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Statistical Performance Analysis of Super-Resolution
Dirk Robinson and Peyman Milanfar, Senior Member, IEEE

Abstract—Recently, there has been a great deal of work de-
veloping super-resolution algorithms for combining a set of low-
quality images to produce a set of higher quality images. Either
explicitly or implicitly, such algorithms must perform the joint
task of registering and fusing the low-quality image data. While
many such algorithms have been proposed, very little work has
addressed the performance bounds for such problems. In this
paper, we analyze the performance limits from statistical first
principles using Cramér–Rao inequalities. Such analysis offers
insight into the fundamental super-resolution performance bot-
tlenecks as they relate to the subproblems of image registration,
reconstruction, and image restoration.

Index Terms—Cramer–Rao (CR) bounds, Fisher information,
image reconstruction, image restoration, performance limits,
super-resolution.

I. INTRODUCTION

THE last decade has seen a great deal of work in the
development of algorithms addressing the problem of

super-resolution. We refer the interested reader to [1] for a
broad review of the work in this area. In general, the problem
of super-resolution can be expressed as that of combining a set
of aliased, noisy, low-resolution, blurry images to produce a
higher resolution image or image sequence. With some simpli-
fying assumptions, the estimation problem is typically divided
into the tasks of first registering the low-resolution images with
respect to the coordinate system of the desired high-resolution
image, followed by a reconstruction or fusion of the low-
resolution data combined with deblurring and interpolation, to
produce the final high-resolution image. Historically, most re-
searchers in super-resolution have tended to focus on the latter
reconstruction/restoration stages assuming that generic image
registration algorithms could be trusted to produce estimates
with a high level of accuracy. Relatively recently, researchers
have noted the importance of solving the estimation problems
of image registration and super-resolution in a joint fashion
[2]–[4]. In this paper, we study this relationship between the
task of image registration and image reconstruction.

Specifically, we analyze the joint problem of image regis-
tration and super-resolution (high-resolution image reconstruc-
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tion/restoration) in the context of fundamental statistical perfor-
mance limits. Little work has addressed performance limits for
the problem of super-resolution. Relevant works are [5] and [6].
Both works study the problem of super-resolution from an al-
gebraic perspective reducing all super-resolution algorithms to
that of solving large systems of linear equations. Essentially, [5]
studies the numerical conditioning of the linear system of equa-
tions characterizing the forward measurement model. In [5], it is
assumed that the image registration parameters are known per-
fectly. In some sense, the work has little to do with the perfor-
mance limits of super-resolution and more to do with quanti-
fying the ill posedness of image deconvolution or deblurring.
That work relates the tendency of the system of linear equa-
tions to become more ill posed as the downsampling factor in-
creases. In this paper, we show how such analysis makes im-
plicit assumptions which lead to an incomplete understanding
of the super-resolution problem. Similar assumptions are made
in [6] to derive lower bounds on resolution enhancement per-
formance. In [6], performance limits are derived based on in-
equalities for matrix perturbations. While some of the matrix
perturbation analysis incorporates the notion of uncertainty as-
sociated with image registration, the entire analysis continues to
assume that image registration is an entirely independent step
in the super-resolution process. One observation noted in [6] is
that, for most imaging applications, the enhancement factor of
1.6 is “unbreakable.” In this paper, we explore the conditions
under which resolution enhancement factors as great as 5 are
achieved by some super-resolution algorithms [1].

In this paper, we study the performance limits for super-
resolution from a statistical perspective, enabling us to bound
estimator performance in terms of mean-square error (MSE)
using Cramér–Rao (CR) inequalities. To do so, we frame the
super-resolution problem as a parametric estimation problem
where MSE becomes a useful measure of performance. Fur-
thermore, we study the performance limits for super-resolution
in its entirety, which includes analysis of both the image
registration and reconstruction/restoration problems. We note
that the CR inequality has been used recently to study the
performance limits associated with the related problem of
motion-free superresolution [7], whereby a higher resolution
image is reconstructed from multiple frames, each having a
different blurring point-spread function (PSF).

Using CR inequalities, we explore super-resolution per-
formance limits as they relate to various imaging system
parameters such as the downsampling factor, signal-to-noise
ratio (SNR), and the PSF. In addition, our analysis exposes the
signal-dependent aspect of performance, such as the class of
images under observation, as well as the set of motion vectors
observed in the low-resolution data. We shed light on important
application-level questions regarding the necessary number
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of measurement frames and prior information necessary to
achieve a given level of performance.

This paper is organized as follows. In Section II, we present
a parametric model for super-resolution and introduce the CR
inequality with which we can bound the MSE for large classes
of estimators. In Section III, we derive the information matrices
for super-resolution as they relate to the observed data and prior
information models. We reformulate the problem in the Fourier
domain as a means to efficiently compute the CR bounds. In
Section IV, we analyze the performance bounds for a variety of
scenarios offering insight into the inherent challenges and trade-
offs in super-resolution. Finally, in Section V, we summarize the
contributions of this paper and suggest future directions.

II. CR BOUNDS FOR SUPER-RESOLUTION

For the general super-resolution problem, it is assumed that
one is given a set of low-resolution images which consist of
noisy, warped, blurred, and downsampled versions of an un-
known high-resolution image. The simplest, and perhaps most
commonly utilized, warping model assumes that the motion be-
tween frames is captured by a global shift or a translation [1]. To
maintain focus and gain intuition, we concentrate on the case of
translational motion. For such an assumption, we represent the
forward process by a linear function of the unknown image as

(1)

The vectors represent the samples of the th measured image
scanned in some fashion to form -dimensional vectors. Like-
wise, represents the unknown desired high-resolution image
similarly scanned to form a -dimensional vector. The matrix

captures the downsampling operation, the blurring oper-
ation due to the imaging system PSF, and the transla-
tional motion operation with being the un-
known translation parameters for a particular frame. Finally,
represents the vector of additive white Gaussian measurement
noise with variance .

For the purpose of this paper, we make several assumptions
about the forward process. First, we assume the unknown high-
resolution image to be reconstructed is a periodic bandlimited
image sampled above the Nyquist rate. From this assumption,
the matrix (which we will refer to as ) representing the
translational shift of the image , reflects a convolution opera-
tion with a shifted two-dimensional (2-D) sinc function. Such a
motion formulation allows arbitrary, possibly noninteger shifts.
The matrix has the property that where is
the identity matrix. In other words, shifting the image followed
by a shift in the reverse direction does not change the pixel
values of the high-resolution image. Furthermore, we note that
when the motion vector reflects integer shifts, then the ma-
trix is simply a permutation of the identity matrix . Second,
we assume that the blurring operation, and, hence, the imaging
system’s PSF is symmetric and spatially invariant and can be
represented by a convolution. From this assumption, we can rep-
resent the blurring operator with a block circulant matrix.1

1We leave the generalization to more complicated and possibly unknown
PSFs for future research.

