perform quite close to the fundamental limits for a
certain class of textured images, whereas relatively smoother
images show room for performance improvement. Even though
image denoising is a well-studied problem, not much is known
about its statistical performance bounds. Voloshynovskiy et
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al. [8] provided a brief analysis of maximum a posteriori
(MAP) based denoising methods. Recently, Treibitz et al. [9]
studied the limits of denoising, among other ill-posed image
processing problems, as limits to recovering particular objects
or image regions. In both the studies, the images are assumed
to be denoised point-wise. That is to say, the data model for the
observed image is assumed to be
where M is the number of pixels in the image. Here z; is as-
sumed to be the actual pixel intensity which is corrupted by
noise 7;. Simplifying assumptions are often made about the
noise and/or the underlying image data, the most common of
which is to assume the noise to be independent and identically
distributed (iid). The denoising performance is then studied as
estimation of z; given the noisy observations y;. Our analysis
in [1] studies the performance limits for patch-based methods,
since these have recently proven to be quite successful [3]-[7].
For our patch-based bounds formulation we, thus, model the
image patches as
y,:Z,—l-ﬂL L:12,M (2)
where z; denotes a vectorized form of a group of image pixels
in a neighborhood with z; at its center, and 7, denotes the cor-
rupting noise patch, with known noise statistics. The denoising
bounds in [1], thus, reflect the performance limits of estimating
the z; vectors of the image. To the best of our knowledge no
other such study exists to date in the literature.

The bounds formulation in [1] showed that the denoising
bound is a function of the corrupting noise characteristics
(strength and density function) as well as the complexity of the
underlying geometric structure of the image patches. Further,
the bound is also a function of the amount of redundancy
that exists among image patches. In computing the bounds
for denoising, we estimated these factors from the underlying
noise-free image. As a result, the bounds computation method
in [1] cannot be directly applied to the case when only the
noisy observation is available. Extending these bounds, as
we do in this paper, to the case where only a noisy image
is given, has significant practical advantages. Namely, we
can predict how well a captured image can be denoised even
before any denoising algorithm is applied to it. Such a method
will be useful to photographers who can then adjust camera
parameters to capture images that will be of acceptable quality,
once denoised. In this paper, we present a way of learning the
patch-based bounds for noisy images. We treat the problem as
that of estimating the parameters of the bounds (namely, the
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patch redundancy and the geometric complexity of the under-
lying image patches) from the noisy image. Experimentally, we
show that these parameters can be estimated quite accurately
even from considerably noisy images, allowing us to predict
the bounds for such noisy images.

Comparisons of the bounds to the performance of state-of-
the-art denoising methods for various images in [1] showed that
a class of simple images could be denoised better than the cur-
rent state-of-the-art by taking further advantage of patch redun-
dancy. On the other hand, images containing complex semi-sto-
chastic textures typically tend to have fewer similar patches. For
such images, modern denoising methods seem to perform quite
close to the theoretical denoising limits. Intuitively, one can then
expect a relationship between existence of similar patches and
patch complexity in an image. In the present work, we study
the relation between these two parameters and illustrate that
the bounds formulation developed in our previous work has an
information-theoretic interpretation as well. We show that the
patch redundancy and complexity are directly related through
the Shannon entropy of the image. In the noisy case, we show
that the bounds formulation is related to the mutual information
between the noisy and the unknown noise-free image. Using
entropy estimation methods, we show that the relationship be-
tween the bounds and the information content can be used as an
indicator of relative denoising difficulty between images.

In what follows, in the interest of completeness, we first pro-
vide a brief overview of the bounds formulation [1] in Section II.
We then propose a method of estimating the bounds for any
given noisy image in Section III. This is followed by an in-
formation-theoretic interpretation of the bounds formulation in
Section IV. Finally, in Section V, we summarize our findings
along with a few remarks on future work.

II. LOWER BOUND ON THE MSE

In [1], the denoising problem is modeled as that of estimating
the patch intensities z; given the observation model of (2). There
we assumed that the noise patches 7, are iid with a known proba-
bility density function (pdf) and that they are independent of the
clean image patches z;. To study this estimation problem, the z;
vectors were considered to be instances of some random vari-
able z sampled from some (unknown) probability density func-
tion p(z). The performance limit of estimating the z; vectors
is then derived as the Bayesian Cramér-Rao lower bound [10]
on the MSE of biased estimators. This analysis was made pos-
sible assuming image patches were geometrically similar. Thus,
images containing varying geometric structure were segmented
intok =1,..., K groups of geometrically similar patches, as is
shown in Fig. 1. There it can be seen that geometric clustering
groups together the smooth patches, while separating patches
containing horizontal and vertical edges, and corner regions into
clusters of their own. A bound on the MSE was obtained for each
patch within a cluster €, as

E[llz; — %|?] > Tr [(Ji-i-CZ‘l)_l} 3)

where J; is the Fisher information matrix (FIM) and C,, is the
covariance of z from pdf px(z). C, captures the cluster com-
plexity in terms of variation between member patches while
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Fig. 1. Example of geometric clustering: (a) Noise-free image, (b)—(e) few
clusters based upon geometric structure of patches.

the FIM depends upon the noise characteristics and the number
(N;) of similar patches that exist for each patch (z;). Thus, the
bound for each cluster is a function of the cluster complexity as
well as the noise characteristics. For zero mean Gaussian noise
N (0, 5%1), the (conditional) FIM takes the simple form

0% In p(y|z) 1
3, = —p | EPYIE 4
’ [ 0z; 0zF } a? @

where I denotes the identity matrix, and N; is the number of
patches within the image that are photometrically similar to the
patch z;. Note that this form of the FIM is obtained only when
the noise patches are assumed to be iid and independent of the
patch intensity.! Photometric similarity and, therefore, N; are
determined patchwise for each z; by searching for the number
of patches z; in the entire image that satisfy the condition

Z; = Z; + €;5 such that ||Eij|| <7y 5)

where v is a threshold dependent on the patch size [1]. The
bound for a cluster €2, can then be computed as

M,
~ 1 _1y -1
E[||zi—zi||2]9k > E;Tr [(Ji+cz ") } (6)

for all z; € € with cluster cardinality My. It is interesting to
note that the bound does not require us to know the entire pdf
pr(z) (or the joint distribution of px(y,z)) as is the case for
some other related studies [13], [14]. To estimate the bounds,
we need to estimate only the first two moments of py(z) which
is done using a bootstrapping mechanism [15]. The lower bound
on the MSE for the entire image is then calculated as a weighted
sum of the bounds for each cluster.

