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Abstract

Gradient-based image registration techniques represent a very popular class of approaches to registering pairs or sets of

images. As the name suggests, these methods rely on image gradients to perform the task of registration. Very often, little

attention is paid to the filters used to estimate image gradients. In this paper, we explore the relationship between such

gradient filters and their effect on overall estimation performance in registering translated images. We propose a

methodology for designing filters based on image content that minimize the estimator bias inherent to gradient-based image

registration. We show that minimizing such bias improves the overall estimator performance in terms of mean square error

(MSE) for high signal-to-noise ratio (SNR) scenarios. Finally, we propose a technique for designing such optimal gradient

filters in the context of iterative multiscale image registration and verify their further improved performance.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of image registration can be
expressed as finding a spatial coordinate transfor-
mation that relates one image to another. Knowl-
edge of this spatial transformation is required
whenever multiple images of a similar scene need
to be compared or combined in some sense. For
example, to fuse a collection of images for the
purpose of improving spatial resolution as in [6]
e front matter r 2005 Elsevier B.V. All rights reserve
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the unknown translations between pairs of images
must be estimated to a very high degree of
accuracy. For this and other applications, the
accuracy of any image registration algorithm must
be well understood.
When the observed image data consists of a pair

of noisy images, the data can be modelled as

z1ðm; nÞ ¼ f ðm; nÞ þ �1ðm; nÞ,

z2ðm; nÞ ¼ f ðm � vxðm; nÞ; n � vyðm; nÞÞ þ �2ðm; nÞ,

where �iðm; nÞ is zero-mean white Gaussian noise
with variance s2 and ~vðm; nÞ ¼ ½vxðm; nÞ; vyðm; nÞ�T
d.
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is the unknown vector field characterizing the
transformation between the two images. In prac-
tice, such a noise model has been found to
accurately capture the effects of random noise in
typical imaging systems [3]. We use the notation
m; n to represent the M by N sample locations
f ðmT ; nTÞ for an underlying continuous image
f ðx; yÞ. The estimation of the unknown motion
vector field is also commonly referred to as motion
estimation or optical flow estimation.
One very popular class of methods for estimat-

ing image motion is the so called gradient-based or
differential-based methods [1]. These methods
estimate image motion by relating the change in
image intensity between images to spatial image
gradients. As the name implies, gradient-based
estimation methods require measurements of
image gradients. These measurements are invari-
ably obtained by application of simple, linear
phase, shift invariant filters. Even though these
filters play a vital role in the estimation scheme,
and have been shown to affect estimator bias
[9,2,11], relatively few researchers have studied the
design of such filters [12,4,5]. While many papers
acknowledge the errors incurred by such gradient
approximation schemes, they treat these errors as
random in nature and construct statistically robust
estimators to minimize their effect. These methods
have overlooked potential improvement in esti-
mator accuracy by improving the computation of
image gradients with optimally designed gradient
filters.
In this paper, we use the bias formulation,

presented in [11], to propose a systematic method
for designing gradient filters to optimize transla-
tion estimation performance. We explore an
optimization scheme whereby a gradient filter is
designed based on the image under observation to
minimize overall estimator bias. We detail an
approach for designing such filters for multiscale
iterative image registration and experimentally
verify the bias-minimizing properties of such filters
in both a non-iterative and multiscale iterative
framework. We show that such filters improve the
mean square error (MSE) performance for high
signal-to-noise ratios (SNR) as well. We compare
the performance of such optimized filters with
previously used and proposed filters and in
particular those designed using the method of [5].
We conclude by presenting future research ques-
tions relating to the problem of filter design for
gradient-based motion estimation and image
registration.

1.1. Gradient-based motion estimation

To motivate our filter design methodology, we
first explore the gradient-based image registration
technique and the review the current methods
addressing filter design. For the sake of simplicity,
we first present our initial analysis in 1-D. For the
1-D case, we suppose that the measured data is of
the form

z1ðkÞ ¼ f ðkÞ þ �1ðkÞ, ð1Þ

z2ðkÞ ¼ f ðk þ vðkÞÞ þ �2ðkÞ, ð2Þ

where �i are Gaussian white noise random fields
with variance s2 and vðkÞ is the unknown
transformation vector field. Again, we assume
that the image (function) f ðxÞ is sampled above the
Nyquist rate. Throughout this paper, we assume
that the noise power s2 inherent to the imaging
system has been effectively characterized prior to
estimation; that is, we assume that s2 is known.
The family of gradient-based motion estimators

begin by linearizing f ðk þ vÞ about the point v ¼ 0
in a Taylor series as,

f ðk þ vðkÞÞ ¼ f ðkÞ þ vðkÞf 0
ðkÞ þ Rðk; vðkÞÞ, (3)

where Rðk; vðkÞÞ denotes the approximation error
of the linearization.
Most of the gradient-based methods make two

simplifying assumptions about (3). First, it is
assumed that the unknown vector field vðkÞ is
comprised of locally parametric vector fields. The
simplest of models is the translational model of
image motion where the coordinate transforma-
tion is assumed to be constant over some region in
space vðkÞ ¼ v; 8k 2 O. Here, O is a local region in
the image space, possibly the entire image. Second,
it is assumed that the remainder term Rðk; vÞ is
negligible. With such assumptions, estimation of
the unknown translation v consists of solving an
overdetermined set of linear equations of the form

z2ðkÞ � z1ðkÞ ¼ vf 0
ðkÞ þ �ðkÞ, (4)
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where each equation is defined for a particular
pixel k in O. Here �ðkÞ is defined as
�ðkÞ � �2ðkÞ � �1ðkÞ.

