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Abstract. We derive a stable technique, based upon matrix pencils, for the reconstruction of
(or approximation by) polygonal shapes from moments. We point out that this problem can be
considered the dual of 2 − D numerical quadrature over polygonal domains. An analysis of the
sensitivity of the problem is presented along with some numerical examples illustrating the relevant
points. Finally, an application to the problem of gravimetry is explored where the shape of a
gravitationally anomalous region is to be recovered from measurements of its exterior gravitational
field.
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1. Introduction. This paper is concerned with solving a variety of inverse prob-
lems, using tools from the method of moments. The problem of reconstructing a
function and/or its domain given its moments is ubiquitous in both pure and ap-
plied mathematics. Numerous applications from diverse areas such as probability and
statistics [8], signal processing [33], computed tomography [26, 27], and inverse po-
tential theory [4, 35] (magnetic and gravitational anomaly detection) can be cited, to
name just a few. In statistical applications, time-series data may be used to estimate
the moments of the underlying density, from which an estimate of this probability
density may be sought. In computed tomography, the X-rays of an object can be
used to estimate the moments of the underlying mass distribution, and from these
the shape of the object being imaged may be estimated [26, 27]. Also, in geophysical
applications, the measurements of the exterior gravitational field of a region can be
readily converted into moment information, and from these, the shape of the region
may be determined. We will discuss this last application later in this paper.

In all its many guises, the moment problem is universally recognized as a no-
toriously difficult inverse problem which often leads to the solution of very ill-posed
systems of equations that usually do not have a unique solution. The series of problems
treated in the present paper related to the reconstruction (or polygonal approxima-
tion) of the shape of a plane region of constant density from its (harmonic) moments
are in most respects no different; they too suffer from the numerical instabilities and
the solutions are not always unique. However, several aspects of what we shall hence-
forth call the shape-from-moments problem render this a rather interesting topic.
The first is that, contrary to most cases, this particular manifestation of the moment
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problem allows a complete, closed-form solution. More remarkable still is the fact
that the solutions are based on techniques of numerical linear algebra, such as gener-
alized eigenvalue problems, which not only yield stable and fast algorithms but also
expose a seemingly deep connection between the shape-from-moments problem and
the theory of numerical quadrature over planar regions. In fact, this connection is so
fundamental that one may consider the two problems as duals. At the same time,
the techniques for solving the shape reconstruction problem are intimately related to
so-called array processing techniques [23, 25].

Another interesting, and useful, feature of the shape-from-moments problem is
that despite its relative simplicity, it is applicable to a wide variety of inverse problems
of interest. Consider the following diverse set of examples:

• A region of the plane can be regarded as the domain of a (uniform) proba-
bility density function. In this case, the problem is that of reconstructing, or
approximating, the domain by a polygon from measurements of its moments
[8].
• Tomographic (line integral) measurements of a body of constant density can

be converted into moments from which an approximation to its boundary can
be extracted [27].
• Measurements of exterior gravitational field induced by a body of uniform

mass can be turned into moment measurement, from which the shape of the
region may be reconstructed [35]. (We discuss this application in section 6.)
• Measurements of exterior magnetic field induced by a body of uniform mag-

netization can yield measurement of the moments of the region from which
the shape of the region may be determined [35].
• Measurements of thermal radiation made outside a uniformly hot region can

yield moment information, which can subsequently be inverted to give the
shape of the region [35].

In fact, inverse problems for uniform density regions related to general elliptical
equations can all be cast as moment problems which fall within the scope of application
of the results of this paper. To maintain focus, however, we first approach the shape-
from-moments problem directly and without reference to a particular application.

In section 2 we provide the mathematical and historical background behind the
results of this paper, present some basic definitions and review the work in a previous
paper [27]. Section 3 contains our results for shape reconstruction from moments using
matrix pencil techniques. In section 4 we describe how to improve the conditioning of
the problem by appropriate scaling of the matrix pencils and give an explicit descrip-
tion of the algorithm. In section 5 we discuss how one might choose the best number
of vertices to fit to a given sequence of (possibly noise-corrupted) moments. In section
6 we discuss an application of the results to the inverse gravimetric problem. Finally,
in section 7 we provide some numerical examples to support our results; and we state
our conclusions and summarize our results in section 8.

2. Background. During a luncheon conversation over 45 years ago, Motzkin
and Schoenberg discovered a beautiful quadrature formula over triangular regions of
the complex plane [32]. Namely, given a function f(z), analytic in the closure of a
triangle T , they showed that the integral of the second derivative f

′′
(z) with respect

to the area measure dx dy is proportional to the second divided difference of f with
respect to the vertices z1, z2, z3, of the triangle, with the proportionality constant
being twice the area of T . Later, Davis [6, 7] generalized this result to polygonal
regions.
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Theorem 2.1 (see Davis [6, 7]). Let z1, z2, . . . , zn designate the vertices of a
polygon P in the complex plane. Then we can find constants a1, . . . , an depending
upon z1, z2, . . . , zn, but independent of f , such that for all f analytic in the closure of
P , ∫ ∫

P

f
′′
(z) dx dy =

n∑
j=1

ajf(zj).(2.1)

When the left-hand side is being sought, the above formula is, of course, a quadra-
ture formula. However, let us assume for a moment that the region P is unknown but
that its moments with respect to some basis such as {zk} are given. Replacing the
function f(z) with the elements of this basis in (2.1) results in an expression propor-
tional to the moments on the left-hand side, while the unknown vertices zj appear on
the right-hand side. The shape-from-moments problem then is concerned with solving
for the unknown vertices and amplitudes aj from knowledge of these moments.