Third, we assume that the downsampling operation is based on
a known downsampling factor where .
For our purposes, we assume that the downsampling factor
is an integer. Thus, is an by matrix representing the
downsampling operation. Finally, in our formulation, we sup-
pose that low-resolution measured images are available.
Without loss of generality, we assume that the initial image
dictates the coordinate system so that , and, hence, we
only have to estimate unknown translation vectors during
the super-resolution process for a given set of low-reso-
lution frames.

In what follows, we characterize the fundamental perfor-
mance limits for super-resolution in terms of CR bounds.
Essentially, the CR bounds characterize, from an information
theoretic standpoint, the “difficulty” with which a set of pa-
rameters can be estimated by examining the given model [8].
In general, the CR inequalities provide lower bounds on the
MSE for a large class of estimators of an unknown parameter
vector from a given set of data represented by the vector .
The CR inequalities used in this paper are of the form

(2)

where the left-hand side error correlation matrix is called the
MSE matrix since the diagonal terms of rep-
resent the MSE for the individual parameter components. The
right-hand side is referred to as the CR bound and the matrix

is called the information matrix. The inequality indicates that
the difference between the MSE (left side) and the CR bound
(right side) will be a positive semidefinite matrix. In this paper,
we focus on two estimation regimes. In the first, we study the
performance limits of conditional estimation for a particular
under the assumption that no prior information is available about

. In the second, we study the performance limits when is an
unknown parameter with a known prior distribution.

In the case of conditional estimation, the CR bound limits the
performance for any unbiased estimator. For instance, the class
of maximum likelihood (ML) estimators fall into this category.
In this regime, the CR bound limits performance in a conditional
MSE sense. The conditional CR bound is given by

(3)

The information matrix in this case is called the Fisher informa-
tion matrix (FIM) and is defined as

(4)

where is the log-likelihood of the measured data for a
given value of the unknown parameter . In this case, the Fisher
information matrix is a function of the unknown parameter .
As we shall see, the bound in this form offers us intuition on the
performance in estimating a particular signal.

In the second regime, we use a Bayesian CR bound to study
the performance in estimating an unknown parameter coming
from a known distribution. In this case, the inequality (3) bounds
the MSE over the joint distribution of the parameter and noise

(5)
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For a given log-prior distribution on the unknown parameter
, the information matrix in the Bayesian regime is given by

(6)

We use the subscript to denote information arising from the
measured data and to denote the information from the prior
[9]. We see that in the Bayesian case, the data information ma-
trix is the expected value of the Fisher information matrix over
parameter prior distribution. In this case, the total information
matrix offers a bound on the MSE over the class of estima-
tors which are weakly biased as defined in [9], [10]. Maximum
a posteriori (MAP) estimators are a natural class of estimators
falling into this category [9].

In certain operating scenarios, the FIM of (4) can be very
poorly conditioned or even rank deficient. In such situations,
prior knowledge about the unknown parameter is essential to
solving the problem. Essentially, it is this prior knowledge,
learned from a set of training instances, that the authors of [5]
use to “break” the limits of super-resolution. In fact, the CR
bound offers a convenient mechanism for understanding the
utility of such prior knowledge while still offering a funda-
mental performance limit. In other words, prior information
does not allow one to break the performance limits but, in-
stead, makes the fundamental limit more favorable. Indeed,
an interesting related question, which we do not treat here,
is “which makes the overall performance limits most
favorable?” That is, what is the most informative prior for a
given observation model.

Focusing the discussion now on the super-resolution estima-
tion problem, we have two sets of unknown parameters in the
model; namely, the unknown high-resolution image and the
set of unknown motion vectors . To simplify the notation,
we will represent the entire set of unknown motion vectors as

. As such, the unknown param-
eter vector is given by . Depending on the ap-
plication, it is natural to distinguish the problem of estimating
the translational motion parameters from the estimation of the
image signal . For instance, in super-resolution, the motion pa-
rameters represent what are known as unknown nuisance pa-
rameters [9]. In other words, estimates of the motion parameters
are necessary to reconstruct the image but otherwise have no
intrinsic importance. Because of this dichotomy, we analyze our
information matrix using the following partitioned structure:

(7)

where the matrix captures the available information solely
pertaining to the unknown image the information about
the motion parameters , and reflects the information inter-
correlation between the two sets of unknown parameters. Were

, then the problem of image reconstruction (estimation
of ) could be decoupled from the problem of image registration
without any loss in performance. Since this is, in general, not

the case, we argue that the problems of registration and image
reconstruction must be solved in a joint fashion.2

Although the estimation must be performed jointly, using the
block decomposition of (7), we can separate our performance
analysis for the two estimation problems using the block matrix
inversion principle [11]. Using this principle, the CR bound is
given by

(8)

where the matrices are the Schur information complements
are

(9)

(10)

In this block-partitioned formulation, we see a certain symmetry
of the two estimation problems. At first glance, we observe that
there is a net loss in information due to the interdependence of
the two estimation problems because the second terms in the
right-hand sides of (9) and (10) are positive semidefinite ma-
trices. The information matrices capture the relationship be-
tween small perturbations of the unknown signal parameters
and the probability distribution of the measured data. As such,
the net loss of information reflects the ambiguity arising from a
small perturbation in either sets of signal parameters producing
the same perturbation in the distribution. Simply put, such a
structure captures the (in)ability to distinguish variations in the
measured data as depending on one parameter set versus the
other.3

Typically, for the problem of super-resolution, we are inter-
ested in a scalar performance measure reflecting the goal of
restoring an entire image . A natural global measure of per-
formance is given by

(11)

which shows the root MSE performance over the entire image
in units of gray levels. The corresponding scalar CR inequality
over the image is defined using the trace of
the Schur information complement

(12)

This performance measure is in terms of the root average MSE
per pixel (in units of gray levels). Such a performance bound
has been justified and used in the past [13].

One important property of the CR bounds we will exploit
momentarily is the bounds’ invariance with respect to a linear
transformation of the unknown parameters. Using the property
that the circulant matrices and commute, a natural linear

2An interesting question worth noting is how, by appropriate transformation
of the problem, we might block diagonalize the FIM. While this would yield
a decoupling of the problem, the resulting parameters to be estimated would
not longer correspond to simply the high-resolution image pixels and motion
vectors.