1

In practice, a set of filters are applied to the
images to generate a set of linear equations of the
form (4). For instance, pre-smoothing filters are
often applied to the pair of images prior to
estimation to improve the accuracy of the linear-
ized signal model. We refer the reader to [5] for a
complete motivation of the use of pre-smoothing
filters. The pair of images z1 and z2 are pre-filtered
using a low pass filter to produce smoothed
versions of the images; viz

~z1ðkÞ ¼ hðkÞ � z1ðkÞ, ð5Þ

~z2ðkÞ ¼ hðkÞ � z2ðkÞ. ð6Þ

(where � represents convolution).2 Furthermore, the
gradient (derivative) f 0

ðkÞ must be approximated
from the measured data using a gradient filter gðkÞ.
The gradient filter is applied to one of the available
images to approximate the image gradient as

~f
0
ðkÞ ¼ gðkÞ � ~z1ðkÞ. (7)

Using this set of filters, the form of (4) is generalized
as

~zðkÞ ¼ v ~f
0
ðkÞ þ ~�ðkÞ, (8)

where ~zðkÞ � ~z2ðkÞ � ~z1ðkÞ. Here, we see that the
nonlinear signal model is no longer expanded in a
Taylor series, but by an alternate power series
implicitly defined by the gradient filter gðkÞ. Again,
the linear signal model of (8) essentially ignores the
implied approximation error ~Rðk; vÞ.
Given such processed image data, the least-

squares (LS) estimate for translation between a
pair of images in the region O is given by

v̂ ¼

P
k2O

~f
0
ðkÞ~zðkÞP

k2O ð
~f
0
ðkÞÞ2

. (9)
1In this paper, we focus on the estimation of global

translational as a first step in understanding the general

problem of filter design for image registration.
2In [5], a more general pre-smoothing approach is employed

wherein different pre-smoothing filters h1ðkÞ and h2ðkÞ are

applied to each of the images.
Traditionally, the choice of smoothing filters and
gradient filters that were utilized have been
designed heuristically. In the next section we
review the earlier work relating to principled filter
design for gradient-based estimation.
1.2. Filter design for gradient-based motion

estimation

Very little work has been done addressing the
design of filters specifically for application to motion
estimation. To our knowledge, such an approach
was first studied in [4] and then later in [5] which
extends the generic (not necessarily application
specific) gradient filter design principles of [12].
For both of these approaches, it is assumed that the
gradient filter gðkÞ is anti-symmetric (because it is a
first order derivative filter) and the pair of pre-
smoothing filters h1ðkÞ and h2ðkÞ are symmetric.
Because the filters are symmetric and antisymmetric,
only half of the filter coefficients need to be
represented. We use the bold notation h and g to
denote the vector of filter coefficients used to
construct the filters hðkÞ and gðkÞ, respectively.
The symmetry of the pre-smoothing filters guaran-
tees their being linear phase filters and the anti-
symmetry of the gradient filter is necessary to
preserve the property of being a differentiator [10].
In [12], a method for designing a single pre-

smoothing filter hðkÞ and a derivative filter gðkÞ is
proposed. The pair of filters are designed such that
the analytic derivative of the smoothed signal will
be similar to the approximated derivative signal
using the filter gðkÞ. To do so, [12] proposes a cost
function to design the filters hðkÞ and gðkÞ. The
cost function attempts to minimize the total energy
in the difference signal between the analytic
derivative of the pre-smoothed signal f 0

ðxÞ � hðxÞ

and the filter-based derivative approximation ~f
0
ðxÞ

weighted by the amplitude spectrum of the image
function f ðxÞ. The image model is assumed to have

the amplitude spectrum jF ðyÞj ¼ 1ffiffiffiffi
jyj

p a representa-

tive natural image. The cost function in [12] is
expressed in the Fourier domain as

J1ðh; gÞ ¼

Z p

�p

1

jyj
½jyHðyÞ � GðyÞ�2 dy. (10)
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Here, HðyÞ and GðyÞ are the Fourier transforms
for the desired filters given by

HðyÞ ¼ fhg0 þ 2
XKh

i¼1

fhgi cosðiyÞ,

GðyÞ ¼ 2
XKg

i¼1

fggi sinðiyÞ,

where fxgi represents the ith component of a vector
x. The formulation of (10) reflects the fact that the