Returning to Theorem 2.1, if we assume that the vertices zj of P are arranged,
say, in the counterclockwise direction in the order of increasing index, and extending
the indexing of the zj cyclically, so that z0 = zn, z1 = zn+1, the coefficients aj can be
written as (see [7])

aj =
i

2

(
zj−1 − zj
zj−1 − zj −

zj − zj+1

zj − zj+1

)
.(2.2)

The expression for aj has a naturally intuitive interpretation. If φj denotes the angle
of the side 〈zjzj+1〉 with the positive real axis, then

αj =
zj − zj+1

zj − zj+1
= e−2iφj ,(2.3)

where i =
√−1. In fact, αj is in essence the complex analogue of slope for the line

〈zjzj+1〉. Hence, the coefficients aj = (e−2iφj−1 − e−2iφj ) i2 can be interpreted as the
difference in slope of the two sides meeting at the vertex zj . Therefore, the aj are
nonzero if, and only if, the polygon is nondegenerate. Furthermore, these coefficients
can be written even more succinctly as

aj = sin(φj−1 − φj)e−i(φj−1+φj),(2.4)

which shows that for a nondegenerate polygon, 0 < |aj | ≤ 1. When |aj | is unity, we
have a right angle at vertex zj , whereas when |aj | is near zero, the polygon is nearly
degenerate at that vertex.

Moments and reconstruction. Defining the harmonic moments of an n-sided
polygonal region P by

ck =

∫ ∫
P

zk dx dy,(2.5)

we can compute these directly by invoking Theorem 2.1. Namely, by replacing f(z) =
zk, we get∫ ∫

P

(zk)
′′
dx dy = k(k − 1)

∫ ∫
P

zk−2 dx dy = k(k − 1)ck−2 =
n∑
j=1

ajz
k
j .(2.6)
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The complex moments τk are then defined as

τk ≡ k(k − 1)ck−2 =
n∑
j=1

ajz
k
j ,(2.7)

where, by definition, τ0 = τ1 = 0. In [27] we showed that given c0, c1, . . . , c2n−3, or,
equivalently, τ0, τ1, . . . , τ2n−1, the vertices of the n-gon can be uniquely recovered. In
[27] this was accomplished using Prony’s method [19, p. 456] whereby due to (2.7)
we can write 

τ0 τ1 · · · τn−1

τ1 τ2 · · · τn
...

...
. . .

...
τn−1 τn · · · τ2n−2

 p(n) = −


τn
τn+1

...
τ2n−1

 ,(2.8)

H0p
(n) = −hn,(2.9)

where p(n) = [pn, pn−1, . . . , p1]T contains the coefficients of the polynomial P (z) =∏n
j=1(z−zj) = zn+

∑n
j=1 pjz

n−j , whose roots are the vertices we seek. The sensitivity
of this technique (and its least squares variants studied in [27]) is affected by two
factors. First, to solve for the coefficient vector p(n), the ill-conditioned linear system
of equations (2.9) must be solved. Next, the sensitivity of the roots of the polynomial
P (z) to perturbations in its coefficients cause further inaccuracies in the resulting
estimates of the vertices.

Hankel matrices in general, and the Hankel matrix H0, in particular, can be
severely ill-conditioned [36]. This can be seen by noting that the “signal model” in
(2.7) implies a decomposition [21, 25, 27] of H0 as

H0 = Vndiag(an)V Tn ,(2.10)

where Vn is the Vandermonde matrix of the vertices {zj}

Vn =


1 1 · · · 1
z1 z2 · · · zn
...

...
. . .

...
zn−1

1 zn−1
2 · · · zn−1

n

(2.11)

and an = [a1, a2, . . . , an]T .

3. Pencil-based reconstruction. In the basis {zk}, the moment expression
(2.7) can be used to construct two Hankel matrices H0 (as in (2.9)) and H1, which
has the same form as H0 but starts with τ1 instead of τ0 and ends with τ2n−1. As we
indicated earlier, these matrices have the following useful factorizations:

H0 = V DV T ,(3.1)

H1 = V DZV T ,(3.2)

where for simplicity V = Vn, Z = diag(z1, . . . , zn), and D = diag(an). Therefore, H0

and H1 are simultaneously diagonalized by V −1:

V −1H0V
−T = D,(3.3)

V −1H1V
−T = DZ,(3.4)
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and hence the generalized eigenvalue problem

H1µ = zH0µ(3.5)

has the solutions {zj} which are the polygon vertices we seek.
The pencil problem can be more generally formulated over a different polynomial

basis. Analogous to the theory of modified moments [11, 14], this can be accomplished
as follows. Consider a basis {pk(z)} of polynomials constructed from a linear combi-
nation of the elements of {zk}. For each vertex zj of the underlying polygon we can
write

p(zj) = Φw(zj),(3.6)

where Φ is a lower-triangular matrix with det(Φ) 6= 0, and

p(zj) =


p0(zj)
p1(zj)

...
pn−1(zj)

 , w(zj) =


1
zj
...

zn−1
j

 .(3.7)

We refer to the moments in this new basis as the transformed moments. The Hankel
matrices corresponding to these transformed moments are

H0 = ΦH0ΦT ,(3.8)

H1 = ΦH1ΦT .(3.9)

These Hankel matrices are simultaneously diagonalized by (V Φ)−1 so that

(V Φ)−1H0(V Φ)−T = D,(3.10)

(V Φ)−1H1(V Φ)−T = DZ.(3.11)

Therefore, the generalized eigenvalue problem

H1u = zH0u(3.12)

has the same solutions {zj} as the pencil in (3.5). However, the last identity is a more
general form of the pencil in (3.5). In particular, (3.12) implies (3.5) when Φ is the
identity matrix. It is interesting to compare (3.12) with the matrix pencil solution of
the signal decomposition problem derived by Luk and Vandevoorde [25, p. 344]. They
introduce two unspecified nonsingular transformations F and G which in our context
of transformed moments are simply Φ and ΦT . As the authors correctly point out,
the choice of F and G will affect the efficiency and accuracy of the overall problem. In
section 4 of this paper, we outline a procedure for choosing diagonal scaling matrices
Φ that will improve the condition of the matrix pencil solution to the problem of
reconstructing vertices from moments.