3The loss in information can be explained from a geometric point of view as
the orthogonal projection of the information content about one set of unknown
parameters onto the linear subspace encompassing the information about the
other set of parameters [12].
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transformation of the unknown image is given by
which maps the unknown high-resolution image into a blurry
version of the high-resolution image . The modified signal
model becomes

(13)

Such a transformation is commonly used in developing fast se-
quential super-resolution algorithms [1], [14]. In both works, the
transformation was used to break the problem of super-resolu-
tion into the two subproblems of image reconstruction or fusion
(estimating from the data ) and image restoration (esti-
mating from ). Such an approach is justified by the invariance
property of the ML and MAP estimators for linear transforma-
tions [8]. Because this transformation is linear, it can be shown
that the Schur information complements for and are related
according to

(14)

The linearity of the transformation permits us to derive the CR
bound in terms of the unknown parameters , essentially ig-
noring the PSF for the time being. This distinction is important
because it allows us to distinguish between the performance
limits associated with the subproblems of image registration
and reconstruction with those of image restoration. In [5]
and [6], this distinction is ignored by inextricably linking the
imaging system’s PSF with the downsampling factor . For
much of this paper, we focus on the joint task of estimating
and since the final step of image restoration can be studied
somewhat independently. In what follows, we use

to represent the scalar CR bound in
estimating the blurred image .

Finally, to address the utility of the CR bound in studying gen-
eral estimation problems, we note that the overall usefulness of a
performance limit depends on its ability not only to limit, to but
predict, actual estimator performance. For example, we might
trivially bound MSE performance as . While such
a bound is provably correct, it offers no useful information about
the estimation problem. The CR bounds, however, are known to
be asymptotically attainable under certain conditions [9]. While
there is no guarantee that such estimators are realizable, their
existence does offer hope for predicting performance for a wide
class of estimators.

III. INFORMATION MATRICES FOR SUPER-RESOLUTION

In this section, we derive the information matrices for both
the conditional and the Bayesian formulation of the super-
resolution problem To simplify the presentation, we study the
one-dimensional (1-D) version of the problem. Where appli-
cable, we denote the unknown motion for the 1-D case by the
scalar translation parameter . We show in Appendix I that the
extension to 2-D is straightforward.

We note that much of the analysis is simplified by examining
the problem in the Fourier domain. Furthermore, many of the
matrices are diagonalized by the discrete Fourier transform, al-
lowing very efficient numerical implementation. In fact, for the
2-D case, the size of the matrices would necessarily preclude
numerical calculation of the bounds were it not for the sparsity

associated with the matrices in the Fourier domain. To differen-
tiate between the Fourier and spatial domains, we use a tilde as
in to indicate vectors and matrices in the Fourier domain.

Before we begin, we must address the problem of complex
notation associated with the Fourier domain. Because the un-
known image is real, the Fourier transform possesses a sym-
metry about the DC component in the frequency domain [15],
[16]. As such, we would need to incorporate a symmetry con-
straint on the unknown image in the frequency domain. In-
stead of employing a constrained CR bound, we rewrite the un-
known frequency domain vector in the following fashion. We
separate the real and imaginary components for the positive spa-
tial frequencies and stack them in a vector as in

(15)

where is the DFT of the sampled signal (the
components of ) and for the real portion and

for the imaginary portion. Here, the
terms indicate the spatial frequencies comprising the signal .
Using this separated form for the spectral signal, the dimensions
of the spectral vectors are equal to those of their spatial
counterparts .

Under our proposed separated spectral representation, the
convolution operators and are block diagonalized in the
frequency domain. Assuming that the PSF is shift invariant, the
blur matrix in the Fourier domain is given by

(16)

The function is commonly referred to as the optical
transfer function (OTF) of the imaging system. We make the
additional assumption that the PSF is symmetric whereby

. In keeping with the characterization of
as a low-pass filter (LPF), we assume that the filter has unit
gain at D.C. , and that, for each spatial frequency,

.
Correspondingly, the shift matrix is given by

(17)

Finally, the downsampling matrix has the following structure

where

else
(18)

else
(19)

This structure reflects the spectral aliasing or folding due to the
downsampling operation. Fig. 1 shows an example graphical
representation of the matrix for . We note that the
upsampling operation ( in the time domain) is denoted
in the Fourier domain and is defined as . Such a
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Fig. 1. Example image of the downsampling matrix ~D forM = 3 showing
the spectral folding of the frequency content due to downsampling.

definition is needed to ensure that is an idempotent oper-
ator just as is in the spatial domain. Given the structure
associated with these matrices, we now proceed to derive the
FIM.

A. Fisher Information Matrix

We begin with the derivation of the FIM due to the observed
data used to construct the conditional CR bound. Using the in-
variance property, we only derive the FIM for the transformed
model of (13). The conditional log-likelihood function for the
observed data is given by

(20)

To derive the data FIM, we must compute the partial derivatives
of the expected conditional log-likelihood function as follows:

(21)

(22)

(23)

The matrix arises from the fact that

(24)

The matrix , therefore, corresponds to a Fourier representa-
tion of a derivative operator in the spatial domain.

To simplify the representation, we define the following terms.
First, we define , which is to say that represents
the sampled first derivative of the signal . Second, we define

. We note has the property of being a
projection operator. The matrix can be expressed as a linear
combination of matrices as

(25)

where . The term can be thought of as
the sampling phase offset between the first and the th mea-
sured low-resolution image. Meanwhile, the matrices and

are all symmetric matrices with zeros along the diagonal,
representing the aliased portions of the folded spectrum due to
the downsampling. As we see, the information content present
in the signal is more directly dependent on the sampling phase
offset as opposed to the translation . In other words, the
FIM is a periodic function of each of the translations with
a period of pixels. This reflects the periodicity assumption
about the original signal .

We observe that the FIM can be expressed as

...
. . .

(26)

The derivation of these terms for the 2-D case can be found
in Appendix I. From this definition of the FIM, we obtain the
conditional Schur information complements

(27)

(28)

These matrices are used to compute the conditional form of the
scalar CR bound in Section IV-A–D.

B. Bayesian Information Matrices

In some instances, one may have certain prior information
about the unknown parameters of interest. In our case, we as-
sume that that the superresolution practitioner has prior infor-
mation about the signal of interest , but has no information
(flat prior) about the unknown motion parameters . As we will
show in the following section, such prior information is often
critical during the image restoration phase of super-resolution.

Perhaps the most common form of prior information is a
Gaussian distribution over the space of unknown images [2],
[14]. Thus, the unknown image comes from the distribution

, where is the mean image (typically
zero) with a covariance and is a parameter capturing the
overall confidence in the prior knowledge. In an algorithmic
setting, is often used as a tuning parameter to control the
strength of the prior information and, hence, its effect on the
final estimate.
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Typically, the image signal is assumed to have a diagonal co-
variance matrix (reflecting the stationarity of the random
process) of the form

(29)

where is the power spectral density (the Fourier trans-
form of the image autocorrelation function) for the signal

. Prior information of this sort stems from some physical
property relating to the spatial smoothness of the signal. In
the Fourier domain, a natural measure of smoothness is given
by where defines the global smoothness
of the signal [16].4 As one would expect, prior information
about the unknown image naturally offers information
about . Specifically, we see that a Gaussian prior on corre-
sponds to a Gaussian prior on as

. For the remainder of the paper,
we assume that the mean of the signal is zero . This
form of prior information is commonly utilized in the literature
motivates the regularization penalty term in MAP estimators.