Fourier transform of a derivative signal f 0
ðxÞ is given

by jyF ðyÞ [10]. Such a design philosophy attempts to
minimize approximation error due to the application
of FIR filters to estimate image gradients. In [12], the
solution was found by formulating the optimization
problem as an eigenvalue problem. Several filter
pairs of differing lengths are presented in the paper.
While [12] does not directly address the application
of such filters to estimate motion, the filters have
been noted to improve estimator performance [2].
In [5], these filter design principles were extended to

address the specific problem of gradient-based motion
estimation. By designing a set of pre-smoothing filters
and gradient filters minimizing the modelling error for
a particular image, the estimator performance could
be further improved. This alternate design procedure
can be expressed as that of finding the filter
coefficients for the set of filters which minimize the
remainder term ~Rðk; vÞ of the linearized model.
The goal of such an approach is that of improving
the quality of the motion estimates by minimizing the
approximation error. The authors derive a cost
function taking into account a specific image as well
as a range of possible translations v 2 ½�V ;V �. Such
a cost function has the form

J2ðh1; h2; gÞ ¼

Z V

�V

Z p

�p
jF ðyÞj2jejyvH2ðyÞ

� H1ðyÞ � vGðyÞj2 dydv

¼

Z V

�V

Z p

�p
jF ðyÞj2 UðyÞ

�� ��2 dydv. ð11Þ

Intuitively, the filter designed should minimize the
energy in the modelling error ~Rðk; vÞ weighted by the
image spectrum over a given range of unknown
translations. The authors note that minimizing the
error alone will not provide good filters since the
optimization tends to create ‘‘non-informative’’ filters
which contain most of their spectral energy at
frequencies where the image spectral energy jF ðyÞj2

is lowest. They correct this by adding an additional
penalty term balancing the desire to tune the filter to
the given image with that of an image with a flat
spectrum. This modified cost function looks like

J2ðh1; h2; gÞ

¼

Z V

v¼�V

Z p

�p
½aþ ð1� aÞjF ðyÞj2�jUðyÞj2 dydv,

ð12Þ

where a is a tuning parameter to be applied during the
filter design process. The authors also find a solution
to this problem by again solving an eigenvalue
problem. To date, the proposed method represents
the only work addressing filter design specifically for
the problem of motion estimation.
While these previous works have made funda-

mental contributions to gradient-based motion
estimation, they ignore the particular structure of
the gradient-based motion estimator which ulti-
mately characterizes the statistical performance of
such estimators. In this paper, we use the statistical
performance of the estimator to guide the design
process. Specifically, we present a scheme for
designing filters which minimize the bias of the
registration algorithm.

2. Designing bias-minimizing filters

It has been noted on numerous occasions in the
past [9,2,11] that gradient-based estimators pro-
duce biased estimates. However, only recently in
[11], we derived the explicit form of this bias. For
completeness, we now summarize the derivation of
this bias originally presented in [11].
The estimator bias as defined in [8], is given by,

bðvÞ � E½v̂� � v

¼ E

P
k2O

~f
0
ðkÞ~zðkÞP

k2Oð
~f
0
ðkÞÞ2

" #
� v

¼ E

P
k2O

~f
0
ðkÞ½v ~f

0
ðkÞ þ ~Rðv; kÞ þ ~�ðkÞ�P

k2O ð
~f
0
ðkÞÞ2

" #
� v

¼ E

P
k2O

~f
0
ðkÞ½ ~Rðv; kÞ þ ~�ðkÞ�P
k2O ð ~f

0
ðkÞÞ2

" #
, ð13Þ
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where the expectation is taken with respect to the
noise vector �. Here, we see that the bias has a
component dependent on the random additive
noise � as well as the deterministic approximation
error ~Rðv; kÞ. In [11], it was shown that for high
SNR situations, the bias is dominated by determi-
nistic modelling error. For many computer vision
and image registration applications, the effective
SNR falls into this high SNR regime. This
deterministic bias results from the approximation
error in the data model ~Rðv; kÞ due to the linear
signal approximation. In [11] we showed that this
estimator bias can be expressed in the Fourier
domain as

bðvÞ �

R p
�p j

~F ðyÞj2½GðyÞ sinðvyÞ�dyR p
�p j

~F ðyÞGðyÞj2 dy
� v. (14)

By way of the substitution ~F ðyÞ ¼ F ðyÞHðyÞ we
can rewrite (14) as

bðvÞ �

R p
�p jF ðyÞj2jHðyÞj2½GðyÞ sinðvyÞ�dyR p

�p jF ðyÞHðyÞGðyÞj2 dy
� v.

(15)

It is this bias function that we use to develop a
filter design methodology. We refer the interested
reader to [11] for the complete derivation of this
estimator bias function.
In (15) we see that the bias depends on three

factors: the image content f , the choice of
filters gðkÞ and hðkÞ, and the unknown translation
v. Using this bias function we construct the
following cost function for finding the filter
coefficients:

Jðg; hÞ ¼

Z
wðvÞb2ðg; hÞdv, (16)

where wðvÞ is a weighting function over the
space of translations v. For instance, wðvÞ may
reflect a prior distribution on the unknown
translation. Such a cost function captures the
desired goal of minimally biased estimates of
image translation. For our purposes, we assume
that the translations are equally likely to be any
value in a particular range v 2 ½�V ;V �. In other
words, we focus on the case where the weighting
function is given by

wðvÞ ¼

1

2V
; v 2 ½�V ;V �;