It is important to point out that while the matrix pencil formulation has been
extensively studied in the array processing literature [21, 23, 31], our treatment is
more general in that (1) it does not make the assumption that the roots (vertices)
reside on the unit circle, and (2) our approach is formulated over a general polynomial
basis.
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In any case, both forms (3.5) and (3.12) are interesting from the point of view
of numerical computation for generalized eigenvalue problems. (See [15, 28], for ex-
ample.) Since H0 is nonsingular, (3.5) is a regular (not singular) problem. However,
as we shall see in the numerical examples of section 7, both H0 and H1 can be very
ill-conditioned, and in fact (3.5) can have “ill-disposed” eigenvalues, where the cor-
responding eigenvectors are very nearly mapped into zero by both H0 and H1. This
occurs whenever some |aj | is small, as can be seen from the factorization (3.1). As we
mentioned earlier, |aj | will be small whenever the interior angle at zj is either close
to zero or 180◦.

Various algorithms can be used for the solution of (3.5) or (3.12). However, since
H0 is ill-conditioned, one should not use a computational technique that involves
invertingH0. In fact, sinceH0 andH1 are complex symmetric matrices, the solution of
the generalized eigenvalue problem can be obtained most stably by the QZ algorithm1

[15]. One can improve on the usual QZ algorithm here, because of the special form of
H0 and H1, as follows: normally, the first stage of QZ involves unitary transformations
on H0 and H1, on both the left and right, to take H0 into triangular form and H1 into
upper Hessenberg form. This computation requires about 8n3 flops [15, Algorithm
7.7.1, p. 38]. However, because of the replication of columns of H0 within H1, one can
instead form the QR factorization of H0 augmented by the last column of H1. Then
the first n columns of the n × (n + 1) matrix R form the (square) triangular matrix
R′ = Q′H0, and the last n columns form the upper Hessenberg matrix H ′ = Q′H1.
This QR step requires only about (4/3)n3 flops [15, p. 225], roughly one-sixth that of
the normal QZ step. Finally, the second (iterative) stage of QZ can be applied to the
pair (H ′,R′).

It is worth noting here that in the above argument the essential requirement is the
replication of the columns, not the Hankel structure of the matrices. Thus, the idea
is more generally applicable (to the generalized Hankel matrix in (3.12), for example),
and we intend to expand on this issue in a subsequent paper.

3.1. Estimation of aj. Once the vertices zj have been determined, there exist
several techniques for computing the coefficients aj . In general, since the ordering of
the vertices is not known a priori, we cannot use (2.2). Perhaps the simplest technique
is to use (2.7) for k = 0, . . . , n− 1 and solve

V an = Tn,(3.13)

where Tn = [τ0, τ1, . . . , τn−1]T . As one referee suggested, a fast Vandermonde solver
can be used for (3.13). These can be more accurate for some data vectors Tn with
particular orderings of the zj ’s. (See Higham [18, p. 434].) This topic requires further
investigation.

One could also use all the available moments and solve a similar linear system
via least squares. In either case, it is useful to note that the first two rows of (3.13)
corresponding to τ0 = τ1 = 0 should be treated as linear constraints rather than
data. Doing this yields a smaller linear problem (by two rows), with a pair of linear
constraints. These constraints act, in essence, to regularize the problem and hence
we can obtain more accurate results than those reported in [27].

Alternatively, one could directly obtain the coefficients aj by forming the Van-

dermonde matrix V̂ from the estimated vertices and computing the diagonals of

1It is interesting to note, as also pointed out in [25], that the companion matrix for the polynomial
P (z) can be written as H−1

0 H1. As this involves the inverse of H0, this indicates why the Prony
method is sensitive to small perturbations.
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V̂ −1H0V̂
−T . Finally, one can use the computed eigenvectors µj from the QZ pro-

cess which are scaled columns of V −T . That is, if M has µj as columns, then

M = V −TS,(3.14)

where S is a diagonal scaling matrix which is yet to be determined. To determine S,
note that T = M−1 = S−1V T and that we want the first column of V T to contain all
ones (since V has Vandermonde structure). That is, the diagonal elements of S must
be given by the solution of

[S]j,jTj,1 = 1,(3.15)

where Tj,1’s denote the elements of the first column of T = M−1. Because we have
the scaling factors, the expression for the coefficients aj becomes

aj =
(
µTj H0µj

)
(Tj,1)2.(3.16)

Our experiments show that both techniques (based on (3.13) and (3.16)) appear
to give roughly the same accuracy.

3.2. Reconstruction of the interior of the polygon. As discussed in [27]
and [35], unless the underlying polygon is assumed to be convex, the estimation of
the vertices does not necessarily yield a unique reconstruction of the interior of the
polygon. In fact, in some (rather rare and complex) circumstances, it is impossible
to find the interior of the polygon uniquely, even if both the vertices zj and the
coefficients aj are given.

For the majority of cases where a unique solution does exist, given zj and the
corresponding aj , a mechanism must be devised to actually “connect the dots” and
obtain the interior of the polygon. One such mechanism may proceed as follows.
Recall the expression

aj = sin(φj−1 − φj)e−i(φj−1+φj),(3.17)

where φj denotes the angle of the side j (namely, 〈zjzj+1〉) with the positive real axis.
Knowledge of aj implies that we can write

φj−1 − φj = arcsin(|aj |) + 2l1π,(3.18)

φj−1 + φj = arctan

(
Im{aj}
Re{aj}

)
+ l2π(3.19)

for some integers {l1, l2} = {0,±1, . . .}. Solving the above system of equations for
each j, and observing the condition that the resulting polygon is simply connected
and closed, we can compute each angle φj to within an integer multiple of π/2. Hence,
given n vertices, in general there exists a total of at most 2n−1 possible configurations
(ways of laying down the sides). This number of combinations is exponential in
n and a more efficient technique is needed to uniquely determine the interior of the
(simply connected) polygon. We view this as an interesting problem in computational
geometry and one which is outside the scope of the present paper.

