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Imaging in Raman spectroscopy is a valuable tool for analytical chemistry. Although molec-

ular characterization at micron level is achieved for many applications, it usually fails

producing chemical images of micron size samples as expected in chemical, environmental

and biological analysis. The aim of the work is to introduce the potential of super-resolution

in vibrational spectroscopic imaging. This original chemometrics approach uses several low

resolution images of the same sample in order to retrieve a higher resolution chemical

image. It is thus possible to overcome in a certain way some physical and instrumentals lim-

itations. To illustrate the methodology, sub-micronic details of a Si/Au sample are retrieved

from low resolution images with different super-resolution algorithms. The better results
Chemometrics

Raman spectroscopy

Imaging

are obtained with Iterative L2/Bilateral Total Variation regularization method. The use of a

regularization procedure gives also better results since its first property is to preserve edges

during the reconstruction of the super-resolved image. This concept of chemical image data

processing should open new analytical opportunities.

The main advantage of such signal processing approach is
1. Introduction

For many imaging applications, obtaining high resolution
images (HR) is a key step. An HR image, with its high pixel
density, can present many details about the observed object.
We have then a better vision of the reality and therefore
better interpretations and knowledge. Since the 1970s, many
imaging systems have been developed with different detector
configurations as for example the well known charge-coupled
device sensor (CCD). Such detectors have rapidly reached their
limits of resolution, as people have sought more and more

detailed images. The first way to increase the resolution of the
devices is an instrumental one, whereby we could reduce the
pixel size of the detectors. Nevertheless, pixel size reduction is
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balanced by a shot noise increase showing the existence of an
optimally pixel size around 40 �m2 even if lower pixel dimen-
sion is technologically possible. The second way to increase
the resolution is to increase the chip size. Nevertheless, such
devices are slower due to capacitance increase and moreover
really costly.

The 1980s saw the beginnings of a growing area of signal
processing called super-resolution (or superresolution). Super-
resolution is defined by the use of image processing algorithms
in order to overcome the limitations of optical systems [1–3].
that it costs less and the existing imaging systems can be still
used. Moreover, due to physical limits it is sometimes the only
way to increase resolution since no alternative instrumental
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Fig. 1 – Sample preparation with electron lithography.
Consecutive steps: PMMA polymer coated onto a Si sample
(a); electron beam exposure (b); development phase (c); Au
metal deposit by evaporation (d); Lift-off (e); SEM general
view of the obtained Si sample with Au sub-micronic
a n a l y t i c a c h i m i c a a c

etup may be available. The main idea of super-resolution is
he fusion of several low-resolution images (LR) of the same
bject to obtain one higher-resolution image [4–6]. The first
aper dealing with recovering HR image using multi-frames
as written by Tsai and Huang [7]. It was shown that fusing
nder-sampled low resolution images with relative sub-pixel
otion could give a super-resolution image with few or no

liasing effects. The great potential of the technique was illus-
rated in many fields such as video signal processing [8,9]

edical imaging like functional MRI [10,11], positron emission
omography (PET) [12,13], X-ray imaging [14], forensic sciences
15,16], remote sensing [17,18], astronomy [19,20] or military
pplications [21,22].

Raman spectroscopic imaging is a powerful technique
or visualizing the distribution of chemical compounds of
omplex samples based on the interaction of substance’s
olecular vibrations with laser light [23]. Due to the very

igh content of information contained in its spectrum, Raman
pectroscopy has taken more and more importance in molec-
lar imaging. With such far-field imaging spectroscopy, the
esolution limit is first and foremost dictated by the photon
avelength due to diffraction limit and in a lesser manner

y the detector area. For classical mapping procedures using
isible photon for Raman scattering, 1 �m resolution images
re usually considered optimal. Nevertheless this resolution
imit is a real constraint, considering imaging spectroscopy
f micron-sized samples such as in biology [24] or chemistry

25]. New chemometrics methods are now of great interest to
vercome this drawback, while keeping our far-field Raman
nstruments.

To the best of our knowledge, this is the first paper deal-
ng with such super-resolution concept applied to analytical
hemistry and more precisely to molecular imaging spec-
roscopy like Raman scattering. The aim of the presented work
s to show that fusing several 1 �m resolution images of the
ame sample acquired with sub-micron shifts can produce
HR image and in a certain way enable going beyond the

hysical limit to explore sub-micronic details.