In [1], it was shown that the expression for the bound cor-
responds to the performance of the Bayesian minimum mean

ITn practice, this does not hold true. Modern cameras have nonlinear response
functions and the sensitivity to noise is a function of the pixel intensities. In fact,
researchers have proposed denoising methods [11], [12] that account for such
intensity dependent noise. In our work, we assume the noise to be independent
of pixel intensities in deriving a denoising bound. However, the framework in
[1]1s general enough to be able to account for intensity dependent noise as well.
In that case, the FIM will take a different form than (4). We consider that case
to be outside the scope of this paper.
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squared error (B-MMSE) estimator when p(z) is Gaussian.
More generally, the linear MMSE estimator can be shown to
achieve the performance bound in each cluster for the Gaussian
noise case. However, such an estimator requires oracle clus-
tering and perfect knowledge of C,, making it apparently
unachievable. Yet, comparisons with state-of-the-art denoising
methods have shown that for certain class of textured images,
current methods perform remarkably close to the theoretical
limits. Meanwhile, images lacking such finer details provide
considerable room for performance improvement. For such
comparisons in [1], the bounds were calculated from the
noise-free images. In this paper, we propose a method of
estimating the denoising bounds from noisy images where the
noise statistics are assumed to be known.

III. LEARNING THE BOUND WITHOUT GROUND TRUTH

In the previous section, we provided a brief overview of the
bounds formulation introduced in [1] where the bounds are cal-
culated directly from the noise-free image. However, in practical
applications, it may be necessary to estimate the bounds from
a noisy image without any ground-truth. Such an estimate can
be useful in automatically deciding parameters of a denoising
method when only a single noisy image is available. If em-
bedded within a camera, such information will also be useful
to camera manufacturers and photographers, who can then tune
camera parameters (that control the amount of noise that ap-
pears in the captured image) to ensure that the captured noisy
image can be denoised well enough to yield a resultant image
of acceptable quality. In this section, we propose a method of
estimating the MSE bounds through accurate estimation of the
parameters N; for each patch and C, for each cluster.

A. Estimating the Patch Covariance Matrix

We first discuss a method of estimating the covariance ma-
trix C, given the noisy image patches. Since the covariance of
the underlying patch is computed using all the patches in the
cluster, we first need to cluster the image based upon under-
lying geometry. In [16], we presented a method of learning the
covariance matrix without performing any explicit clustering on
the noisy image. However, that method is restrictive as it de-
pends on selecting a very large and relevant database of clean
image patches. Instead, here we compute the local steering ker-
nels [5], [7] for each patch in the noisy image and then perform
clustering using K-Means [17], much in the same way as done
for the noise-free case in [1]. In [7], we have shown that such
normalized kernels can be quite robust to the presence of noise,
leading to relatively robust clustering performance. This is illus-
trated in Fig. 3 where we show (color-coded) clustering of the
noise-free and noisy Barbara images, where it can be seen that
the clustering is similar for the two images. However, inaccu-
racies do appear, especially when dealing with strong noise. In
such cases, one can prefilter the noisy image to reduce the effect
of noise and perform clustering on the denoised image. As will
be apparent from experimental results shown in Section III-C,
the covariance estimate obtained using such a clustering leads
to quite accurate estimates of the denoising bounds, even when
substantial noise (¢ = 25) is considered.
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Once the image has been clustered, we proceed to compute
the covariance of the noisy patches in each cluster. For this,
we employ the bootstrapping method of Efron [15], although
other stable and computationally efficient methods (such as [18]
and references therein) are equally applicable. This allows us to
estimate the covariance C,, of the noisy patches within a given
cluster, from which we need to estimate the covariance matrix
C,. From the data model of (2), it is easy to see that

C,=C,-C, )

where C,) = 021 is the covariance of the iid noise, which is
assumed to be independent of the patch intensity. However, di-
rectly using (7) can lead to an estimate of C, that may not be
positive semidefinite, a necessary property of covariance ma-
trices. To avoid such problems in the estimation of the covari-
ance, we use a modified plug-in estimator [19]-[21]

C.=1[C, -0’1, (8)

where (Ajy is the covariance estimated from the noisy image
patches and [X]; denotes a matrix with the negative eigenvalues
of X replaced by 0. Such an estimate is, thus, always positive
semidefinite. Note that it may still be the case that C, is rank
deficient and, hence, not invertible. Therefore, we compute the
bounds using an alternate formulation based upon the matrix in-
version lemma [22] as

Bllm-al*)>1e|(3:4+6;7) |
:Tr[Ji_l—Ji_l(Ji_l-l-az)lJi_l} ©)

where the covariance estimate GZ need not necessarily be
invertible.

Another point to note is that we assume knowledge of the
noise variance in our estimation of the covariance matrix in
(8). However, in practice, this needs to be estimated from the
given noisy image. In this case, one can employ methods out-
lined in [11], [23] where it is shown that noise variance can be
quite accurately estimated from a single noisy image. Later, in
Section III-C, we show that such an estimate of C,, is quite ro-
bust to minor inaccuracies in noise variance estimation, as well
as to the presence of outliers that appear due to errors in clus-
tering a noisy image. As such, the estimated covariances are suf-
ficiently accurate for us to estimate the bounds from any given
noisy image.

B. Estimation of N;

Next, we need to calculate the FIM from the noisy image.
Considering the corrupting noise to be additive white Gaussian
with known (or estimated [11], [20], [23]) variance and zero
mean, estimating the FIM reduces to estimating the redundancy
factor N; for each patch. We obtain a k-nearest neighbor based
estimate for N; from the noisy input image, similar to the case
where the MSE bounds were estimated from noise-free images
[1]. However, the similarity measure of (5) needs to be modified
to account for the effects of the corrupting noise. In the present
context, given any noisy patch y;, we wish to identify patches
y; in the noisy image, such that their corresponding noise-free
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Fig. 2. Some popularly used images on which we perform our analysis.

counterparts z; and z; satisfy the similarity condition defined
in (5). Thus, we define a measure of similarity between noisy
patches as

Zj =Z; + &
=y —M;=Yi—n+&; [fromEq.2]
=y;=yi+m —n; +e;j)
N———

€ij
where |[g;;|” = llei; |I” + llm; — ml1> + 2€;(n; —m;)
= E [|E;1I’] =E [lles;1I] + 20%n (11)

where 7 is the dimensionality of the image patches. The expres-
sion of (11) is obtained assuming the noise patches are iid. A
noisy patch y; can be considered photometrically similar to y;
if it satisfies the condition

(10)

y; =vyi+¢&; suchthat |[&;]*> <~4*+20°n (12)
where - is the threshold defined in (5). Note that, as with the es-
timation of the covariance matrix, we make use of the known (or
estimated [11], [20], [23]) noise variance in identifying similar
patches. With a similarity measure defined, we can now estimate
N; values for each patch from the given noisy image.