0 else:

8<
: (17)

Such a weighting function penalizes estimator bias
equally for all translations within a particular
range.
We now explore a simple method for minimizing

such a cost function. Because of the nonlinear
dependence on GðyÞ and HðyÞ (and hence g and h)
in the bias function (15), we propose focussing on
the design of the gradient filter coefficients g.
While it would be possible to efficiently minimize
(16) in a cyclic coordinated descent type algorithm
which alternates between optimizing over g and h,
we have found in practice that optimizing both
filters does not offer significantly improved per-
formance over optimizing the gradient filter alone.
Our experiments suggest that after optimizing the
gradient filter, the cost function effectively finds a
relatively flat region of local minima where small
perturbations of the pre-smoothing filter fail to
improve overall performance. As such, we first
choose a pre-smoothing filter, and then optimize
over only the gradient filter. Here we present the
algebraic simplifications useful for highly efficient
filter optimization. We note that similar simplify-
ing operations are applicable for the 2-D case as
well.
First, we rewrite the bias function (15) in vector

form as

bðvÞ ¼
sðvÞTWDg

gTDTWDg
� v, (18)

where

fsðvÞga ¼ sinðvyaÞ,

fWga;b ¼
jF ðyaÞj

2jHðyaÞj
2; a ¼ b

0; aab;

(

fDga;k ¼ sinðkyaÞ.

In these equations, the a indicates the spatial
frequency used in the DFT such that ya ¼ p� a2p

K
.



ARTICLE IN PRESS

D. Robinson, P. Milanfar / Signal Processing: Image Communication 20 (2005) 554–568 559
For a fixed pre-smoothing filter, the cost
function JgðgÞ can be written in vector form as

JgðgÞ ¼

Z V

�V

b2ðgÞdv

¼

Z V

�V

v2 þ
gTDTWTsðvÞsðvÞTWDg

ðgTDTWDgÞ2




�2v
sðvÞTWDg

gTDTWDg

�
dv

¼
2V 3

3
þ

gTDTWT ~SWDg

ðgTDTFDgÞ2

� 2
pTFDg

gTDTFDg
, ð19Þ

where

f ~Sga;b ¼

Z V

�V

sinðvyaÞ sinðvybÞdv

¼
2 sinðV ðya � ybÞÞ

ya � yb

�
2 sinðV ðya þ ybÞÞ

ya þ yb

ð20Þ

and

fpga ¼

Z V

�V

v sinðvyaÞdv

¼
2 sinðVyaÞ � 2Vya cosðVyaÞ

y2a
.

It is the simple closed form for such integrals
which makes such an optimization simple to
implement. While not obvious, it is important to
note that matrix ~S in (20) represents a convolution
operation because of the spectral symmetry of
jF ðyÞHðyÞj2GðyÞ about y ¼ 0. Thus, the left multi-
ply by the matrix ~S can be implemented using FFT
operations thereby removing the necessity of
constructing the large matrix ~S. Such implementa-
tion becomes critical for the 2-D scenario where
the dimensions of the matrices are much larger.
By defining

Q1 ¼ DTWT ~SWD,

Q2 ¼ DTFD,

q ¼ pTFD,
we rewrite (19) as

JgðgÞ ¼
2V 3

3
þ

gTQ1g

ðgTQ2gÞ
2
�

qTg

gTQ2g
. (21)

The matrices Q1;2 and the vector p need to be
computed only once during the optimization,
greatly simplifying the overall computational
complexity. The nonlinearity of the cost function
becomes immediately apparent in the form of the
cost function. Because the dimensions of the filters
of interest are relatively small (2–4 unique
coefficients), we utilize a black box Matlab
optimization routine fminunc to perform the
optimization. In our experiments, we use a
standard filter such as the Fleet filters [1] as an
initial guess for the optimization routine.
3. Filter design for 2-D multiscale iterative

registration

One important generalization of the filter design
methods of [12] and [5] and that proposed in the
previous section, is the extension to the design of
2-D filters. Both of these previous methods have
addressed only the filter design problem for the 1-
D case. The extension to the 2-D case for [5]
involves designing generic (non image-specific) 1-D
filters. In [5], generic 1-D filters were designed by
setting a ¼ 1, which essentially designs filters
assuming that the image has a flat or constant
spectrum. Then, the authors of both [12] and [5]
describe methods for applying these optimized 1-D
filters to a 2-D image which is necessary for
subsequent motion estimation.
In our case, we also assume that the 2-D filters

are simple 1-D filters applied in a 2-D fashion. For
example, the 2-D gradient filters g1ðm; nÞ and
g2ðm; nÞ (for the x and y dimensions) are defined as

g1ðm; nÞ ¼ gxðmÞdðnÞ, ð22Þ

g2ðm; nÞ ¼ dðmÞgyðnÞ, ð23Þ

where gxðkÞ and gyðkÞ are a pair of optimized 1-D
gradient filters and

dðkÞ ¼
1; k ¼ 0;

0 else:

�
(24)
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We show how the design of such 2-D filters is a
natural extension of the 1-D case presented in the
previous section. Unlike [5], however, our filters
are designed taking into account the 2-D spectrum
of a given image instead of a generic image
spectrum. In addition, we propose a methodology
for designing filters for multiscale iterative image
registration. We note that using such simple 1-D
filters is very common in gradient-based motion
estimation due to their efficiency of applying
separable filters.
3.1. Filter design for 2-D registration

Using vector notation, we can represent the 2-D
version of the gradient-based estimator (9) as

v̂ ¼ A�1y, (25)

where

A ¼
X

m;n2O

~rf ðm; nÞ ~rf ðm; nÞT,

y ¼
X

m;n2O

~rf ðm; nÞ~zðm; nÞ,

where ~r represents the filter approximation of the
gradient operator and v ¼ ½vx; vy�

T. In this case the
filters used to approximate the image gradient
operator ~r are represented as g1ðm; nÞ and g2ðm; nÞ.
Here, we make the assumption that the image has
enough spectral content so that the matrix A is
invertible. When A is not invertible (well-known
aperture effect [1]), the estimation problem is ill-
conditioned for any gradient filter.
Again using the vector notation y ¼ ½y1; y2�T

(here y1;2 represents the spatial frequencies in the 2
dimensions) and GðyÞ ¼ ½G1ðyÞ; G2ðyÞ�T we can
express the 2-D gradient-based estimator bias as

bðvÞ ¼ A�1

Z
jHðyÞF ðyÞj2GðyÞ sinðyTvÞd y�v,

(26)

where A ¼
R
jHðyÞF ðyÞj2½GðyÞGðy ÞT�d y.

As in the 1-D case, we use a cost function with a
uniform weighting function wðvÞ to generate

Jgðgx; gyÞ ¼

Z
bðvÞTbðvÞdv, (27)
which we use design our 2-D filters according to
(22) and (23). While somewhat tedious, the same
algebraic simplifications apply to Jgðgx; gyÞ as
those shown in Section 2. For all of our experi-
ments, we assume that the pre-smoothing filter is a
truncated 7-tap sampled Gaussian filter of the
form

hðx; yÞ ¼
1

r22p
e
�

x2þy2

2r2 . (28)

Here, the parameter r defines the width or
cutoff frequency of the radially symmetric low-
pass filter.
Before we begin analyzing the performance of

such specially tuned filters, we examine the
frequency response of the filters produced by our
proposed design methodology. First, we examine
the effect of the translation range ½�V ;V � on the
designed filters. Fig. 2 shows the different filters
produced by our optimization scheme for different
translation ranges ½�V ;V � assuming the Tree
image of Fig. 1. The pre-smoothing filter was set
with a width parameter of r ¼

ffiffiffi
3

p
(Figs. 1 and 2).

The actual filter coefficients of the optimized
filters are shown in Fig. 3. We note that for
several ranges of translation, these filters no
longer resemble gradient filters. Instead, we see
that the optimized filters exhibit strong bandpass
characteristics. In fact, we observe that as the
range of translations grows, the filters tend to
exhibit a shift in the bandpass region towards the
higher spatial frequencies. Such behavior satisfies
the intuition that as the translation parameter v

increases in magnitude, the Taylor expansion used
to linearize the nonlinear signal model becomes
less accurate. The optimal filters find an alternate
linearization which improves the accuracy of
estimation.
Next, we examine the role the underlying image

function f ðx; yÞ plays in the filter design process.
As an example, Fig. 4 shows the spectral responses
for filters optimized for the four images in Fig. 1
assuming a translation range ½�2; 2�. We note that
the filters’ spectral responses do not appear to vary
widely for the different images. This suggests that
generic filters might be designed which still offer
improved overall performance. For instance, we
may choose the representative natural power
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spectrum for the image [7]

jF ðyÞj2 ¼
1

y21 þ y22
. (29)

Another, less generic, approach involves designing
filters for a set of images. In this case, the filter is
designed for a single image which is the average
over a set of images. In our experiments, we
construct an average image by averaging three of
Fig. 1. Tree, DC, MRI, and Einstein images.

Fig. 2. Plot of the proposed filter magnitude spectral response jGxðyÞj
optimized for the Tree image.
the four images shown in Fig. 1 with their
respective mean values removed. The three images
averaged were the Tree, Face, and MRI images.
The DC image was intentionally left out of the
averaging process to evaluate the performance of
the average filter in a leave-one-out experiment.
The filter coefficients designed for the average
image are shown in Fig. 6 for several translation
ranges. When designing a filter using the natural
and average power spectra, we see that the
designed filters are not very different from the
image-specific optimal filters. The filters designed
for the natural and average image are shown in
Fig. 4 as the curve with plotted points. We see that
both natural and average filters are similar to the
optimized filters.
We note, however, that the relative indepen-

dence of the optimized filters on the image
spectrum depends on the range of translations
½�V ;V �. For example, Fig. 5 shows similar plots
as Fig. 4 for the same images using the ranges
defined by V ¼ 1 and 0.25. Here, we see that for
V ¼ 1, the filters exhibit increases variability
across the different images. Whereas, for the
smaller range V ¼ 0:25 all of the optimized filters
are practically identical. We have observed the
general behavior that for very large and very small
translations ranges the optimized filters vary only
slightly across different images. Around the range
of V ¼ :5 . . . 1:5, however, the filters tend to
(left) and jGyðyÞj (right) for different translation ranges ½�V ;V �
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gx (k) gy (k)