. Experimental

.1. Materials

n order to test the proposed super-resolution methodology,
ub-micronic patterns are produced on a sample surface.
oreover, the compound selected must have particularly good
aman scattering properties. The selection of a Si substrate is
hus a perfect candidate. Electron beam lithography is used
n this work to modify the Si surface [26]. It is carried out on
he well known poly methyl methacrylate (PMMA) electron-
ensitive resist materials. Solution of the resist is spin-coated
nto a Si sample and baked to leave a hardened thin-film
n the surface (around 500 nm, Fig. 1a). The beam system is
hen used to move a focused electron beam across the sam-
le to selectively expose a pattern in the resist previously

esigned with computer software (Fig. 1b). Exposure of the
ositive tone resist to electrons causes fragmentation of the
olymer chain into smaller molecular units (chain-scission). A
eveloper solution is then used to selectively dissolve the frag-
patterns (f).

mented polymer chains in the exposed areas of resist, whereas
as the unexposed resist remains insoluble (Fig. 1c). The pro-
cess leaves a patterned resist mask on the sample. This is
transferred into the final sample using metal lift-off proce-
dure. In a first step Au metal deposit by evaporation occurs
(Fig. 1d). The remaining resist is then dissolved in a solvent
lifting off the unwanted metal (Fig. 1e). Fig. 2b presents a SEM
general view of the obtained Si sample with Au sub-micronic
patterns. Fig. 2c corresponds to a sub-sample on which spec-
troscopic experiments and super-resolution were applied.

2.2. Instrumentation

Raman microscopic measurements are carried out with a
LabRAM confocal scanning spectrometer manufactured by
Horiba Jobin Yvon (Fig. 3). The spectrometer is coupled con-
focally with an Olympus high-stability BX 40 microscope
equipped with a ×100 objective (NA = 0.9). Before spectroscopic
measurements, it is possible to have an optical view of the
sample from a color camera. Raman backscattering is obtained
with a 632.8 nm excitation wavelength supplied by a helium-
neon laser (8 mW power). A liquid nitrogen-cooled CCD
(Jobin-Yvon, 2048 × 512 pixels) is used for detection, allow-
ing simultaneous spectral dispersion by a 1800 grooves mm−1

holographic grating over a 250–1300 cm−1 spectral range and
5 s spectrum acquisition time. The microscope stage is XY-

motorized and computer controlled in order to assure the
systematic moves over the sample. A 300 �m pinhole and a
150 �m slit are used. Like many other imaging systems, lat-
eral resolution is determined by physical considerations and
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Fig. 2 – Si/Au sample presentation: optical view from visible
sub-micron details on which spectroscopic experiments and

more precisely by the diffraction limit. It is then well admitted
to consider the spatial extent of the laser focus around about
1 �m, a number that is derived from Eq. (1) below for an Airy
disc of light:

x = 1.22�

NA
(1)
with x the distance between two nearby resolved points, � the
wavelength of the radiation used and NA the optical numeri-
cal aperture. This lateral resolution limit is thus considered to
avoid diffraction effects and proposed unbiased cartography.

Fig. 3 – Raman microscopic device used f
roscope (a); SEM general view (b); the sub-sample with
er-resolution were applied (c).

Taking into account the previous considerations, our spec-
troscopic experiments are defined as follows. For a first
mapping experiment, acquisitions consisted in recording
spectra with a 1 �m step in X and Y directions all over the
sample. Thus, classical signal integration on a specific Si spec-
tral contribution (515–525 cm−1) produces the corresponding
LR Si distribution image of size 9 × 7 pixels, each pixel corre-
sponding in 1 �m2 surface sample. Various sub-micron shifts

(multiple of 0.1 �m) are applied from the first mapping grid
to produce 49 other mapping experiments of the same sam-
ple and thus 49 other LR images defined as {Y- k}49

k=1. The 1 �m
step spectral measurement over the sample is conserved for

or the super-resolution experiment.
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Fig. 4 – spectral analysis and mapping: spectral acquisition with a 1 �m step in X and Y directions all over the sample.
Classical signal integration on a specific Si spectral contribution (515–525 cm−1) to produce low resolution Si distribution
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mages.

ll mappings. The first mapping and three examples of sub-
icron shift are presented in Fig. 4.

.3. Procedures

he aim of this part is to propose a general but comprehensive
nalysis of the super-resolution concept. We first present the
roblem to be solved and then propose an analytical model to
escribe it. As in many papers dealing with image processing,

mages are represented column wise lexicographically ordered
or matrix notation convenience.