__Once an estimate of the IV; values for each patch (denoted by
N;) and its associated covariance matrix (C,) are obtained, we
can estimate the MSE bound for denoising from the input noisy

image as

M
o2 i 21 5.1 (A_l ~ )—1/\_1
E [|lzi—] ]>MZ§:1:Tr[Ji 371 (37146, T

(13)
with J; = ]ViI/a2 and M = Y, M, is the total number
of patches in the image. This proposed estimation method can
be used to accurately predict the denoising bounds for images
corrupted by considerable levels of noise, as we show in the
next section. However, as expected, it degrades when the input
signal-to-noise ratio is severely low. In our experiments with
different images (Fig. 2), this breaking point occurs when the
corrupting noise has a standard deviation o greater than 15. In
such cases, it is useful to prefilter the noisy image to reduce the
effects of noise. The N, values can then be estimated directly
from the noise-suppressed version of the given image.

C. Experimental Verification

In this section, we provide experimental validation of the
bounds estimation method that we described previously. As a
first step, we consider the accuracy of the covariance estimates
from a given noisy image. The covariance estimates also de-
pend on the clustering performance, which in turn is also in-

[

Fig. 3. Clustering of Barbara image into five clusters based upon geometric
structure of patches. Clustering is performed with features calculated from
(a) clean image, and (b) noisy image of noise standard deviation 15. Note how
the kernel features can capture structural information and thereby properly
cluster majority of patches even in the presence of noise.

fluenced by the presence of noise, as can be seen from Fig. 3.
However, our experiments reveal that the covariance estimation
process is quite robust to the presence of outliers within each
cluster. This can be seen in Fig. 4 where we plot the bounds
for the covariance test case where the IV; values are computed
from the clean images. There it can be seen that even in the
presence of strong noise (¢ = 25) the estimated bounds are
quite close to the ground truth computed from clean images. The
small error bars representing the standard deviations about the
mean for the bounds estimates over five different realizations of
noise illustrate the fact that the covariance estimation process is
quite robust to the presence of outliers that occur due to errors
in clustering.

Next, we move on to the case where the bounds are calcu-
lated entirely from the noisy image. That is to say that both NV,
and C, are estimated from the noisy image. The mean of the
bounds estimates obtained for various images over five different
realizations of noise are shown in Fig. 4. We observe that when
the noise standard deviation o < 15, the bounds are estimated
quite accurately from the noisy image. However, when stronger
noise is considered, our experiments indicate that the bounds es-
timates (not included in Fig. 4) can be quite inaccurate. In partic-
ular, we noted that estimation of NNV, is severely affected when
strong noise corrupts the image. However, the same is not the
case for the estimation of C,. This is not surprising since the V;
values are estimated pointwise, whereas the covariance matrices
are computed from a much larger number of patches within
each cluster. In fact, one of the most popular denoising algo-
rithms, BM3D [6], that relies on identification of similar patches
within the image, performs an initial filtering of highly noisy
images to reduce the effects of noise before comparing patches
to detect similarities. Along similar lines, we can denoise for
our NV; estimation. However, strong denoising leads to consid-
erable over-estimation of N; values, especially for patches con-
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Fig. 4. MSE bounds estimated from noisy (a) house; (b) Lena; (c) Barbara; and (d) stream images (labeled estimated bounds) compared to the ground truth [1]
where the bounds are calculated from clean images. We also test the accuracy of covariance estimation (labeled covariance test) by calculating the bounds using
N, values estimated from the clean image. For all the images, the IV, estimates used to compute the estimated bounds are obtained directly from the noisy images
for noise standard deviation o < 15, and from the prefiltered images for o = 25.

taining fine texture, resulting in considerable under-estimation
of the bounds. To avoid this, we perform only mild prefiltering
in such a way so as to retain the texture in the image. For this
preprocessing step we make use of the successful BM3D [6]
algorithm, setting the parameter (input noise variance) of the
algorithm such that the denoising process leaves behind suffi-
cient noise so as to bring the prefiltered image to within effec-
tive range of the bound estimate. In particular, using the residual
of the estimate, we set the BM3D parameter so as to ensure that
a noise-suppressed image is obtained for which the estimated
noise standard deviation ¢ & 5 in the smoother regions of the
image. Using such a method, the bounds are estimated more ac-
curately even for images corrupted by strong noise (o = 25).
This can be seen from the bounds estimates shown in Fig. 4,
where we compare the bounds estimated from noisy images to
those computed from their corresponding noise-free versions.
For the case where the noise standard deviation o < 15, we
compute the bounds parameters directly from the noisy images.
However, for the strong noise case (o = 25) the prefiltered im-
ages are used in estimating the N; values. The patch covariance
matrices, however, are still computed from the noisy images. It
can be seen from the results that using a prefiltering step, we are
able to estimate the bounds quite accurately even in the presence
of strong noise.