V = 0.5 -0.076 0.650 0 -0.650 0.076 0.151 0.235 0 -0.235 -0.151

V = 1.0 -0.031 0.558 0 -0.558 0.031 0.483 -0.405 0 0.405 -0.483

V = 1.5 0.500 -0.437 0 0.427 -0.500 0.558 -0.569 0 0.569 -0.558

V = 2.0 0.754 -0.941 0 0.941 -0.754 0.697 -0.853 0 0.853 -0.697

Fig. 3. Optimized filter coefficients for the Tree image.

Fig. 4. Plot of the proposed filter magnitude spectral response jG1ðy1Þj and jG2ðy2Þj for different images optimized assuming V ¼ 2.

3We have verified that the optimized filters also show

improved performance using the mean angular error perfor-

mance measure of [1].
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exhibit a wider degree of variability across
different images. What remains to be quantified
is the reduction in performance by using these
generic filters as opposed to the image-specific
filters (Fig. 6).
To give an example of the overall performance

improvement offered by our proposed filter design
methodology, we compare the registration error
over the range of translations vx; vy 2 ½�2; 2�. We
measure the overall performance by averaging the
magnitude of the registration error using for the
filter sets over a set of translations in this test
range. More specifically, the performance measure
is given by

Err ¼
1

NS

X
v2Sv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEðvÞ

p
, (30)

where Sv is the set of test translation points of
size NS. We choose this performance measure
as it shows overall performance error in units of
pixels.3 In this equation, the MSE term is defined
as

MSEðvÞ ¼ E½ðv̂� vÞTðv̂� vÞ�, (31)

where, in practice, the expectation is simulated as
the sample average taken over Monte Carlo (MC)
simulations for a particular value of v. If SNR ¼

1 (no noise added to the pair of images), then the
MSE depends only on the bias as MSEðvÞ ¼
kbðvÞk2. In a sense, the overall error is a measure of
the average magnitude error over a range of
translations. For our experiments, we assume that
the range of translations is uniformly sampled.
We first examine the zero-noise case where

SNR ¼ 1. Such a scenario corresponds to the
typical experimental setup examined in gradient-
based estimation literature where rarely is noise
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Fig. 5. Plot of proposed filter magnitude spectral response jG1ðy1Þj and jG2ðy2Þj for different images optimized assuming V ¼ 1 (top)

and V ¼ 0:25 (bottom).

gx (k) gy (k)

V =0.5 0.009 0.498 0 -0.498 -0.009 -0.049 0.603 0 -0.603 0.049

V =1.0 0.271 0.005 0 -0.005 -0.271 0.138 -0.249 0 -0.249 -0.138

V =1.5 0.587 -0.608 0 0.608 -0.587 0.455 -0.362 0 0.362 -0.455

V =2.0 0.939 -1.322 0 1.322 -0.939 0.802 -1.059 0 1.059 -0.802

Fig. 6. Optimized filter coefficients for the average image.
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Tree DC Sat. MRI Einstein

Central 0.111 0.162 0.145 0.121

Fleet 0.146 0.213 0.190 0.165

Simoncelli 0.069 0.103 0.094 0.072

Elad 0.112 0.074 0.056 0.063

Natural 0.3912 0.139 0.241 0.1265

Average 0.074 0.082 0.084 0.049

Optimized 0.050 0.046 0.059 0.043

Fig. 7. Overall registration error Err for the range ðvx; vyÞ 2

½�2; 2� � ½�2; 2�.
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added to the images prior to estimation [1,5].
Under such conditions, only the deterministic
estimator bias affects the overall estimator perfor-
mance. For our experiment, we uniformly sampled
the region ½�2; 2� � ½�2; 2� in increments of ½ 1

10
; 1
10
�

pixels to generate our test set (Sv) of translations.
The filters compared were the simple central
difference filter (Central), the 2nd order derivative
filter mentioned in [1] (Fleet), the pair of optimized
5-tap filters from [12] (Simoncelli), the set of filters
designed using the method of [5] (Elad) and the
generic filter designed using our proposed method
with the natural spectrum of (29). All of the filters
have 5 taps (2 coefficients) except the filters of [5]
which were 9 tap filters.4 Prior to estimation, the
images were pre-filtered either with the (7-tap) pre-
smoothing filter of (28) with r ¼

ffiffiffi
3

p
or the

specially tuned filters of [12,5]. We note that the
spectral cutoff of such a filter with r ¼