3.3. Analysis of sensitivity. The sensitivity of the vertices with respect to
perturbations in the moments can be computed from the eigenvalue sensitivity of the
matrix pencil problem H1µ = zH0µ. Consider a simple eigenvalue (z) of this pencil
and write an ε-perturbation of the system

(H1 + εF )(µ+ εµ(1) + · · ·) = (z + εz(1) + · · ·)(H0 + εG)(µ+ εµ(1) + · · ·).(3.20)
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Retaining only the first-order terms gives

(H1 − zH0)µ(1) = (z(1)H0 + zG− F )µ,(3.21)

and we wish to find an expression for z(1) which measures the first-order sensitivity.
We next multiply (3.21) on the left by the (left) eigenvector µ (which in this case
coincides with the right eigenvector, as H0 and H1 are complex symmetric). This
action annihilates the left-hand side of (3.21), and after simplifying we get

z(1) =
µT (F − zG)µ

µTH0µ
.(3.22)

If we now assume that µ is normalized so that ‖µ‖ = 1 and ‖F‖2 = ‖H1‖2, ‖G‖2 =
‖H0‖2, we have

|z(1)
j | ≤

‖H1‖2 + |z|‖H0‖2
|µTj H0µj | .(3.23)

The important term in the above is the denominator; when this is small, we have
what we described earlier as an “ill-disposed” eigenvalue. Recalling the expression
(3.16) for aj , we see that the ill-disposed vertex occurs when |aj | is small, or when
the Vandermonde matrix is ill-conditioned. We note here that we could obtain even
tighter bounds for the perturbation coefficients z

(1)
j by restricting the perturbations F

and G allowed to those having Hankel structure. However, the resulting expressions
are much more complicated, and in practice we have found (3.23) to reflect the actual
sensitivities quite well. For more detailed investigation of these sensitivities, the reader
is referred to [10, 17].

In summary, the general problem of vertex reconstruction from moments can
be seen to suffer from three inherent sources of sensitivity. The first, addressed in
the next section, is related to the scaling of the problem (i.e., vertices closer to the
unit circle are less sensitive). The second has to do with the size of |aj | which is
directly related to the angle at the corresponding vertex (vertices at angles near zero
or 180◦ are most sensitive). Finally, the relative position of the vertices (e.g., close
together without being collinear, or collinear without being on the same edge) can
adversely affect the condition of the Vandermonde matrix V and hence the solution
in general. It is worth noting that significant roundoff error can certainly cause the
reconstruction to fail. In our experience, in this respect, convex polygons are easier
to reconstruct and less prone to effects of roundoff errors and noise, unless the shape
is rather elongated and eccentric. This will cause the condition of the problem to be
rather large and therefore amplify the effect of roundoff error. The sensitivity analysis
presented above confirms these observations.

4. Improving condition via transformed moments. As can be seen from
(2.10), the condition number of H0 is related quadratically to the condition of Vn
and directly to the condition of diag(an). For its part, the condition number of Vn
grows exponentially large (see [12, 36] and the following subsection) with the number
of vertices n as ρn−1 where ρ = maxj |zj | (> 1) or as (1/ρ)n−1 when ρ < 1. On the
other hand, the condition of diag(an) is related to the size of the smallest coefficient
|aj |. Therefore, the geometry of the underlying polygon has a great effect on the
sensitivity of the solution. But this source of instability is inherent and, strictly
speaking, cannot be remedied. However, a treatable factor that plays an important
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part in making the reconstruction problem ill-conditioned is scaling. We will show, in
this section, that much can be done in the way of improving the scaling and therefore
the condition of the problem.

The moments ck are measured with respect to the basis {zk}. This family is
orthogonal [5] over any disk D(0, r) centered at the origin with radius r; namely,∫ ∫

D(0,r)

zkz̄l dx dy =

{
0, k 6= l,
π r2(k+1)/(k + 1), k = l.

(4.1)

However, as the size of the underlying polygon (as measured by ρ = maxj |zj |) may
be significantly different from r, this may cause the Hankel matrix H0 to be badly
scaled; that is, the higher-order moments can grow (or diminish) quite quickly in size.
In fact, (2.7) shows that |ck| grows as ρk+2 and |τk| grows as ρk.

To alleviate the difficulties related to scaling, we redefine these moments in a
scaled (and shifted) basis. First, we note that if the polygon’s center of mass is
denoted by ζ = c1/c0 = τ3/3τ2, we can write

ρ = max
j
|zj − ζ + ζ| ≤ |ζ|+ max

j
|zj − ζ| = |ζ|+ ρ0,(4.2)

where ρ0 is the radius of the smallest circle, centered at ζ, circumscribed about P .
This suggests that if we employ the shifted moments of P ,

τ̄k = k(k − 1)

∫ ∫
P

(z − ζ)k−2 dx dy,(4.3)

these moments will grow only as ρk0 instead of ρk. (Note that, in practice, these shifted
moments are computed from the τk by expanding the right-hand side of (4.3) using
the binomial theorem. That is, τ̄k is a linear combination of τ0, . . . , τk.)

If the center of mass ζ is far from the origin, the difference ρ − ρ0 can be quite
large, and using shifted moments will therefore certainly improve the condition of
H0. To improve the sensitivity of the problem further, we consider the use of a scaled
basis for the representation of the moments. A scaled orthogonal family over D(0, r)
is derived from the family {zk} as

fk(z) =
zk

rk
.(4.4)

In this basis, the scaled and shifted complex moments tk, which we shall henceforth
call transformed moments, are given by

tk =

∫ ∫
P

f
′′
k (z − ζ) dx dy =

τ̄k
rk
.(4.5)

It is interesting to note the rate of growth of the transformed moments can be signif-
icantly tempered by the introduction of the scaling. For simplicity, assume ζ = 0 and
invoke (2.7) to get

|tk| = |τk|
rk

(4.6)

≤ 1

rk

n∑
j=1

|aj |ρk(4.7)

≤ 1

rk
nρk.(4.8)
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Hence, by choosing r = ρ, we can ensure that |tk| remains bounded! While ρ is not
known a priori, it can be estimated from the given moments. Namely, if k is the
highest-order moment available, an (under-) estimate of ρ is

ρ̂ ≈ |τk|1/k,(4.9)

which, as we demonstrate in Appendix A, is a consistent estimate of ρ as k →∞.2

Having constructed the transformed moments tk, we give the corresponding ma-
trix analogous to H0 in (2.9) by

H0 = ΦH0Φ,(4.10)

where we give the diagonal matrix Φ by

Φ = diag

[
1

ρ̂j

]n−1

j=0

.(4.11)

It is important to note that while H0 is a Hankel matrix, the transformed matrix
H0 is not Hankel in the traditional sense. Rather, it can be classified as having a
generalized Hankel structure. In any case, H0 is simply a diagonal scaling of H0,
and given an accurate estimate of ρ, this diagonal scaling will improve the condition
number of H0, as we discuss next.