IV. ANALYSIS OF THE BOUNDS FORMULATION

In this section, we explore the relationship between the de-
noising bounds and the mutual information between the noise-
free and noisy image patches. This provides an interesting in-
formation-theoretic interpretation of the bounds, which, until

TABLE I
COMPARISON OF BOUNDS FROM NOISY AND NOISE-FREE IMAGES CONSIDERED
TO BE GROUND TRUTH. THE NOISE IS AWGN WITH STANDARD DEVIATION
15. THE MEAN BOUNDS FROM FIVE DIFFERENT REALIZATIONS OF
NOISE ARE SHOWN, ALONG WITH THE STANDARD DEVIATIONS
ABOUT THE MEANS SHOWN IN BRACES

Image Bounds from Error
Ground truth | Noisy image | Percentage
House 7.54 8.55 (0.042) 13.40
Peppers 9.93 9.53 (0.052) 4.03
Lena 10.13 10.55 (0.042) 4.15
Boats 19.68 19.41 (0.069) 1.37
Barbara 24.58 26.22 (0.041) 6.67
Man 33.56 28.32 (0.035) 15.61
Stream 74.30 65.25 (0.037) 12.18
Mandrill 92.56 83.78 (0.123) 9.49
Mean 34.04 31.45 7.61

now, we have studied in an estimation theoretic setting. From
Table I, it can be seen that relatively smoother images can be
denoised much better (in terms of MSE) than those with more
complicated structure (texture). Typically, the latter class of im-
ages tend to have lower patch redundancy along with a higher
patch complexity, both of which influence the quality of the de-
noised image. In this section, we explore information-theoretic
relationships between these parameters. In particular, we show
that N; and C, are related through the cluster-wise Shannon en-
tropy [24]. When only a noisy image is available, this relation-
ship is manifested through the mutual entropy between the noisy
and the (unknown) noise-free image patches. Here we study this
relationship in the context of Gaussian noise.
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A. Relationship Between Denoising Bounds and Mutual
Information

In [1], we showed that when z is Gaussian, the lower bound
coincides with the performance of the Bayesian minimum MSE
estimator (assuming oracle knowledge of clustering and C,.)
When no such assumption is made about z, the bounds formu-
lation is the performance of the linear MMSE estimator, consid-
ering the noise to be Gaussian. In Gaussian noise, the LMMSE
estimator can be derived individually for each image patch z;,
given N; similar patches as

y, =Aizi +,
where
T n
y, = [nyJquz\;Z] e RrVixd
T .
n.=[nl...n .0y €RNX!

I...I]T ¢ RnVixn (14)
with I denoting the n X n identity matrix. The previous data
model, written for each underlying z; patch, accounts for the N;
similar patches that exist for any given z;. The y, vector is, thus,
formed by concatenating all y; vectors that are similar to any
given y,; where similarity is defined in (12). The corresponding
noise patch 7, formed from independent 7; vectors then has a
covariance of C,7 = o?1, ~, where I, v, is the n/V; x nN; iden-
tity matrix. The LMMSE estimator for each z; then has the form
z; = E[z;]y;] with the corresponding error covariance [10]

Qi = (C;' + 0 2ATL, N A) "

. 1\"'
== CZ +NL_2 .
a

The previous Q; matrix is, thus, our MMSE covariance matrix
for the estimation of z;. Comparing to (3) & (4), it can be seen
that the trace of Q; is in fact the lower bound derived for the
denoising problem when the corrupting noise is Gaussian.

Although derived purely from an estimation theoretic point
of view, the MSE bounds for denoising can be shown to be re-
lated to information-theoretic measures such as the mutual in-
formation of the noisy y and noise-free z patches. The mutual
information (MI) of the random variables y and z is a measure
of the information that one variable contains about the other and
can be mathematically expressed as [25]

(15)

I(y;z) =H(y) — H(ylz)
=H(y) — H(z + n|z) (from Eq. 2)
=H(y) - H(nlz)
=H(y) - H(n) (16)

where H(y) and H(n) denote the entropy of y and the noise
1) respectively.2 The entropy of a random variable y (or equiva-
lently its pdf p(y)) is defined as

H(y) = —E [np(y)] = - / p(y) Inp(y)dy.

2We will alternately denote the entropy of a random variable x with a pdf
p(x) as H(p) or H(x), as necessary for clarity of presentation. The notation
used will be clear from context.

a7)
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While H(y) can be estimated from the observed noisy image
patches (see Appendix A), the noise entropy may be analyti-
cally calculated if the noise statistics are known. Specifically, for
Gaussian noise with given covariance Cy, the entropy is given
by
H(n)=ln [(27re)”/2|c |1/2] S (ICy) + 5 211+ In(2m)]
(18)
where |.| denotes the determinant.

In [26], Palomar er al. studied the relationship between the
mutual information between the noisy and noise-free image
patches and the minimum mean squared error (MMSE) on the
estimation of the input given the output of a Gaussian channel.
For the multivariate case (14), the authors show that the gradi-
ents of the MI with respect to the signal and noise covariance
can be written in terms of the MMSE matrix of (15) as
(19)

——=1(yi;

_ AT~-1
dCz Zi)CZ _Ai C)2 Ale and

I(y;z) = — c,_;lAiQiAiTc,_;l. (20)

1C, "

When dealing with iid noise, where C,, = 0’1, N, the previous
relations can be written for each cluster as (see Appendix B for
derivation)

d 1 d
—I 3 z S r o~ 29 ’L z
iC, (y;2)C M, 4~ dC, yi;2i)C
]\[;‘
Z 2Q7 and Q1)
ag
J\[L
d
d Y7 M Zdo_z yZ
= —#ZT(Q») (22)
= anU4 £ I i)

This establishes a direct relationship between the denoising
bounds of (3) and the MI (16). As with the bounds formulation,
the MI too is a function of both the input signal characteristics
and the noise. This can be seen by further expansion of (21) as

M,

1 N; | AN,
= I(y: = N;
dCZ <Y7Z)CZ Mk;O-Z <C + )
d 1 X -t
. -1
gt = i 0 (07 +ng)

(23)

Mk02§:< )_1

assuming C, to be invertible. A positive definite gradient
with respect to the covariance here implies that the MI is an
increasing function of patch complexity. Further, it can be seen
that as C, increases (with a corresponding drop in the expected
N, as we shall see later in Section IV-B), the magnitude of the
gradient decreases. This implies that the rate of increase of MI
drops as the underlying patch complexity increases. However,
with increase in noise strength, the MI can be expected to
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TABLE 11
CLUSTERING OF THE HOUSE IMAGE AND THE CLUSTER-WISE MUTUAL INFORMATION ESTIMATES
WHEN CORRUPTED BY VARIOUS LEVELS OF ADDITIVE WHITE GAUSSIAN NOISE

5 Noise Estimated MI (y; z) Overall
& Entropy Q (923 Q3 Q4 Qs Ml

4 0 - 430.76 | 365.15 | 212.71 | 375.09 | 34591 | 322.49
5 366.43 119.25 | 80.53 27.88 87.00 60.52 63.93