ffiffiffi
3

p
is very

similar to that of the binomial filter suggested in
[1]. The performances for each filter set are shown
in the table in Fig. 7 for the images in Fig. 1. The
optimized filter shows improved overall perfor-
mance for all images except for the MRI image,
where the optimized filter performance was only
slightly worse than that of Elad [5]. Recalling that
the Elad filters were 9-tap filters as opposed to the
5-tap optimized filters, we see that, in general, the
proposed filters improve average estimator perfor-
mance while realizing computational savings.
Furthermore, we found that when using larger
optimized filters, we can achieve even greater
improvement over the other filters. This improved
performance results from the increased degrees of
freedom of the optimization routine, where larger
filters allow for more precision in tuning the
frequency response of the filters. We shall show
this momentarily. Finally, we note that the generic
filter designed using the natural spectrum offer
inferior performance. The filters optimized for the
average image, however, offer moderate improve-
ment over the other standard filters. The improved
performance even extends to the DC image which
was left out of the average image. This suggests
that the average image has a much better
4Filters designed using the method of [5] with less than 9 taps

exhibited very poor performance.
representative spectrum than the model of the
natural image.
To visualize the effect of the optimized filters,

Fig. 8 shows the bias magnitude kbðvÞk for the
Tree image. The top graph shows the bias
magnitude when the [12] (Simoncelli) filters were
used (the second best performance). The bottom
graph shows the bias magnitude when using the
filters designed by minimizing (27).
From bias exhibited in Fig. 8, we see that the

bias magnitude primarily depends on the magni-
tude of the translation kvk. In other words, the
registration error is most severe along the line
vx ¼ vy. Because of this, when visually comparing
the performance of different filters, we show the
registration error over a range of translations
along the line vx ¼ vy. This representative slice,
reveals the important performance characteristics
of each filter set. For example, Fig. 9 compares the
bias magnitude kvk for all of the filters when
registering the Tree image. Here, we see that while
the bias magnitude of all the filters becomes severe
as the magnitude of the translation increases, the
bias for the optimizing filter is minimized. We
remind the reader that for certain ranges of
velocities, filters other than the optimized filters
may produce better estimates, but averaging over
the entire range of translations, the optimal filter is
superior. Fig. 9 also shows the performance when
a 9-tap optimized filter is used. Here, we see that
the larger filter shows slightly improved perfor-
mance over the 5-tap optimized filter. Again, both
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filters were optimized for the translation range
V ¼ 2.
To evaluate the performance of the optimized

filter in a more realistic scenario, we must compare
estimator performance in the presence of noise. To
this end, we conduct Monte Carlo (MC) simula-
tions at SNR ranging from about 10 dB through
60 dB.5 At each SNR, we measure the MSE in
estimating v along the line vx ¼ vy 2 ½0; 2� in
increments of 1

10
pixels by averaging the square

estimator error over 1000 MC runs. As before, we
5The SNR is measured as SNR ¼ 10 log10
s2

f

s2
where s2f is the

variance of the clean frame and s2 the variance of the noise.
use the same experimental setup used to produce
Fig. 9 in terms of filter sets. Here, we see that the
optimized filters continue to outperform the other
filters over the wide range of SNR. We note that
the performance does not vary widely until
relatively low SNR (12 dB), as the bias dominates
the MSE, for higher SNR as shown in [11].
Essentially, Fig. 10 shows that the optimized filters
retain their competitive performance over a wide
range of imaging SNR. We next examine similar
questions in the multiscale framework.

3.2. Filter design for multiscale iterative

registration

In practice, it has been noted that iterative
multiscale estimation provides significant improve-
ments in estimator accuracy [13]. The multiscale
approach decomposes the pair of images into
dyadic pyramids of lowpass filtered and down-
sampled images denoted zl

1;2ðm; nÞ where the
superscript l denotes the level of pyramid. This
creates an image pair at the top of the pyramid to
be the coarsest image of size M

2l by
N

2l . The original
M by N images lie at the bottom of the pyramid.
Iterative multiscale registration begins by esti-

mating translation between the image pair at the
coarsest scale (the top of the pyramid) using (25).
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Fig. 10. Overall estimation error Err at different SNR over

vx ¼ vy 2 ½0; 2� for the Tree image.
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After estimating the translation v̂
1 at the coarsest

level, the first image at the next finer resolution
level of the pyramid zl�1

1 ðm; nÞ is shifted according
to 2� the estimates v̂1 to create a new image pair
�zl�1
1;2 ðm; nÞ containing only the residual motion
(dominated by bias for high SNR) from the
previous estimate. Then, this residual motion v̂

r

is estimated from this image pair �zl�1
1;2 ðm; nÞ and an

original estimate is updated according to
v̂
2
¼ 2v̂1 þ v̂

r. Here, the factor of 2 accounts for
the effect of downsampling. This process repeats
while moving down the pyramid in a coarse to fine
fashion.
The multiscale approach improves estimator

performance for a variety of reasons. Most
importantly, the magnitude of the motion in the
downsampled images will necessarily be reduced
by the downsampling ratio, effectively ‘‘shrinking’’
v. Fig. 9 exhibits the tendency of the bias to grow
worse as the magnitude of the translation in-
creases. Thus, keeping the translation magnitude
‘‘artificially’’ small helps ensure that the estimate
has a better chance of having small bias. Finally, if
the bias of the initial (coarse) estimate is small,
then the bias inherent to each subsequent itera-
tions will shrink, converging to an estimate with
less error. Our experiments verify this behavior.
Traditionally, the same gradient filter has been