4.1. Diagonal scaling and improved condition number. Results on im-
provement of condition number of a matrix by diagonal scaling are scarce [2, 9, 16].
Rather than present a general proof that the diagonal scaling presented above im-
proves the condition number of H0, we demonstrate this explicitly for a canonical
case. Namely, let the vertices zj be the nth roots of unity: zj = exp(ijθ), where
θ = 2π/n. The Vandermonde matrix Vn is then simply given by

Vn =
√
nQn,(4.12)

where Qn is the (orthogonal) discrete Fourier transform (DFT) matrix of dimension
n. Hence, the condition number of Vn is κ2(Vn) = κ2(Qn) = 1. If the vertices zj are
now scaled so that they lie on a circle of radius r, the Vandermonde matrix becomes
scaled as

Vn(r) = ∆(r)Vn(1),(4.13)

where ∆(r) = diag(1, r, . . . , rn−1). The condition number of Vn(r) is then given by

κ2 (Vn(r)) = ‖∆(r)Vn‖2‖V −1
n ∆−1(r)‖2(4.14)

=
√
n‖∆(r)‖2 1√

n
‖∆−1(r)‖2(4.15)

= κ2 (∆(r))(4.16)

=

{
rn−1 for r > 1,

1/rn−1 for r < 1.
(4.17)

2One may estimate ρ using a variety of other techniques. For instance, the ratio τk+1/τk con-
verges to ρ; or we can approximate the characteristic equation. In any event, there appears to be a
strong connection to the epsilon algorithm [3, 39] here.
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Now, to study the structure of the corresponding scaled Hankel matrix H0(r) =
∆(r)H0(1)∆(r) we compute the moments τk explicitly. Using the expression (2.4) for
the coefficients aj , we have

aj = sin θ exp (−2ijθ),(4.18)

which in turns gives

τk =
n∑
j=1

ajz
k
j = sin θ

n∑
j=1

eij(k−2)θ(4.19)

= w sin θ

n−1∑
j=0

wj = w sin θ

(
wn − 1

w − 1

)
,(4.20)

where w = exp(i(k−2)θ) and the last identity holds if w 6= 1. However, if w 6= 1, then
wn = exp(i(k − 2)nθ) = exp(2πi(k − 2)) = 1, and τk = 0. Therefore, τk is nonzero
only when w = 1, which occurs for k = 2, n+ 2, 2n+ 2, and so on, in which case

τ2 = τn+2 = τ2n+2 = · · · = n sin θ.(4.21)

This implies that the Hankel matrix H0 has the following structure:

H0 = H0(1) = n sin(θ)P(1),(4.22)

where P(1) is a permutation matrix

P(1) =



0 0 1 0 · · · 0 0
0 1 0 0 · · · 0 0
1 0 0 0 · · · 0 0
0 0 0 0 · · · 0 1
0 0 0 0 · · · 1 0
...

...
...

...
. . .

...
...

0 0 0 1 · · · 0 0


.(4.23)

As P(1) is orthogonal, κ2(H0(1)) = κ2(P(1)) = 1. Meanwhile, the scaled Hankel
matrix is

H0(r) = ∆(r)H0(1)∆(r) = n sin θ∆(r)P(1)∆(r) = n sin θP(r).(4.24)

The condition number of P(r) can be found by noting that (assuming r > 1)

κ2(P(r)) = ‖P(r)‖2‖P−1(r)‖2(4.25)

=
√
λmax (PT (r)P(r))

√
λmax (PT (1/r)P(1/r))(4.26)

= rn+2 1

r2
(4.27)

= rn.(4.28)

Finally, this gives

κ2(H0(r)) = κ2(P(r)) = rn,(4.29)
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which means that scaling the roots of unity to a circle of radius r > 1 worsens the
condition number of the corresponding Hankel matrix from 1 to rn. To alleviate this
problem, if we know r, we should choose Φ = ∆−1(r) = ∆(1/r). This is the optimum
choice of diagonal scaling as it yields

H0 = ∆(1/r)H0(r)∆(1/r) = H0(1),(4.30)

which is optimally conditioned. Of course, in reality, we can at best estimate r
as we described earlier and choose the diagonal scaling according to (4.11). The
improvement in condition number will generally not be as good as rn, since the scaling
will not affect the underlying geometry (e.g., eccentricity) of the polygon which is an
inherent factor affecting the sensitivity of the inversion problem.

It is worth noting that although the preceding analysis was carried out for r > 1,
similar scaling issues arise when the vertices are in the interior of the unit circle; that
is, when the vertices are significantly smaller than 1 in magnitude.

4.2. Algorithm description. To make the process clear, we present a step-by-
step algorithmic description of the shape reconstruction process.

Problem. Given a sequence of moments {τk}K−1
k=0 , possibly corrupted by noise,

find a polygon to fit these data.
Algorithm.
1. Use formula (4.9) to estimate ρ.
2. Shift and scale the moment sequence to obtain the transformed moments tk.
3. Using the transformed moments, estimate the number n of vertices using

singular value or minimum description length (MDL) techniques. (See sec-
tion 5.)

4. Form the generalized Hankel matrices H0 and H1 using the transformed mo-
ments. If the number of moments K > 2n, H0 and H1 can be formed as
rectangular matrices with K − n rows and n columns.

5. Solve the generalized eigenvalue problem

H1u = z H0u(4.31)

using the QZ algorithm, starting with the QR algorithm as described in sec-
tion 3. If H0 and H1 are rectangular, the generalized eigenvalues of the
corresponding normal equations are needed, and again one can use the QR
factorization described earlier to begin the QZ process and thus avoid form-
ing the normal equations.3 The true vertices are then given by the computed
eigenvalues shifted according to the estimate of the center of mass τ3/3τ2.