3 15 499.37 62.94 43.17 21.63 47.31 30.59 37.64
25 | 561.18 45.77 33.50 20.35 36.46 25.03 33.05

3 35 | 601.89 35.58 27.92 17.81 30.36 2231 23.97
45 | 63230 27.80 23.42 13.47 25.18 19.55 19.74

; 55 | 656.58 21.07 19.06 8.59 19.97 16.13 15.23

TABLE III

RANKING OF IMAGES BASED UPON DENOISING DIFFICULTY AS INDICATED BY THE MI, COMPARED TO THE ENTROPY,
THE DENOISING BOUND AND MSE OF BM3D DENOISING ALGORITHM FOR ADDITIVE WHITE GAUSSIAN NOISE

Images Size Noise-free | Mutual Information I(y;z) | Denoising BM3D
Entropy 0=5]o0c=15] o =25 | Bounds [1] | MSE [6]
House 2562 322.49 63.92 37.65 33.06 14.82 33.57
Lena 5122 350.17 67.39 38.55 31.88 19.66 40.46
Peppers | 5122 374.29 72.56 38.37 30.53 19.21 42.96
Barbara | 5122 376.74 89.32 49.95 37.81 50.24 55.62
Boats 5122 398.36 89.75 45.75 35.04 38.70 67.17
Man 5122 407.16 94.28 43.49 29.25 62.97 96.46
Stream 5122 473.65 136.18 63.67 43.52 135.46 158.26
Mandrill | 5122 498.75 153.67 74.50 51.59 181.61 185.60

decrease, as is implied by the negative gradient of the MI with
respect to the noise variance in (22). Using (15) to rewrite (22)
as

1

d
TSIy = -

d o2

M,
ST [(040;1 n azNiI)’l] (24)
=1

we can see that the rate of such decrease is also expected to drop
as the noise strength increases.

We study this behavior of the mutual entropy as a function of
the noise strength and patch complexity through a simple exper-
iment. For this, we make use of the House image and estimate
the MI [ (y;z) for each cluster containing geometrically sim-
ilar patches (color-coded in Table II) for various levels of AWG
noise. For meaningful comparisons, we perform clustering on
the noise-free image and use the same cluster membership in
computing the MI estimates for the noisy cases. In Table II it
can be seen that cluster 23 consisting of the much smoother
background patches has a much lower complexity than that of
clusters 5 and €2, which capture the edge regions. This rel-
ative complexity is also captured by the MI estimates for the
clusters (see table) where it can be seen that clusters with higher
complexity exhibit higher MI. This can be seen to be in keeping
with (23) which implies an increase of MI with increase in patch
complexity. Further, the MI of any given cluster decreases as the
noise increases, and the rate of such a decrease also drops with
higher noise. This is in keeping with the relationship between
the MI and the noise variance shown in (24).

Although the MI are clearly related to the parameters of the
bounds, it is important to note that one cannot be used directly
to predict the other. The formulation of (3) predicts an increase
in the MSE bound for denoising as the image complexity and
noise variance increases. However, the MI, which quantifies the
relative information between a noisy patch y and its noise-free
counterpart z, can be seen to increase with increasing image

complexity, but has quite the opposite effect as noise variance
increases. This is in keeping with intuition that as noise in-
creases the noisy patches look more like noise, resulting in a re-
duction of information that y conveys about z (and vice versa).
However, as the complexity of the noise-free patch increases,
stronger noise is needed for the noise to overwhelm the patch
characteristics, thus, justifying an increase in MI. These rela-
tions are captured analytically in (23) and (24) and experimen-
tally in Table II. It is also important to note that (23) and (24)
relate the rate of change of MI as a function of changing image
complexity and noise variance respectively. Thus, it is the mag-
nitude of the rate of change of MI (and not the MI itself) that
is inversely related to the bounds. Consequently, with only a
single noisy observation the MI cannot be used to predict the
denoising bound. However, the MI can be used to study the rel-
ative denoising difficulty of different images that are corrupted
by similar levels of noise.

As before, we consider additive Gaussian noise to illustrate
the effectiveness of the MI measure in studying relative com-
plexity of images containing patches of diverse geometric struc-
ture. For this we need to first estimate the entropy of the en-
tire noisy image from its cluster-wise entropy estimates as (see
Appendix C)

K K
H(y) = ZwkH(y € Qk) — Zwk In wy, (25)
k=1

k=1

where wy, = M}, /M is the fraction of total patches that belong
to cluster €. For Gaussian noise, the noise entropy is calculated
analytically (18) using the known noise covariance matrix. The
overall MI can then be estimated using (16). In Table III, we
show the estimated mutual information obtained for some im-
ages (Fig. 2) when corrupted by additive white Gaussian noise
of different strength. There it can be seen that the MI is indica-
tive of the relative denoising difficulty between images. This
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can be seen by comparing it to the relative ranking obtained
by the MSE of one of the best performing denoising methods
(namely, BM3D [6]) for the images. In fact, this ranking can
be seen to be more in keeping with the relative denoising diffi-
culty exhibited by the practical methods than that obtained from
the denoising bounds [1] calculated from the clean images. In
the limiting case when the image is considered to be noise-free,
the mutual information becomes the same as the Shannon en-
tropy of the noise-free image.3 In Table III we show that the rel-
ative denoising difficulty prediction of the entropy in that case
is also in keeping with those obtained by the MI and the MSE
of BM3D. This indicates that the entropy of the image is also
related to the denoising bounds. In the next section, we explore
this relationship further.

B. Relationship Between Denoising Bounds and Entropy

The bounds formulation of (3) depends on two parameters,
namely the FIM J; and the covariance matrix C, that corre-
sponds to the cluster of which patch z; is a member. For addi-
tive white Gaussian noise, estimating the FIM amounts to es-
timating the number (N;) of similar patches that exist for each
patch z;. In general, one can expect to find fewer similar patches
in any given image if the variability between patches within a
cluster is high. In [1] both these parameters are estimated from
the noise-free image, in which case the MI of (16) reduces to
the Shannon entropy of the noise-free image. In this section, we
establish how each of these two parameters of the bounds for-
mulation are related to the Shannon entropy, and as a result, to
each other. In this paper our interest lies solely in analyzing the
information-theoretic interpretations of the parameters and re-
lating the two. As such, this relationship between the two does
not translate to one being estimated from the other in practice,
as will be apparent from our following discussions.