Typically, iterative super-resolution algorithms operating in
the spatial domain use a finite-impulse response (FIR) filter
to approximate . The most common filter used to regu-
larize the image estimates is the Laplacian filter whose 1-D
analog is given by which is the first-order approx-
imation of when . In practice, higher order fil-
ters can be, but rarely are, used to more effectively incorporate
prior information. Throughout what follows, we assume that the
Laplacian filter approximation is used wherever prior informa-
tion is assumed.

This type of prior information is generic in the sense that it
can be applied to a large class of images. Unfortunately, the
generality of such prior information ultimately reduces its ef-
fectiveness in improving performance. Ideally, the practitioner
of super-resolution may be able to ascertain more precise infor-
mation for a particular application. In such situations, statistical
properties about a certain class of images can be learned from
large data sets providing very useful information. For instance,
the authors of [5], [18], and [19] show examples of incorporating
learning-based priors into super-resolution for different classes
of images.

Since the log of the Gaussian prior distribution is

(30)

the prior information matrix term relating to the image is

(31)

In other words, the information depends only on the covariance
term . Finally, the prior information matrix is given by

(32)

4For natural images, the smoothness is modeled by � = 2. The foundations
of this prior information can be traced to physical properties inherent to natural
scenes [17].

Again, the off diagonal terms are zero since there is a nonin-
formative prior on the motion parameters. We observe that the
prior information matrix offers more information for the higher
spatial frequencies helping to remedy the information lost due
to the blurring degradation of the imaging system.

To compute the Bayesian data information matrix , we
simply take the expected value of the FIM of (26). Assuming
that the signal is zero-mean, the elements of are

(33)

(34)

(35)

(36)

(37)

(38)

The last step assumes a diagonal covariance matrix of the
form shown in (29). Finally, the Bayesian data information ma-
trix is

(39)

Thus, the Schur information complements for the Bayesian in-
formation matrix are

(40)

(41)

These matrices are used to construct the scalar CR bound used
in Section IV-E.

It is interesting to note that in the Bayesian case, increasing
the variance of the signal distribution (decreasing ), actually
improves the bound on registration. In other words, an image
signal with greater variation has more texture with which to reg-
ister the images.

IV. ANALYSIS OF THE CR BOUNDS

In this section, we explore the various aspects of the CR
bounds as they relate to super-resolution performance. Specifi-
cally, we study the relationship between image content, noise
power, the imaging system’s PSF, and the collection of mo-
tion vectors. To illuminate the complex nature of this relation-
ship, we study the problem in the context of a series of ques-
tions regarding individual parameters. We then evaluate the CR
bounds numerically restricting our attention to a single param-
eter of interest at a time to maintain clarity of presentation. In
Section IV-A–C, we study the conditional CR bounds revealing
the interplay between the motion vectors and image recon-
struction. In Section IV-D, we study the subsequent problem
of restoring the high-resolution image from the reconstructed
image. In each of these sections, we encounter conditions in
which the FIM becomes singular, and, hence, prior information
must be applied to the estimation problem. In Section IV-E, we
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study the performance bound improvements resulting from in-
corporating prior information into a Bayesian estimation frame-
work. Finally, in Section IV-F, we compare the actual perfor-
mance of a 2-D estimator with the 2-D conditional CR bound.

A. What Are Good Sets of Motion Vectors?

The key component enabling the entire super-resolution
process is the motion between the observed low-resolution
images. In this section, we study the conditional performance
limit on super-resolution as it relates to the set of motion vectors

or, correspondingly, the set of sampling offsets . To
do so, we study a commonly used optimistic lower bound on
image reconstruction performance which assumes the motion
vectors are known exactly. Then, we find a set of sampling
offsets which is optimal with respect to this weak bound.

Using the inverse of the Schur information complement (27),
we observe that the MSE is bounded by

(42)

The first term on the right-hand side relates to the image recon-
struction performance bound when the estimator has complete
knowledge of the motion. The second term relates to the un-
certainty introduced by having to estimate the unknown motion
vectors. From this, we construct a weak lower bound on recon-
struction performance by ignoring the second term giving

(43)

Even as a weak lower bound, much can be learned about the
super-resolution problem through analysis of .

The matrix has the general interpretation of representing
the amount of observed data at each high-resolution pixel. We
use the term amount rather than the number of observations be-
cause when the sampling offset falls in between two grid points
(i.e., not an integer), the pixel measurement is spread across
the local pixels. By grid points, we refer to the common ter-
minology used to describe the , (or for 2-D), sample
locations corresponding to integer shifts of the high-resolution
image [14]. The condition number of is related to the perfor-
mance of signal reconstruction from interlaced sampling. This
problem has been well studied in the signal processing commu-
nity. For instance, [20] analyzes the stability of reconstruction
for a given set of sampling offsets. In [20] it was shown that for
certain collections of sampling offsets, the condition number for

, and, hence, could grow quite large. Furthermore,
the authors show that the ideal sampling offsets corresponds to
translations that are uniformly distributed on the high-resolution
grid.

We now introduce the notion of evenly spaced motion vector
sets and show the general property that is minimized
when is an evenly spaced motion vector set. Furthermore, we
see that the set of integer translations, observed to be optimal in
[20], is but one example in the universe of evenly spaced motion
vector sets. To define the set of evenly spaced sampling offsets,
we first define the unit vector con-
structed for each shift in . A set is defined as being evenly
spaced if the sum of these unit vectors is zero, or .

For example, if , then both and
are examples evenly spaced motion vector sets.

To see the optimality of evenly spaced motion vector sets with
respect to , we rely on the inequality

(44)

which applies to all symmetric matrices [21]. From (26), we
see that . Since every term along the
diagonal of the -dimensional matrix is ,
we have

(45)

which is independent of . We now show that satisfies
the equality condition of (44) when is evenly spaced, thereby
proving that is optimized.

Using (25), we note that, when is evenly spaced, the matrix
is given by

(46)

where the trigonometric terms cancel because the sampling off-
sets are evenly spaced. Thus, the trace of the -dimen-
sional matrix is equal to satisfying
the equality of (44).

We have shown that a set of evenly spaced motion vectors
are ideal from an image reconstruction perspective assuming the
motions are known perfectly. This satisfies the intuition that the
low-resolution images should adequately sample the high-reso-
lution image. In what follows, we show that a subset of evenly
spaced motion sets, we call equally spaced motion sets, defined
by , offer nearly optimal performance
bound characteristics with respect to the conditional CR bound.

B. How Is Performance Affected by the Need to Estimate Both
and

We now study the conditional performance bound for the
real scenario when the motion vectors must be estimated
from the low-resolution image data. To do so, we must ana-
lyze the degradation in performance due to the second term

in (42). At this point, we resort to numer-
ical evaluation of the CR bound.