6. Solve for the parameters aj using Vandermonde or least-squares methods.
7. Solve for the angles φj and (if possible) solve for the interior of the polygon.

5. Optimal number of vertices. Given a sequence of moments τk, or the
transformed moments tk, the structure of the Hankel matrix H0 shown earlier assumes
knowledge of the number of vertices n. In practice, this is not the case. In particular,
if the given moment sequence is not corrupted by noise, we may form the largest H0

possible. The rank of this matrix will then be equal to the number of underlying

3Forming the normal equation, while useful in canceling out the effects of noise, can result in a
(more) ill-conditioned square system. Another possibility is using Kung’s method [24] whereby the
truncated SVD of H1 and H0 are used to form and solve a square pencil.
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vertices n. If the given moment sequence is corrupted by noise, however, the rank
estimation problem is more difficult asH0 will, almost always, have full rank as a result
of the noise. Several approaches have been suggested [34, 37]. The common theme
among these is that by observing the behavior of the (descending ordered) sequence of
singular values of H0, one may observe a sharp “break” in the rate of decrease of these
values. This break point then can be identified as the boundary between the signal
and noise components. That is, the singular values before the break will correspond
to the true signal, and hence the number of such singular values will correspond to
the number of signal components (or vertices) which we seek. Naturally, the difficulty
with this approach is that this break point is hardly ever easy to identify as no rigorous
analysis for this choice has been carried out.

Another approach is the use of the MDL principle of Rissanen [30]. The interpre-
tation of vertex reconstruction as an array processing problem allows for the use of
the MDL principle derived for array processing applications by Wax and Kailath in
[38]. In this framework, data containing the superposition of a finite number of sig-
nals, corrupted by additive noise, is measured at a collection of m spatially separated
sensors, yielding data vectors d(ti) = [d1(ti), d2(ti), . . . , dM (ti)]

T . Each vector d(ti) is
a snapshot at a fixed time ti across the array of sensors. Next, the signal covariance
matrix is estimated from the data as follows:

R̂ =
1

N

N∑
i=1

d(ti)d
H(ti).(5.1)

If the eigenvalues λ1, λ2, . . . , λM of R̂ are arranged in descending order, the MDL cost
function defined over integer values n is

MDL(n) = − log

 ∏M
i=n+1 λ

1
M−n
i

1
M−n

∑M
i=n+1 λi

(M−n)N

+
n

2
(2M − n) log(N),(5.2)

which, when minimized, has been shown [38] to produce a consistent estimate n̂ of the
number of signals. It is interesting to note that the bracketed part of the first term
in the above expression is simply the ratio of the geometric mean to the arithmetic
mean of the smallest M − n eigenvalues of R̂.

In our application, the given data are the elements of the moment sequence
{τk}K−1

k=0 or {tk}K−1
k=0 and there is no time dependence per se. What we have, in

effect, is a single snapshot of data across a possibly large array, each index k repre-
senting one sensor in that array. A process called spatial smoothing can be applied to
map our scenario to the standard framework. More specifically, as in [1] we can divide
the given moment sequence into N subvectors νi, each of length M , where M is such
that n̄ < M ≤ K − n̄+ 1, with n̄ being the largest expected number of vertices. This
will ensure that the estimated covariance matrix

R̂ =
1

N

N∑
i=1

νiν
H
i(5.3)

will have rank at least n̄. While choosing M large will help to dampen out the effect
of the noise, it also means that the size of R̂ will be large and therefore increases the
computational load of the algorithm. In addition, a large M will imply a small N ,
and this, in turn, affects how well the estimated covariance matrix approximates the
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true covariance matrix. To get the largest possible N for a choice of M , we therefore
need the vectors νi to be maximally overlapping; hence we set N = K+1−M . It has
been suggested that the choice M =

√
K tends to give satisfactory results. Another

reference [13] suggests that for shorter data records (K) and/or closely spaced sources
(vertices), the choice M ≈ 0.6(K + 1) is best. We have observed that using the
transformed moments tk we can obtain estimates of the number of sides that, while
not often exact, are reasonably close to the true values.

6. An application to geophysical inversion. The above results can be useful
in several areas of application. Among these, we outlined the application to tomog-
raphy in [27] where the measured data are (tomographic) projections of the polygon
and from which the moments can be uniquely estimated. In what follows, we de-
scribe a different application area, namely, the problem of geophysical inversion from
gravimetric measurements [29, 35].

A somewhat unexpected application of the results obtained in this paper and in
[27] is found in the field of gravimetric and magnetometric geophysical inversion. For
the gravimetric application, it is of interest to reconstruct the shape and (possibly)
density of a gravitational anomaly from discrete measurements of the exterior grav-
itational field at spatially separated points. In particular, consider the problem of
reconstructing the boundary of an arbitrary simply connected region P , and the mass
density f(x, y) within it, from measurements of its gravitational field G(x, y) made
at points in the plane outside of P . In practice, it is often convenient to assume
that P is a cross-sectional slice of a 3D body P of infinite extent (l) and density
f(x, y, l) = f(x, y, 0) = f(x, y). That is, for each l, P is simply a replica of P in terms
of both shape and density. Under this assumption, the exterior potential φ(x, y) due
to the object is a harmonic function4 which behaves as c log(x2 +y2)1/2 for some con-
stant c [35]. This class of potential functions is referred to as logarithmic potentials
that are limiting cases of the standard Newtonian potentials for (cylindrical) objects
of infinite extent [22].