In [1], N; is estimated for each patch z; by searching over
the entire image. Assuming oracle clustering, one can expect to
obtain a good estimate of N; by limiting the search for patches
similar to any given z; € €2, to patches within the same cluster
Q. Let N; then denote the number of similar patches that lie
within the cluster €, where similarity is defined in (5). We then
approximate IV; by performing a nearest neighbor search within
patches in Q. with a search radius of . Considering z; € R™, an
estimate of the V;-nearest neighbor probability density function
can then be written as [27]

Ni/(Mp—1) N;

Vi) (M —=1)vayn
_ N;T(1+4n/2)
(M —1) /2y

pk(Zi) ~

(26)

where V() is the volume of the ball centered at z; with radius
~ and v, is the volume of the unit ball in R™. Solving for IV; we
have

(M, — 1) /2 5
I'(n/2+1)
3Images considered to be “noise-free” can often contain noise as well [23].

However, the noise in such images is typically quite small and, hence, we con-
sider them to be noise-free in our study.

N; ~ Pi(2;) 27
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where I'(.) denotes the Gamma function. Unfortunately, the re-
lation of (26) is accurate only when a considerably large number
of patches are present [27]. This is especially true when con-
sidering high dimensions (e.g. n = 121 arising from choosing
patch sizes of 11 x 11 which have been shown in [1] to be a
good choice for obtaining meaningful bounds.) Moreover, this
requires us to know or estimate the multivariate pdf ps(z). How-
ever, (26) is still useful as it establishes a relation between the
pdf px(z) and the number of similar patches that exist within the
cluster €. We now extend this relationship by considering the
average patch redundancy level within each cluster. Let N (k) =
E[N; € Q|y] be the conditional expected value of IN; for
patches within the kth cluster for a given value of ~y, with the
expectation taken over z € €. From (27), we can then express
N(k) as

(Mg — 1) g2 4
W) = | e )|
(Mk—l T2

(28)

oy O

It is interesting to note that N (k) is related to the Rényi a-en-
tropy [28] which is defined as

- 1 ~ln </pk(z)adz> .

Choosing o = 2, we can then express (28) as

I'(n/2+1)

Ra(pr) =

(29)

(M, — 1) 7"/? ~
I(n/2+1)

n (N (k) = In ( ) ~Ra(p). G0)

This expression provides a relationship between N (k) and the
Rényi entropy. Namely, as the Rényi entropy increases, the ex-
pected number of similar patches within a cluster decreases. The
Rényi entropy being a measure of uncertainty of a random vari-
able, (30) then fits with the intuition of lower patch redundancy
in clusters with more complicated structure.

Alternately, we can think of the level of redundancy within
any cluster to be measured by the mean distance from any patch
to its most similar patch (nearest neighbor). An overall smaller
distance would then indicate the presence of a larger number of
similar patches. Generalizing this alternate measure by consid-
ering the distance to the N (k)-most similar patch, one can then
expect a smaller average distance for clusters exhibiting higher

levels of redundancy for any fixed N (k). Denoting v, % N 3

the distance from z; to its N (k)th nearest neighbor in Qy, we
express the (conditional) mean distance to the N (k)th nearest
neighbor using (27) as

~ 1/n
N N(k)T(1 + n/2)
E I:ryi,lf\vf(k)|N(k)j| =K { (Mk — 1) an/2 pk(zi) }

(N TA+ a2\
=\ n

X /Pk(z)(l_%)dz

(3D
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where, as before, the expectation is taken over z € . Evans
et al. [29] derived a more general expression for the distance to
the N (k)th nearest neighbor as

r (N(k) + %)
[ (M, = 1] T (N (1))

X /pk(z)(l—%)dz (32)

E [, 50N 0] =

where using the approximation
N(X+ %)

~ X
I'(X)

(33)
one obtains the same relation as in (31). Note that in our case,
we consider a fixed search radius of v which is chosen indepen-
dent of the image patches. Hence, we set E['yi_ﬁ(k)|N(k)] =

7_and evaluate the corresponding N (k) for which the mean
N (k)-nearest neighbor distagce is 7. We are, thus, interested
in determining the value of N (k) for which the mean distance
to the NV (k)-nearest patch is +. Intuitively, we can then expect a
larger N (k) for clusters with relatively simpler patches that are
known to exhibit higher redundancy levels. Denoting

Lo(pi) = / pr(2)(" %) dz (34)
we can then rewrite (31) as
(VBT E)\ L
T\ - NG
S (M =1) (ay \"
= N0 = (In(pk)) : (35)

From (35), we see that the expected number of similar patches
that exist within the given cluster is directly proportional to the
total number of patches in the cluster and the radius of the ball
of similarity; and inversely proportional to the nth power of the
integral I,,(pg). As can be seen from (29), I,(ps) is directly
related to the Rényi entropy for the pdf py(z), where now o =
(1—=(1/n)) < 1. Denoting the Rényi entropy for this choice of
a as R, (pr), we obtain

Rn(pk) =nln (In(pk))

= In (]\Nf(k)) =In (%)
+ nIn(vV7y) — Ru(pr).

Equation (36), thus, provides a direct relationship between the
number of ~-similar patches that can be expected for patches
within any given cluster, and the Rényi entropy for that cluster.
We can then relate N (k) to the Shannon entropy [24] by using
the fact that as a — 1, the Rényi entropy closely approximates
the Shannon entropy. For large n (such as n = 121), we obtain
avalue of « = (1 — (1/n)) ~ 0.992 which is quite close to 1.
Substituting the Shannon entropy, H (px), for the Rényi entropy,
we obtain a relation between N (k) and H (py) as

In (N(k)) ~ In <%> +nin(v/7y) — H(px). (37)

(36)

1229

The higher the variability of patches within a cluster, the higher
is its entropy. Keeping with intuition, (37) predicts an inverse
relationship between the number of similar patches and the en-
tropy of the cluster being considered. That is to say, when the
entropy of z within a particular cluster is high, a lower level
of redundancy can be expected from the image patches. More-
over, the entropy of a pdf is dependent on the second-order mo-
ment which also captures the variability between patches within
a cluster. This relationship has been documented for many of the
most popularly used multivariate density functions by Zografos
et al. [30]. Specifically, for the entropy maximizing n-dimen-
sional Gaussian density function N (g, C), the entropy can be
expressed as a function of the covariance C (18). As can be seen
from (37), an increase in entropy corresponds to the existence
of fewer similar patches (lower V). Plugging this (maximum)
entropy for the Gaussian pdf into (35), thus, provides us with an
estimate of the minimum number of similar patches within an
expected distance «y as

S (M}, — 1)y"
o= Gosr (g el

(38)

This N, min (k) can then be taken to be the lower bound on N (k)
that can be expected for any cluster with a covariance C. Equa-
tion (38) also indicates that as the variance of the Gaussian in-
creases in any of the n dimensions, the minimum number of
similar patches that can be expected decreases. Further note that
the redundancy measure is not dependent on the mean u, which
implies independence of the N, (k) value from the mean in-
tensity of the patches within the cluster.