In the previous section, we showed the optimality of equally
spaced sampling offsets for image reconstruction when the mo-
tion vectors are known. It was shown that the weak perfor-
mance bound for such a scenario was given by

. One such clue as to the weakness of this
bound relates to its independence of the image size . As one
would expect, when performing image registration, the size of
the image plays a crucial role in registration performance.
To give an idea of the overall degradation in performance due to
uncertainty about the motion parameters, we compare the nu-
merical evaluation of the conditional CR bound (when
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Fig. 2. Shown is a plot of the 150-pixel experimental test signal used throughout our conditional 1-D CRB simulations. (Left) The signal is shown in the spatial
domain and (right) in the separated frequency domain.

motion vectors must be estimated) with the optimistic bound
. This comparison reveals the loss in performance that

can be expected when the motion vectors must be estimated
from the observed data. We evaluate the complete bound ,
using cropped versions of the test signal shown in Fig. 2 to ex-
plore the effect of signal size on reconstruction performance.
The signal was truncated to the first 60, 90, and 120 pixels of
the original 150-pixel signal. Fig. 3 compares these two perfor-
mance bounds for equally spaced motions
assuming .

We see that the performance loss due to registration un-
certainty is quite significant, especially for smaller signals.
As signals increase in size, the performance improves up to a
saturation point at which we observe the unavoidable loss in
performance resulting from the need to estimate the motion
vectors. Relatively speaking, a conservative expected perfor-
mance degradation ranges from 10% to 25%, as the number
of available frames increase. In other words, when a
large number of frames are observed, using the simple bound
which assumes motions are known can be overly optimistic by
as much as 25%.

We now show that, in general, the CR bound has a signal-
dependent, spatially varying character which depends on two
terms in (42). First, when the set of sampling offsets deviate
from the equally spaced condition, the per-pixel variance bound
takes on a periodic structure indicative of the amount of mea-
surement at the high-resolution grid points. This component
is independent of the signal and depends only on the set of
sampling offsets through the first term . Second, the
term captures the uncertainty associated
with the estimation of the unknown sampling offsets. This
term shows that reconstruction performance is degraded in
regions with large spatial derivatives. A simple example of
such behavior is derived for in Appendix III, where it
is shown that, regardless of , the second term is given by

(47)

In other words, the variance bound in estimating a particular
pixel depends on that pixel’s relative gradient magnitude or
texture.

Fig. 3. Shown are the numerically computed conditional reconstruction CR
BoundT (~z) for cropped versions of (symbols) the test signal and (solid line) the
optimistic lower bound T (~z) plotted as a function of the number of frames
K+1. The cropped signals are truncated to the first 60, 90, 120, and 150 pixels
of the test signal. The bounds are computed for equally spaced motions v =
(kM)=(K + 1);M = 4; and � = 1. (Color version available online at
http://ieeexplore.ieee.org.)

As an example, the graph of Fig. 4 shows the spatial do-
main per-pixel variance bound for estimating the gray levels of
the test signal. The bound was calculated assuming

measured low-resolution images with the set of translations
(not evenly spaced), a downsampling factor

of , and a noise power of . Here, we show
the bound in the spatial domain to simplify its interpretability.
The per-pixel variance bound has the two distinct character-
istics. First, we see the sawtooth-like periodic function stem-
ming from . Second, we observe the spikes in variance
bound resulting from the term. Note that the
spikes in the bound correspond to the locations of the “edges”
or high-frequency detail in the original spatial signal . Essen-
tially, this reflects the intuitive observation that errors in motion
estimation will be most detrimental to image reconstruction in
highly textured or high spatial frequency areas. For example,
poor registration during super-resolution restoration causes an
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Fig. 4. Shown are the square root of the terms along the diagonal of S
representing the conditional RMSE bound for each pixel location of the test
signal. The bound was computed assuming a downsampling factorM = 3;K+
1 = 4 low-resolution frames with shifts of v = [0; 0:5; 1; 2] ; and � = 1.
We observe that the pixel performance varies according to the sampling offsets
as well as the edges in the signal.

edge-like feature to be distorted, exhibiting sawtooth type ar-
tifacts [1], [22]. This presents an interesting tradeoff in that
the very image content which is easiest to register (highly tex-
tured) is also the content which is most prone to errors in the
reconstruction/restoration.

In some cases, the need to produce unbiased estimates of the
motion vectors and the image in joint fashion makes the
problem drastically harder as seen by a degradation of the per-
formance bound. To see an example of this behavior, we need
look no further than the canonical example presented in the
super-resolution literature. Perhaps the most common experi-
mental setup in the super-resolution literature is that of a blurry
image , downsampling by a factor with integer motions

to produce low-resolution
frames [14]. While this was shown earlier to be favorable from
a signal reconstruction perspective (assuming the translations
were known) [20], when the translations must also be estimated
from the data, the FIM is, in fact, singular. We show this in Ap-
pendix II. In such situations, an unbiased estimator has insuf-
ficient information to both estimate the motion parameters and
reconstruct the image. When the FIM is singular, any unbiased
estimator of the set of translations will necessarily have infi-
nite variance, or any estimator with finite variance must contain
bias [23]. This example clearly shows another weakness in using
only (known-motion case) to predict performance in
super-resolution.

C. How Do the Downsampling Factor , and the Number of
Frames , Affect Performance?

As we have just shown, the conditional CR bound for
the joint estimation problem can be dramatically worse than
the optimistic bound . Because of the complexity of
the CR bound’s dependence on the set of motion vectors , we
now resort to Monte Carlo (MC) simulations to understand the
CR bound as it relates to the downsampling factor and the
number of observed frames .

We compute the conditional CR bound for the signal
in Fig. 2 with randomly drawn translation sets from a uniform

Fig. 5. Each scatter point represents the numerically computed conditional
CR bound T (~z) for a randomly selected set of translations v from a uniform
distribution over the range [0;M ] . The reconstruction bound was computed
for downsampling factors of M = 2; 3; 4; and a noise power of � = 1. The
solid lines represent the average value of T (~z) over the 1000 random sets of
motion vectors drawn for each value of K + 1 and the dashed lines show the
value of T (~z) for equally spaced translations. (Color version available online at
http://ieeexplore.ieee.org.)

distribution over . For each value of was evalu-
ated numerically for each of 1000 random sets of motion vectors

. Again, the noise power is . Fig. 5 shows the computed
performance bound for these randomly drawn translations
as the cloud of points. The solid line indicates the average of

over the random set for each value of . The values of
are plotted on a logarithmic scale due to their high degree

of variability. As a point of reference, the dashed lines indicate
the bound for the equally spaced translations. Fig. 5 of-
fers some insight into the functional relationship between
and . For instance, it shows that as the number of frames in-
creases, the variability of diminishes quite substantially.
To summarize, if given a large enough collection of images with
(uniformly) random offsets, the performance bound can be ex-
pected to be very close to the bound for equally spaced sampling
offsets.