The (vector) field G(x, y) = ∇φ can be embedded in the complex plane by defining
the variable ξ = x+ iy and writing

G(ξ) =
∂φ

∂x
+ i

∂φ

∂y
,(6.1)

where G(ξ) is now, by construction, an analytic function outside of P . Under mild
constraints this analytic function admits an integral representation:

G(ξ) = 2ig

∫ ∫
P

f(x′, y′)
ξ − ξ′ dx′ dy′,(6.2)

where ξ′ = x′+ iy′, and where g is the universal gravitational constant. For values of
ξ outside of P , we can expand the field into an asymptotic series as follows:

G(ξ) = 2ig

∫ ∫
1

ξ

1

1− (ξ′/ξ)
f(x′, y′) dx′ dy′(6.3)

= 2ig

∫ ∫
1

ξ

∞∑
k=0

(
ξ′

ξ

)k
f(x′, y′) dx′ dy′(6.4)

= 2ig
∞∑
k=0

ck ξ
−(k+1),(6.5)

4One that satisfies Laplace’s equations: ∇2φ = 0.
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where the coefficients ck are the moments

ck =

∫ ∫
P

f(x, y) zk dx dy,(6.6)

which for a uniform density f(x, y) = 1 are called the harmonic moments and were
defined in (2.5). Therefore, we observe that if the field G(ξ) is known, then the
moments ck are determined and hence the inverse potential problem is equivalent to
the reconstruction of f(x, y) and the region P from its moments.

In particular, let us consider a truncated asymptotic expansion of G,

G(ξ) = 2ig

K−1∑
k=0

ck ξ
−(k+1),(6.7)

and assume that at least K measurements G(ξ1), G(ξ2), . . . , G(ξK) are given (at points
away from ξ = 0). Collecting these in vector form and rewriting, we have the Van-
dermonde system

ξ1G(ξ1)
ξ2G(ξ2)

...
ξKG(ξK)

 = 2ig


1 ξ−1

1 · · · ξ
−(K−1)
1

1 ξ−1
2 · · · ξ

−(K−1)
2

...
...

...

1 ξ−1
K · · · ξ

−(K−1)
K




c0
c1
...

cK−1

 = ΞK CK .(6.8)

This Vandermonde system is not unlike the ones we encountered in the earlier sections.
The Vandermonde matrix (ΞK) on the right-hand side is invertible if and only if the
measurements are made at spatially separated points, but this inversion is not always
stable. In particular, the condition of the above Vandermonde system is dependent
upon the location of the ξk. The results of [12] and section 4.1 imply that for best
conditioning these points should be placed at the roots of unity, if this is indeed
practicable. If not, scaling results similar to those of section 4.1 can be derived and
applied to this problem as well for improved conditioning.

For the case where f(x, y) is a uniform density and P is a simply connected
polygonal region, once we have solved (6.8) for the moments ck, we can proceed as
before with the approximate reconstruction of P as a polygon. In contrast to the to-
mographic application discussed in [27], the reconstruction algorithm described above
for the gravimetric problem is, strictly speaking, approximate even if the measure-
ments of the field are exact, and the underlying P is, in fact, polygonal. This is
because the algorithm is dependent upon the truncated series in (6.7). It is worth
noting, however, that the series (6.7) converges to the true value of G quite quickly.

Finally, we mention that the results described above are also important and appli-
cable to a variety of inverse problems such as thermal conductivity and others arising
from general elliptic integral equations [35].

7. Numerical examples. In this section we present three numerical examples
to illustrate the main points of the paper. In particular, the first two examples illus-
trate the sensitivity of the computations involved, while the third example demon-
strates the application to the geophysical gravimetric inverse problem discussed in
section 6 and also how the MDL procedure described in section 5 can be used to
estimate the number of vertices.
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7.1. Example 1. This example illustrates the sensitivity associated with ver-
tices which are closely spaced or which have small interior angles. The polygon (shown
in Figure 1) is a triangle with a small triangular slit (of width 2α) cut out of one side.
We have chosen α = 10−3 for this example. The results (using Matlab and IEEE
floating-point standard arithmetic) are shown in Table 7.1. The moments are gen-
erated from the actual vertices zj , and from these simulated “measurements” the
estimated vertices ẑj and coefficients âj are computed. To emphasize the sensitivity
of the problem, we assume that the value of ρ is known exactly. Then the vertices
are estimated by using the QZ algorithm [15] on the generalized eigenvalue problem
estimated from the transformed moments. For reference, we note that the condition
number of the Hankel matrix H0 is κ2(H0) = 3.6× 108, whereas the condition of the
Hankel matrix corresponding to the transformed moments is κ2(H0) = 2.9 × 104—a
significant improvement.

The coefficients âj are computed by inverting the Vandermonde system (3.13).
Therefore, not surprisingly, the errors in âj can be larger than for the corresponding
vertices, by a factor equal to the condition number of V , which is κ2(V ) = 5.7× 103.
Also shown are the sensitivity factors s, which are simply the right-hand side of (3.23);
note that they predict the accuracy of the estimated vertices quite well.

Table 7.1
Table of errors and sensitivities for Example 1.

z |z − ẑ| |a− â| s

1.0 2.0× 10−12 2.0× 10−14 5.0× 104

2 + 0.001i 1.1× 10−9 1.5× 10−6 1.5× 107

2 + i 10−15 10−15 13
0.0 10−15 10−15 3.6

2− i 10−15 10−14 13

2− 0.001i 1.1× 10−9 1.5× 10−6 1.5× 107

7.2. Example 2. This example (see Figure 2) demonstrates that the computa-
tions can be sensitive even when the underlying polygon contains no small (or large)
angles. Here the polygon is the block “E,” with all angles equal to 90◦. The Van-
dermonde matrix V has condition number 9 × 1010 and the Hankel matrix H0 has
condition number 4 × 1013, whereas the Hankel matrix of transformed moments H0

has condition number 1.4 × 107. The results are given in Table 7.2. Again, the
accuracy is predicted well by the sensitivity factors s.

7.3. Example 3. In this example, we demonstrate the application of the algo-
rithm to the problem of shape reconstruction from gravitational field measurements.
Specifically, we produce simulated measurements of the gravitational field due to the
solid object shown in Figure 3. For convenience we choose to simulate these measure-
ments at equally spaced points (roots of unity) on the unit circle as again shown in
Figure 3. While this is admittedly rather unrealistic, it helps us to more clearly carry
out the example, since with this choice the Vandermonde system in (6.8) is optimally
conditioned.