For the case of any general (unknown) pdf py(z), (37) estab-
lishes a relation between the number of similar patches that one
can expect in a cluster and the corresponding covariance matrix
C, that captures the cluster complexity. Equation (37) provides
the useful insight that the bounds formulation of (3) and the en-
tropy are similarly related to patch redundancy and cluster com-
plexity. Thus, the entropy can serve as a measure of denoising
complexity when noise-free images are considered.

V. CONCLUSIONS

In this paper we have extended our previous work [1] on an-
alyzing the performance limits for image denoising. We pre-
sented a method of estimating the denoising bounds directly
from the noisy image. We showed that even for considerably
noisy images, the denoising bounds can be estimated quite ac-
curately. We also presented further theoretical analysis of the
bounds formulation by relating it to the overall entropy of the
image. For noisy images, we established that the bounds formu-
lation is related to the mutual information between the noisy and
the corresponding noise-free image. In the limiting case where
there is no noise, the mutual information reduces to the Shannon
entropy of the image. We showed how the entropy is related to
the parameters of the bounds. Although predominantly devised
to support the theoretical analysis of the bounds formulation,
our experiments point to some useful practical applications of
the entropy measures by exploiting the relationship between the
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denoising bounds and the mutual information. Namely, the mu-
tual information can be used as an indicator of the relative per-
formance of denoising that one can hope to obtain for noisy im-
ages. This can then be used to automatically set parameters in a
denoising framework to control the level of smoothing required
based upon image content and the level of noise corruption. In
general, such tasks can also be performed using the bounds es-
timated from the noisy image. However, the entropy based ap-
proach can be computed faster and has been shown to be better
representative of the practical difficulties in denoising any given
noisy image.

Our experiments in this paper are restricted to the case where
the noise is assumed to be Gaussian. Although the Gaussian
pdf is popularly used to model the noise, it would be inter-
esting to analyze the bounds for other noise distributions such
as Poisson (noise pdf in low light photography) and Rician dis-
tributions (noise pdf in intensity component of magnetic reso-
nance imaging). Since the noise in such cases are dependent on
the image intensity, the FIM will also be a function of the image
content. As such the relationship between the FIM and infor-
mation-theoretic measures is well studied [31]. This, therefore,
can give deeper insights into information-theoretic relations of
the bounds. We consider this to be an interesting and practical
direction where the present work can be extended.

APPENDIX A
ENTROPY ESTIMATION

As mentioned previously, the entropy for any given cluster is
related to its complexity, and can, therefore, serve as a measure
of denoising difficulty for that cluster. The entropy could be cal-
culated if the prior pdf p(z) could be ascertained or modeled
accurately at all z; € €. Although many have proposed var-
ious models for natural images [32]-[34], they are not directly
applicable to our case since we consider the patch vectors to
be geometrically similar within each cluster. We, thus, estimate
the entropy in each cluster from the available z; vectors. For
this we make use of order statistics of the nearest-neighbor dis-
tances. Let ; y denote the distance between the patch z; and its
N -most similar (“nearest”) patch. We then obtain a set of ; x
measures for i = 1,..., M} patches in the kth cluster. An esti-
mator for the entropy can then be obtained by using (37) for a
fixed N as

1 &
Hn(pe) = = 31 > I (pr(z:)
"=l
1 My, (Mk _ 1) ,n.n/2 FYZN

NT(1+n/2) (39)

Such an estimator based upon the nearest neighbor distance
(N = 1) with added bias correction terms was proposed by
Kozachenko et al. [35] as

My, _ n/2.n
~ 1 M, 10K f
_ [( k ) Vi1 4

I'(1+n/2)
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where ¢ &~ 0.5772 is the Euler constant. This was later extended
by considering N -nearest neighbor distances in [36]-[38] (see
also [39]). In general, such an estimator has the form

M,
N 1
Hy(pr) = ﬁk Zln [(Mi = Dvnyiy] = ¥(N)
Zln My, — 1) n/2,_yny
I'(1+n/2)

- \P(N ) (40)
where U(N) = -% InT'(V) is the digamma function. Note that
(40) provides us with an estimate of the entropy based upon the
N'th most similar patch and, thus, varies with the choice of V.
Estimators of the Shannon (and Rényi) entropy based upon a
combination of such estimates obtained using multiple values
of N have been proposed in [40]and [41]. However, such esti-
mators require computation of distances to the /N-most similar
patches for each patch in the cluster, a process that can be quite
time consuming. Instead, we make use of only the most sim-
ilar patch, that is N = 1. In that case, the digamma function
U(1) = —1). The entropy estimate obtained using only the dis-
tance to the most similar patch is very similar to that obtained
using larger N for the high dimensional case. This can be seen
from Fig. 5(a) where we show the entropy estimates obtained
with different values of N for samples from Gaussian density
functions A/(0,I) of various dimensions. There it can be seen
that most estimates are quite accurate when the data is relatively
low dimensional. Moreover, for higher dimensions, increasing
the number of samples results in better entropy estimation. This
can be seen in Fig. 5(b) where for n = 121, we plot density es-
timates using (40) with NV = 1 as a function of sample size. It
can be seen that as the number of samples increases, the estimate
comes closer to the actual entropy value# of 171.64. However,
as Fig. 5(b) illustrates, this convergence as a function of sample
size is quite slow. This behavior is to be expected as these es-
timators are essentially asymptotically unbiased, converging to
the true value of the entropy as Mj, — oo.