Another way to interpret the data shown in Fig. 5 is to plot the
number of frames necessary to achieve a specific overall RMSE
bound. To visualize the CR bound in this fashion, we choose
a target value for the overall RMSE bound which we denote

. Then, we ask the following question: “As a function
of the number of frames , what percentage of the values of

for the randomly chosen translations are at least as good
as ?” Such a value relates to the probability that the CR
bound, and, hence, the predicted performance, will fall below
a target RMSE for uniformly random motions. Because the di-
mensions of the signal depend on , we would compare per-
formance bound curves for a normalized value of . As such,
we plot our curves as a function of . Fig. 6 shows
the numerically evaluated probability that is greater than
the target values and . Here, we
see that there is an expected performance degradation (as indi-
cated by the required amount of image data) associated with the



1422 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 6, JUNE 2006

Fig. 6. Curves indicate the probability that the CR bound T (~z) is less
than the target RMSE performance of (thick lines) T (~z) = 1 and (thin
lines) T (~z) = 1=2 as a function of the number of frames normalized
by the downsampling factor (K + 1)=(M). The probabilities are computed
using 1000 randomly drawn motion vectors for each point in the probability
curves. The noise power is � = 1. (Color version available online at
http://ieeexplore.ieee.org.)

downsampling factor . Furthermore, this degradation is wors-
ened as higher quality estimates are required.

Plots such as Fig. 6 offer the practitioner of super-resolution
informative guidelines for choosing a particular resolution
enhancement factor and number of frames to satisfy a
particular target reconstruction MSE. For example, in [24], the
idea was presented wherein a collection of images measuring
a particular signal might be downsampled prior to image com-
pression encoding with the understanding that super-resolution
would be performed in a decoding step. The downsampling
operation minimizes the bandwidth needed to transmit multiple
measurements of a signal. For larger downsampling factors,
however, greater number of frames are needed to achieve a
target super-resolution performance. Plots such as Fig. 6 could
help guide the choice of this downsampling ratio for a given
set of constraints on channel bandwidth and computational
resources.

D. How Does the Imaging System’s PSF Affect Performance?

In this section, we characterize the conditional performance
bound associated with restoring the signal from an estimate
of the blurry signal . This stage of the estimation problem re-
lates to the well-known challenge of image deconvolution/de-
blurring. We will show that image restoration can represent the
most difficult aspect of super-resolution from the perspective of
performance bounds.

As we mentioned earlier, the CR bounds for image restoration
depend on the reconstruction bounds as . Imme-
diately, we see the instability of the restoration problem due to
the poor conditioning of the operator. The matrix may be
singular if there exists zero crossings in the OTF. In practice,
the OTF of a given imaging system reflects a combination of
several degradation processes [25] and it may be reasonable to
expect zero crossings within the bandwidth of the signal . Fur-
thermore, represents a high-pass type operator. As we have
already shown, the CR bound on image reconstruction reveals

that uncertainty is greatest at high-frequency locations (edges).
Thus, the high-pass characteristic of is even more burden-
some as it further amplifies this uncertainty.

For example, in the right graph of Fig. 7, we show the per-
formance bound for different PSFs assuming that the signal of
interest was that of Fig. 2. The PSFs examined are repre-
sented by nine tap Gaussian filters with standard deviation of
in pixels. The corresponding OTFs are shown in the left graph
of Fig. 7 as a function of spatial frequency in units of radians
per sample. The downsampling factor was and .
Again, we show the performance bound for equally spaced mo-
tions as the number of low-resolution measurements in-
creases. The performance bounds are shown in log-scale be-
cause the degradation for different PSFs is so severe. This CR
bound sensitivity underscores the ill-posed nature of image de-
convolution. In fact, for the PSF with width , about 50
equally spaced low-resolution frames are needed to bring the
per-pixel variance bound to under three gray levels (or three
times the noise standard deviation ). Such restoration perfor-
mance is very poor indeed for real imaging applications.

When the OTF matrix is singular, and, hence, the FIM
is singular, it is essentially impossible to construct an

unbiased estimate of the image . The singularities of the OTF
effectively eliminate all information about specific frequencey
spectral components of the signal. It is important to note at this
point that in both in [5] and [6], the authors make an implicit
connection between the PSF of the imaging system and the
downsampling factor . The implicit conclusion of [6] is that
the factor is the “fundamental limit under practical
situations,” where the PSF is assumed to be a boxcar function
(loosely based on a pixel geometry with 100% fill factor) whose
dimensions are dependent on the downsampling factor . Such
a conclusion is reasonable only in that the OTF corresponding
to a boxcar PSF necessarily has zero crossings. Whether or
not these zero crossings fall within the bandwidth of the un-
known image ultimately dictates the performance associated
with super-resolution. For example, in color imaging systems,
the Bayer pattern inherent to single sensor imaging systems
often contain sufficient aliasing to permit super-resolution well
beyond a factor of 1.6 [1]. Furthermore, as we shall show in the
next section, prior information can regularize the problem even
when the PSF contains zeros within the signal bandwidth such
that reasonable performance is achievable.

Because of the difficulty of image restoration, it is a practical
necessity to tackle the problem of super-resolution with some
prior knowledge about the unknown image. As also pointed out
in [5], the restoration aspect of super-resolution may indeed
be the critical information bottleneck to performance, requiring
prior information to achieve reasonable performance. In the next
section, we explore the role of prior information in the problem
of super-resolution.

E. How Does Prior Information Affect the Performance
Bound?

Up to this point, we have studied the conditional CR bound on
super-resolution under the assumption that no prior information
was available. We have shown that were the translations prop-
erly spaced, and the PSF operator reasonably well conditioned,
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Fig. 7. Left graph shows the magnitude of the OTF jH(�)j for different widths w of a Gaussian kernel PSF. The right graph shows the corresponding conditional
image restoration CR bound T (~x) as a function of the number of frames K+1 for a downsampling factor of M = 2, equally spaced motions v = (kM)=(K+
1), and a noise power of � = 1. (Color version available online at http://ieeexplore.ieee.org.)

super-resolution is possible without prior information. Yet, we
have encountered several scenarios where the FIM exhibits sin-
gular behavior relating to either unfavorable motion vectors or
zero-crossings in the OTF. Under these scenarios, the FIM be-
comes singular and super-resolution is possible only with prior
information.

It was suggested in [5] that the performance limits to super-
resolution can be “broken.” The method used to overcome the
performance limits was an effective form of prior information
learned from training data. Our analysis agrees with the claims
of [5] that prior information can “break” the performance limits
in the sense that it improves the performance bound. Essen-
tially, when the observation model is such that the conditional
Schur information complement is singular, unbiased estima-
tion with finite variance is impossible. By incorporating prior
information, we can tradeoff biased estimation of a particular
signal to gain finite variance. The goal in this Bayesian regime
becomes that of finding estimators which perform well over
the distribution of signals. As we now show, the Bayesian CR
bound remains tractable even when the super-resolution using
only the likelihood function would otherwise be extremely ill
posed.