A total of 20 measurements of the gravitational field were simulated in the clock-
wise direction at roots of unity starting at ξ = 1 (using the exact formula for the
field due to a planar polygon, which is described in [35]). The magnitude and phase
of the simulated measurements G(ξ) are shown in Figure 4. These values were then
corrupted by (complex) Gaussian white noise with standard deviation σ = 2× 10−3.
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Table 7.2
Table of errors and sensitivities for Example 2.

z |z − ẑ| |a− â| s

1 + i 6.4× 10−10 1.2× 10−8 1.5× 107

0.5 + i 9.3× 10−10 1.3× 10−8 2.0× 107

0.5 + 2i 2.0× 10−10 3.7× 10−9 6.6× 106

1 + 2i 1.3× 10−10 2.9× 10−9 4.2× 106

1 + 3i 1.7× 10−13 5.3× 10−12 7.3× 103

3i 8× 10−14 1.7× 10−12 3.8× 103

−3i 9× 10−14 1.9× 10−12 3.8× 103

1− 3i 1.7× 10−13 4.9× 10−12 7.3× 103

1− 2i 1.3× 10−10 3.0× 10−9 4.2× 106

0.5− 2i 2.1× 10−10 3.8× 10−9 6.6× 106

0.5− i 9.4× 10−10 1.4× 10−8 2.0× 107

1− i 6.5× 10−10 1.2× 10−8 1.5× 107

From these noisy data, the first 20 complex moments ck of the underlying shape were
computed, allowing reconstructions with up to 10 vertices. From these computed
moments, the transformed moments tk were computed. The MDL values and the
singular values of the matrix H0 are displayed in Figure 5. Note that the MDL crite-
rion indicates the correct number of vertices (namely, 4), whereas the singular value
approach underestimates the number of vertices to 3. The reconstruction using four
vertices is shown as the dashed polygon in Figure 3. As is apparent, this is a rather
nice approximation to the underlying shape.

8. Summary and extensions. In this paper we presented a stable numerical
solution for the problem of shape reconstruction from moments. This problem has
many applications including tomographic reconstruction [27] and geophysical inver-

3 2 1 0 1 2 3
3

2

1

0

1

2

3

Fig. 1. The six-sided polygon of Example 1.
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Fig. 2. The twelve-sided polygon of Example 2.

sion. A rather remarkable feature of this moment problem is that it can be thought
of as the dual of the problem of numerical quadrature in two dimensions. Some
important and interesting questions remain to be addressed regarding this problem:

• The study of statistical procedures for obtaining optimal estimates of the
vertices based upon the techniques presented here is important. In practically
all applications, the effect of noise is significant and must be dealt with. The
literature on array signal processing [23] has dealt with this question in depth.
However, the statistical algorithms developed in that area are built around
specific signal models which do not hold in the context of shape reconstruction
(specifically, the assumption that the sources—our vertices—lie on the unit
circle). Therefore, many of the scaling issues we have dealt with in this paper
never arise in the existing array processing literature.
• Regularization of the shape reconstruction problem by inclusion of prior geo-

metric models may significantly improve the robustness of these techniques.
For instance, constraints such as convexity and the inclusion of terms which
penalize excessive (discrete) curvature in the resulting solutions can yield use-
ful and computationally interesting extensions of the algorithms presented
here.

It is our hope that the results of this paper along with the above observations
will stimulate further work in this area both in terms of new numerical and statistical
techniques and also in terms of applications of these techniques to solving physical
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Fig. 3. The underlying polygon (-), the reconstructed polygon (- -), and the locations of the
gravity probes (diamonds) for Example 3.

problems.

Appendix A. Proof of convergence of ρ estimate.
Lemma A.1. Consider the sequence qk = |τk|1/k. Then qk → ρ, except possibly

for a subsequence qkj → 0.
Proof. Since

τk =
k∑
j=1

ajz
k
j ,(A.1)

the behavior of the {τk} is essentially that of the power method (see Golub and Van
Loan [15]). If ρ = |z1| > |zj |, j = 2, . . . , n, then

τk = a1z
k
1

1 +
∑
j>1

aj
a1

(
zj
z1

)k ,(A.2)

and |zj/z1| ≤ σ < 1. (Recall also that aj 6= 0.) Thus |τk|1/k → |z1| = ρ, with the rate
of convergence depending on σ.

When two or more vertices have the same modulus ρ, the behavior is more com-
plicated. The general case can be illustrated as follows: suppose ρ = |z1| = |z2| >
|zj |, j = 3, . . . , n. Then

τk = a1z
k
1

1 +
a2

a1
eikθ1 +

∑
j>2

aj
a1

(
zj
z1

)k ,(A.3)



A STABLE NUMERICAL METHOD FOR INVERTING SHAPE FROM MOMENTS 1241

0 1 2 3 4 5 6
0.45

0.5

0.55

0.6

0.65

Clockwise angle from ξ=1

F
ie

ld
 M

ag
ni

tu
de

0 1 2 3 4 5 6
1

2

3

4

5

6

7

8

Clockwise angle from ξ=1

F
ie

ld
 P

ha
se

Fig. 4. The magnitude and phase of the complex gravity field measurements for Example 3.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
5

4

3

2

1

0

1

Number of Vertices

N
or

m
al

iz
ed

 M
D

L 
va

lu
e

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Vertices

S
in

gu
la

r V
al

ue
s 

of
  H

0

Fig. 5. MDL and SVD values for determining the number of vertices in Example 3.

where z2/z1 = eiθ1 . The points wk = 1 + a2

a1
eikθ1 all lie on the curve w(θ) = 1 + a2

a1
eiθ,

and they all satisfy |wk|1/k → 1 except for those points wkj = 0, if in fact the curve
w(θ) goes through the origin. This can only happen if 1 + a2

a1
eikθ1 = 0, which implies

a2

a1
= eikθ2 , with kθ1 + θ2 = π± 2jπ. The set of values {kj} for which this occurs may

be finite or a subsequence (for instance, if z1 = 1, z2 = −1, a1 = a2 = 1, it occurs for
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all odd integers). Clearly, apart from this subsequence {kj}, |τk|1/k → ρ.
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