APPENDIX B
RELATION BETWEEN MI AND MMSE MATRIX

In [26] the authors derive expressions for the gradient of the
mutual information between the input and output of a general
multivariate Gaussian channel. The gradients are derived with
respect to the model parameters specifically for the Gaussian
channel model of the form

y,=Aizi+ 1, (41)
where z; € R™ and y, € R? are the input and output of the

Gaussian channel respectlvely, A; is a ¢ X n deterministic ma-
trix, and 1, is iid Gaussian noise. The authors in [26] show that

4Our experiments with iid samples drawn from Gaussian pdfs with different
covariance matrices indicate that the bias of the entropy estimator of (40) is a
function of the dimensionality and the number of samples present, and is inde-
pendent of the covariance matrix of the Gaussian pdf.
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Fig. 5. Estimation of entropy (40) for data sampled from a multidimensional
Gaussian density function (0, I) as a function of: (a) dimensions with 20000
samples, and (b) number of samples with n = 121, where actual entropy
is 171.64. These show that the nearest neighbor entropy estimate (N = 1)
achieves a slightly better estimate of the entropy than using N = 4. Moreover,
the entropy estimates are more accurate for lower dimensions. However, the es-
timate gets better as the number of samples increases.

the gradients of the MI with respect to the signal and noise co-
variances C, and C,, respectively is related to the MMSE ma-
trix Q; as B

(42)

. _ AT—-1
dCZI(Xi,Zi)CZ _Ai (j2 1AL(QZ and

(43)

I(y;;zi) = — CQ_IAiQiAzTCQ_I'

dc,

The Gaussian channel model of (41) can be thought of as a gen-
eralization of the patchwise data model in (2), where in (41) we
account for the number (say /V;) of similar patches that exist in
the cluster for each z;. The vector y, is then formed by con-
catenating all y; patches that are similar to any given y;, and
A, takes the form of V; identity matrices stacked together, as
shown in (14). Thus, in our case, ¢ = n/V;. Assuming iid noise,
we have the n/N; x nlV; noise covariance C,, = o1, N;»and

o 1. . IL,n,

I (44)

T -1
Aq-,(l2 =
=0 ?[I...
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= QA C  =077[Qi ... Qi (45)
I
= Cy'AQATC ! =07 | 11 Q... Q)]
| I
Qi Qi
=o' Q (46)
Now, we can rewrite (42) as
d ——1(y,;2:)C. =A{C'AiQ; = [I.. . I][I I]T&
d C 0 z i n 17 e - 02
N;
= Q 47)
g
and (43) as
J Qz Qi
T . — _ ;4 .
dC_I(zi,z ) o Q
nN.,
< d N;
= Tr d_I(yi§Zi)] = d—I(y z;) = ——Tr(Q))
n = o2 o
d 1
= oalysz) = - T (Qi). (48)

Until now we have shown how the MMSE matrix is related to
the MI between z; and the vector y . that contains all patches
similar to y;. To relate the MMSE matrix to I (yi,z;), we derive
a relation between I(y,z;) and I(y;,z;). This is obtained by
writing

I (XZ’ Z'i)

=H(y,) — H(n,) [from Equations 16 & 41]

=H(yi--.yn]) = H([m---nn])

N;
=H(y1)+Y_ H(yjlyj-1---y1)
j=2
N;
- H(’?1)+ZH("7j|"7j—1---7h) .49
j=2

Now, for every y; similar to y;, we can relate their corre-
sponding noise-free patches as z; = z; + €;;. Using this
relation and the data model of (2), we get

H(yjlyj-1-..y1)
=H ((Zj+"7j)|(zj—1+"7j—1)»---7(Z1+771)) (50)
=H ((zj+n)/(zj+€j j-1+10,21), - (Zi+E1+m))
=H (nj|(5j j—1+m-1),-- -, (€51 +m))
=H(n;) (51

where the last step is a result of n; vectors being independent of
€;; and from each other. From the latter property, we also obtain

H("?j|”7j71 coty) = H("?j)- (52)
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Plugging the previous relations into (49), and replacing y; and
7, with y; and 0, respectively (without loss of generality), we
get

I(y;;2zi) = H(y:) — H(m;) = I(yiim,)- (53)
Equations (47) and (48) can then be written as
d N;
d—CZI(y'i; Zi)Cz = FQZ and (54)
d ) 1
WI(}%Z@') = - WTT(Qi)- (55)

Note that the MMSE matrix is a function of /V; which can vary
across patches within a cluster, where the z; patches are consid-
ered to be realizations of the random variable z. We write the
previous relations in terms of the MI of the random variables y
and z and the MMSE matrix Q; as

d 1 My
70 [ i0)Ca= 37— ;N,;Qi and  (56)
d 1 M.
Torlvin) == s ;Tr(qi) (57)

by taking the average over all the patches within the cluster.

APPENDIX C
OVERALL ENTROPY DERIVATION

In this section, we derive an expression for the overall en-
tropy from the clusterwise entropy. Our choice of features lead
to patches in any given cluster being geometrically similar, thus,
allowing us to assume that such patches are realizations of some
random variable z sampled from some unknown pdf py(z) in
each cluster. To estimate the entropy of the entire image we,
thus, need to derive an expression relating the entropy of the
clusters with that of the entire image. For this, without loss of
generality, we assume that the image consists of K = 2 disjoint

clusters €1 and Q5. The overall pdf of z can then be written as
p(z) = wipr + wapo (58)

where w; + we = 1. The overall entropy can be derived as

H(p)=— / p(2) In p(z)dz

Q

_ / p(z) In p(z)dz+ / p(z) In p(z)dz

_Ql QZ
=— /w1pl In(wip1)dz+ [ wops In(weps)dz|. (59)
L, Q,
The previous expression can be simplified by writing
- /w1p1 In(wypy)dz
Q
—w; |— /p1 Inpdz — /pl Inwidz
Q Q
=wiH(p1) — wi lnw;. (60)
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Thus, the overall entropy can be derived as

H(p) =w1H(p1) +w2H(p2) — [w1 Inwi + ws Inws]
K K
= ZwkH(pk) - Zwklnwk
k=1 k=1

where ), w, = 1. In our derivation, the only assumption we
have made is that of the clusters being disjoint, which is true
in our case where the clustering is based upon geometric simi-
larity of patches. Equation (61), thus, provides a general expres-
sion for calculating the overall entropy of an image from its K
cluster-wise entropy estimates.

(61)
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