In our analysis thus far, we have encountered two scenarios in
which the FIM becomes singular. The first is when the motion
vector set insufficiently samples the high-resolution image
causing to be singular. In this case, prior information which
helps condition the problem by improving the condition of
as defined in (40). To see this effect, we conduct another set
of MC simulations similar to those shown in Fig. 5. This time,
however, we compute the Bayesian CR bound which incorpo-
rates different amounts of prior information parameterized by .
Rather than plotting the point clouds, we only plot the average
value of for each value of . Fig. 8 shows the average
values of when and . From Fig. 8, we see
that the prior information is really only necessary when only a
few frames are available. When the number of frames is low, the
matrix is much more likely to be singular. In these cases, the
prior information is necessary to keep the variance under con-
trol. As the number of frames increase beyond a certain point
(around ten frames), however, the prior information offers little

Fig. 8. Each point in the curves show the value of Bayesian CR bound T (~z)
averaged over 1000 uniformly drawn motion vectors v 2 [0;M ] for each
value ofK+1. The different line types indicate the amount of prior information
used when computing T (~z). The light dotted line indicates the Bayesian CR
bound T (~z) computed for equally spaced motions with � = 10 (essentially
no prior information). The bounds were computed for a downsampling factor
of M = 4 and a noise power of � = 1. (Color version available online at
http://ieeexplore.ieee.org.)

advantage, as the matrix becomes reasonably conditioned on
average.

In the previous example, we observed that by increasing the
number of frames, we could reasonably expect stable perfor-
mance with little prior information. This is not the case when it
comes to image restoration. As we showed in Section IV-D, the
problem of image restoration may routinely be ill conditioned,
if not ill posed. In these situations, increasing the number of
frames will not improve the conditioning of the FIM. In such sit-
uations, prior information is required to perform image restora-
tion with finite variance. Using (14), we see that

(48)

(49)

(50)
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Fig. 9. Curves show the Bayesian restoration CR bound T (~x) for equally
spaced motions v = (kM)=(K + 1) as a function of the number of frames
K + 1 for a downsampling factor of M = 2 and a noise power of � = 1.
The PSF is assumed to be a Gaussian function with width w = 1, which is
chosen such that the OTF does not reach zero but grows very small for high
frequencies. The amount of prior information, parameterized by �, greatly
affects the predicted overall restoration performance. (Color version available
online at http://ieeexplore.ieee.org.)

where the last step uses the relationship . From
(50), we see that even if the OTF has zero crossings (and, hence,

is singular) the Bayesian CR bound is well behaved as long
as the additional prior information term is full rank.

As an illustration of the above observation, we repeat an
experiment similar to that of Section IV-D for the PSF with
width while assuming a prior on the unknown image
of the form (29). Fig. 9 shows the improvement in the Bayesian
CR bound resulting from the additional prior information.
Without the prior information, the predicted performance was
unacceptably poor, even with 50 low-resolution measurements.
With even mild amounts of prior information, the performance
bound falls into the range of reasonable performance .
For this reason, prior information is a necessity for the restora-
tion stage of super-resolution.

F. What About 2-D Images?

In this section, we compare the performance of an actual mul-
tiframe image reconstruction algorithm with the numerically
evaluated deterministic CR bound for a 2-D test image. These
simulations show that the conditional 2-D CR bound, as de-
rived in Appendix I, offers reasonable prediction of estimator
performance.

While there are a variety of multiframe image reconstruction
algorithms in the literature [2], [4], [14], each of these algo-
rithms round the motion vector estimates onto the nearest in-
teger (a.k.a. grid location). The motion vectors in our simula-
tions, however, do not fall onto these sampling grid points, ne-
cessitating a slightly different approach. The algorithm used in
our experiments follows the standard, yet suboptimal, two-stage
noniterative approach to multiframe image reconstruction sim-
ilar to that proposed in [14]. First, the set of motion vectors are
estimated in a pair wise fashion. Second, using the estimated
motion vectors , the low-resolution frames are combined
to form an estimate of the original image.

To register the low-resolution images, we implemented the
relative phase algorithm of [26] which was specifically proposed
to address the problem of registering a pair of aliased images.
In deriving the algorithm, the authors make several heuristic ob-
servations which they use to motivate the application of a non-
linear weighting of zeros and ones (a mask) to the spectrum of
the images prior to a phase-based registration algorithm. This
masking prunes away the portions of the image spectrum where
the negative effects of aliasing are assumed to worsen estimation
performance. For our experiments, we used parameter settings
recommended in [26] which have been shown to offer good per-
formance for general image registration [27].

To reconstruct the original high-resolution image, we com-
pute a direct estimate of the image as

(51)

Such an approach is a frequency-based generalization of the
straightforward approach of [14] for noninteger motion vectors.
The algorithm differs from [14] in that it is by no means a com-
putationally efficient algorithm as it requires the explicit con-
struction of extremely large, albeit sparse, matrices.

We perform our experiments using the 150 150 pixel Tree
image shown in the left graph of Fig. 10. For our experiments,
we construct low-resolution images using equally spaced trans-
lation on a 2-D grid. In other words, the translations vectors are
defined by the set of ordered pairs

We evaluated the reconstruction perfor-
mance using frames for a downsampling
factor of . The right graph of Fig. 10 shows a scatterplot
of the motion vectors. The reference frame used in the image
registration process was the low-resolution image produced by
the motion vector .

We evaluated the algorithm’s reconstruction performance for
SNR values of 30, 40, and 50 dB. To evaluate the conditional
RMSE performance , the performance of the estimator
was averaged over 500 MC simulation runs for each data point.
The left graph of Fig. 11 compares the actual algorithm perfor-
mance with the predicted CR bound versus the
number of equally spaced frames. The right graph of Fig. 11
shows the per-pixel RMSE performance at an SNR of 40 dB for

frames. As predicted in Section IV-B, the estimator
error is most severe near the edge locations in the Tree image.

From the left graph of Fig. 11, we observe that the CR bound
predicts the actual estimator performance for SNR of 30 and
40 dB reasonably well. At 50 dB, however, the estimator per-
formance departs from what the CR bound predicts. This is ex-
plained by the systematic bias associated with the registration
algorithm [27]. To show this bias, Fig. 12 compares the registra-
tion performance with the CR bound for the same
experiment. There are two notable features of Fig. 12. First, the
overall registration performance changes very little as a func-
tion of the number of frames. This is intuitive given that pair-
wise registration is performed independent of the reconstruc-
tion. Second, the actual performance flattens out even though the
CR bound suggests improved performance for increasing SNR.
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Fig. 10. Left image shows the 150� 150 pixel Tree image used for the experiment. The graph on the right shows a scatter plot of the motion vectors forK+1 = 9
(/); K + 1 = 16 ( ); K + 1 = 25 (�), and K + 1 = 36 (�). (Color version available online at http://ieeexplore.ieee.org.)