applied at each level of the pyramid. We demon-
strate that the performance and rate of conver-
gence of the multiscale method can be further
improved using optimally designed bias-minimiz-
ing filters. We suggest the novel approach of
designing different gradient filters for each level of
the pyramid where each filter is designed according
to the cost function (27). Optimizing gradient
filters in such a manner improves the convergence
rates of the iterative estimation by reducing the
residual motion left over from biased estimates
produced from earlier iterations. More impor-
tantly, minimizing estimator bias reduces the
possibility of the iterative estimation process from
diverging, thereby offering a more stable method
of estimation. Furthermore, since at every itera-
tion the residual motion to be estimated is made
smaller, we propose designing filters which assume
that the ranges of translation shrink as the
iterations proceed down the pyramid.
To show an example of such optimized filters for

the multiscale registration scenario, we design
gradient filters for a three level multiscale pyramid.
As in Section 3.1, we first examine the zero-noise
scenario (SNR ¼ 1) where only the bias
contributes to estimator MSE. The optimized
gradient filters were designed for the translation
ranges vx; vy 2 ½�2; 2�; ½�:5; :5�; ½�:2; :2� for each
of the three pyramid levels. Fig. 11 shows the
overall multiscale registration error over the
translation test set vx; vy 2 ½�6; 6� uniformly
sampled with a spacing of ½1

5
; 1
5
� pixels. Again, we

see that the optimized filters offer superior
performance for multiscale estimation in terms of
the registration error over a wide range of
translations.
As before, to visualize the estimator perfor-

mance in the multiscale setting, the registration
error for the Tree image is plotted in Fig. 12 along
the line vx ¼ vy 2 ½0; 6� for the zero-noise scenario.
While all of the estimators show significant
improvement over the non-multiscale iterative
approach, the bias-minimizing 5-tap filters offer
consistent improvement in estimator accuracy over
the entire range of translations. For practical
applications, the registration error is so small as to
be considered almost unbiased. Overall, we see
that principled filter design offers improvement for
multiscale image registration as well.
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Fig. 13. Overall multiscale estimation error Err at different

SNR over vx ¼ vy 2 ½0; 6� for the Tree image.

Tree DC Sat. MRI Einstein

Central 0.006 0.010 0.004 0.012

Fleet 8.14e-4 0.002 0.001 0.008

Simoncelli 0.012 0.018 0.011 0.020

Elad 0.010 0.006 0.001 0.015

Optimized 2.07e-4 5.57e-4 2.57e-4 0.006

Fig. 11. Overall registration error Err for multiscale estimation

over the range vx ¼ vy 2 ½�6; 6�.
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For the sake of completeness, we evaluate the
performance of the optimized filters at different
imaging SNR. As before, we perform MC simula-
tions at each SNR to measure the MSE of the
multiscale approach in estimating v along the line
vx ¼ vy 2 ½0; 6�, this time in increments of 1

2
pixels.

We use the same experimental setup as used before
to produce Fig. 10, using a three level multiscale
approach. Here, we see that the optimized filters
outperform the other filters for SNR greater than
about 25 dB. In fact, below this SNR, the
performance of the optimized filters for multiscale
estimation degrade substantially. In this SNR
regime, the MSE is no longer dominated by
estimator bias. It is apparent that at such SNRs,
minimizing bias is no longer a suitable objective
for improving overall performance in the sense of
MSE. We note, however, that SNR below 25 dB
represents a very noisy scenario not often encoun-
tered in typical video imaging and rarely, if ever,
addressed in the gradient-based motion estimation
literature (Fig. 13).
4. Conclusions and future work

In this paper, we have presented and exploited
the fundamental relationship between gradient-
based motion estimator bias and the choice of
gradient filters. We have proposed a cost function
which captures the registration performance for a
set of filters, and for a given image. We have
shown an efficient mechanism for using this cost
function to design bias-minimizing gradient filters
for image registration. We have experimentally
verified the utility of such optimized filters for
improving estimator performance and suggested a
means of incorporating the filter design process
into a multiscale estimation framework, providing
substantially improved estimation. Furthermore,
we showed that the proposed filter design method
can produce generic filters that offer performance
improvements almost as significant as the image-
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specific filters. Finally, we showed that the
proposed optimized filters offer improved overall
MSE performance at a wide range of imaging
SNRs.
The work presented here suggests several

possible directions for future work. For instance,
one could study the problem of gradient-based
image registration for higher order transforma-
tions such affine or projective. Another extension
might examine the possibility of designing filters
for dense optical flow field estimation where a
different motion vector is estimated for every pixel
in the image. Ideally, a practical algorithm would
result, allowing for dynamic gradient filter coeffi-
cient adjustments based on local spectral proper-
ties in the image to optimize estimation
performance. While the work of this paper has
focussed on the high SNR situation, further
investigation into the performance of such gradi-
ent-based estimators for low SNR scenarios would
certainly prove beneficial for certain applications.
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