Fig. 11. Left graph compares the actual estimator reconstruction performance (symbols) rmse(~z) and the corresponding conditional CR bounds (solid lines)
T (~z) as a function of the number of frames K+1. Each point represents the average over 500 MC simulations. The right graph depicts the actual estimator RMSE
image over 500 MC runs for K + 1 = 25 at 40 dB. (Color version available online at http://ieeexplore.ieee.org.)

Fig. 12. Graph shows the (solid lines) CR bounds T (�v) and (symbols) actual
registration performance rmse(v) versus the SNR for the 2-D equally spaced
motions with K + 1 = 9; 16;25;36. (Color version available online at
http://ieeexplore.ieee.org.)

This flattening out of the performance is indicative of the deter-
ministic bias associated with the registration algorithm [27].

This registration bias prevents the reconstruction algorithm
from achieving the CR bound for high SNR. At low SNR, the re-

construction error due to registration bias is masked by the error
due to the additive measurement noise. As the SNR improves,
however, the registration bias limits the final reconstruction per-
formance causing edge artifacts as observed in the right graph
of Fig. 11.

V. CONCLUSION

In this paper, we have derived and explored the use of
the CR inequality in bounding performance for the problem
of super-resolution from a statistical perspective. Our anal-
ysis shows that there is no single bound which applies to all
super-resolution operating scenarios as others have done in the
past. Instead, we have shown that super-resolution performance
depends on a complex relationship between measurement
SNR, the number of observed frames, set of relative motions
between frames, image content, and the imaging system’s PSF.
In addition, we presented an alternate representation of the
problem in the Fourier domain which facilitates the numerical
evaluation of the CR bound.

Our analysis offers practical new insight into the challenges
of super-resolution. For instance, we showed that the degrada-
tion in super-resolution performance can be substantial when
image motion must be estimated from the data, as opposed to
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being known a priori. We showed that this degradation occurs
most severely along edges within images. In addition, we
showed that when the motion vectors are uniformly random,
the performance bound exhibits a threshold number of frames,
above which reasonable performance may be expected with
high probability. Furthermore, we highlighted how the CR
bound could be used to choose system parameters such as the
number of frames for a given downsampling factor to achieve
a target performance. Finally, we showed that zero crossings
in the imaging system’s OTF PSF lead to unstable estimation
and that prior information is required to achieve acceptable
performance for such situations.

The work presented here suggests several possible research
directions. One could imagine using the CR bound for imaging
system design under the assumption that super-resolution
processing would be included as a postprocessing step. By al-
lowing or even introducing aliasing, one might leverage greater
performance out of cheaper imaging system components. Also,
it would be interesting to explore novel prior information
structures which optimizes the CR bound. For specific imaging
applications, novel forms of prior information will not only
aid in super-resolution algorithm development, but in imaging
system design as well. For instance, if given a set of training
images from which to “learn” prior information, one might
wonder what is the most beneficial information to glean from
the training set for super-resolution. Finally, the analysis pre-
sented in this paper focusses on the case of image sequences
containing simple translational motion. Future research into
super-resolution for more complicated motion models may lead
to more broadly applicable results.

APPENDIX I
FISHER INFORMATION MATRIX FOR THE 2-D SCENARIO

In this section, we show the necessary derivations for the 2-D
version of the FIM used to bound the conditional performance
for super-resolution. Recall that the modified forward model in
the Fourier domain is

(52)

The vector is a -dimensional vector with the first
dimensions representing the real components and the the second

dimensions representing the imaginary components.
For the 1-D scenario, we used to identify the spatial fre-
quency. For the 2-D scenario, we represent the spatial frequen-
cies in the second dimension as . For the 2-D scenario, all
of the matrices have the same structure as the 1-D scenario

with the exception that the translation matrix is the sim-
ilar structure as the 1-D case shown in (17), with the excep-
tion that the trigonometric terms are now and

.
The log-likelihood function for the observed data is given by

(53)

Recalling the definition of the FIM in (4), we see that the 2-D
FIM is given by (54) and (55), shown at the bottom of the page,
where are the partial derivative operators in the Fourier do-
main. They are block diagonal matrices of the form

(56)

(57)

Finally, we see that

(58)

so that our final FIM is given by where

(59)

(60)

. . . (61)

APPENDIX II
SINGULAR FIM FOR TRANSLATIONS “ON THE GRID”

In this section, we show that the 1-D conditional FIM is nec-
essarily singular when the set of translations are all inte-
gers. This corresponds to the canonical example in super-reso-
lution experiments of having the low-resolution frames falling
perfectly on the high-resolution “grid” points. In this derivation,
it is easier to conceptualize the proof in the spatial domain. Be-
fore we begin, we define the quadrants of in the spatial domain
to be

(62)

(54)

and

(55)
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When the translations are multiples of integer sample trans-
lations, the matrix is a diagonal matrix with the terms along
the diagonal being where represents the total numberof
low-resolution frames with motions (corresponding to a
particular grid location for the high-resolution image). This prop-
erty has been noted in [14]. We assume that there are unique
translations in the set of all translations and that these translations
are all integer offsets of the reference frame (in the high-resolu-
tion image coordinates). We use to denote the index set such
that . Without loss of generality, we assume that
the unknown translations are ordered such that all are non-
decreasing. This ordering induces the structure on such that

. . . (63)

where the subscript indicates the dimension of the identity
matrix and . This ordering also induces structure
on the matrix such that . Because of the
structures of and , we note that Thus,
we see that has a block diagonal form

. . . (64)

where

(65)

where the last equality holds because is a projection operator
and, hence, .

Thus, we see that the Schur complement Fisher information
is given by the block-diagonal matrix

. . . (66)

where

else
(67)

Thus, every block along the diagonal other than is
rank deficient by one dimension. This shows that for the very
common scenario where all of the the motions are in units
of high-resolution pixels (only on the grid), the FIM is rank
deficient by .

APPENDIX III
DERIVATION OF THE SCHUR MATRICES FOR

Here, we look at the conditional Schur information comple-
ments for the case where there is no aliasing in the model. In
this case, we have for all . Thus, we see that

(68)

(69)

(70)

First, we note that the Schur complement of is given by

(71)

Using the matrix inversion lemma [11], we see that

(72)

where represents a vector of all ones. So, the inverse of is
given by (using the matrix inversion lemma)

(73)

This has the same form as derived previously for looking only
at the performance bounds for estimating translational motion
[27]. Furthermore, it is interesting to note that, for the case
when no aliasing is present, adding additional frames to the
problem does not influence the image registration problem.
In other words, registration can be done in a pairwise fashion
without any loss of information. This is not the case in the
presence of aliasing.

To capture the MSE performance in estimating the image
terms , we need only too look at the term

(74)

Finally, we note that, for this simple scenario, the scalar condi-
tional CR bound is given by

(75)
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