Given are N measured images {Y- k}N
k=1, where each image

s defined by M × M pixels and represented by the unfolded
atrice Y- k of size [M2 × 1]. These LR images are different rep-

esentations of a single HR (L × L pixels) represented by the
nfolded matrice X- of size [L2 × 1], where L > M for 1 ≤ k ≤ N. In

act, it can be considered that each LR image measured is the
esult of a particular geometric warping (just translations in
ur microspectrometric case), linear space-invariant blurring,
nd uniform rational decimating performed on the ideal HR
mage X- . Additive Gaussian noise is also considered between
ow resolution images. It is thus possible to propose an ana-

ytical model (Eq. (2)), in order to express the steps described
reviously:

- k = DkHkFkX- + V- k (2)
The matrix Fk of size [L2 × L2] corresponds to the geometric
warp operation between the X- image and Y- k. The matrix Hk of
size [L2 × L2] is the blur matrix defined by the optical system’s
point spread function (PSF). [27] In other words, this func-
tion describes the response of an imaging system to a point
source or point object. The matrix Dk of size [M2 × L2] corre-
sponds to the decimation resulting in Y- k. In other words, this
step corresponds to the reduction of the number of observed
pixels in the measured images. The additive Gaussian noise
observed in the k-th measurement is described by the vectors
{V- k}N

k=1 with zero mean. Fig. 5 provides a representation of the
analytical model used in the super-resolution framework. As
can be noticed, super-resolution is an inverse problem [28].
By definition, two problems are inverses of one another if
the formulation of each involves all or part of the solution of
the other. The aim of super-resolution is thus to estimate X-
based on the known images {Y- k}N

k=1. From the spectroscopist’s
point of view, it is a new approach to obtain a higher resolu-
tion image of a chemical sample from several low resolution
images of it.

In order to use the proposed analytical model, we need to
evaluate the availability of Dk, Hk and Fk matrices for all k = 1,
. . ., N. For many super-resolution applications, Fk have to be

obtain by using motion estimation algorithms between low
resolution images {Y- k}N

k=1 and one of the low resolution images
(such as, say, Y- 1) chosen as a reference. Such methodolo-
gies are not necessary for our microspectrometric application
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Fig. 5 – Representation of the analytical model used in super-resolution concept. Each low resolution image is a noisy,
age
decimated, blurred and warped version of the original HR im

since translational shifts between low resolution images are
controlled by the motorized and computer-controlled stage,
and therefore known quite accurately. Concerning Hk blur
matrices, one can in general consider that all low resolution
images are obtained with the same optical system and thus
viewed through the same PSF that is to say ∀k, Hk = H. When
possible, H is estimated with experiments or calculated from
the optical pathlength. In our case, we observe that the super-
resolution algorithm is robust to inexact knowledge of the H
matrix, and thus it is possible to use a rough guess of it like a
Gaussian filter. The matrix Dk is only dependant on the dec-
imation ratio between the HR image and the LR measured
image i.e. the ratio between the number of pixel in the LR
image M2 and the HR image L2. The rule of thumb (Eq. (3))
gives an idea of the necessary low resolution image number
N:

L2 < NM2 (3)

The very important idea here is redundancy. That is to say,
when possible, to measure a higher amount of data from the
N LR images than the minimum amount necessary to build the
HR image. If there are too few measured LR images, the resolu-
tion of Eq. (2) becomes an ill-posed problem which would find
solutions only applying regularization procedures [28]. On the
contrary, a high number of low resolution images will induce
an underutilization of information but an improvement of the

noise suppression. As typically in super-resolution problems,
we consider here white noise:

E{V- kV-
T
k } = �2I = Wk (4)
.

Considering the analytical model (Eq. (2)) applied on the N LR
images we have:

⎡
⎢⎢⎣

Y- 1

...

Y- N

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

D1H1F1

...

DNHNFN

⎤
⎥⎥⎦X- +

⎡
⎢⎢⎣

V- 1

...

V- N

⎤
⎥⎥⎦ (5)

It is now possible to retrieve the HR image X- with classi-
cal restoration methods like Maximum-Likelihood estimation
(ML) [37,29], Maximum A Posteriori estimation (MAP) [30–32],
Projections Onto Convex Sets (POCS) [33,34] and others [35,36].
Using for example, the well known Maximum-Likelihood esti-
mation procedure, estimation of X- is obtained by the weighted
least squares estimation of the form (Eq. (6)):

X̂- = ArgMin
X-

{
N∑

k=1

[Y- k − DkHkFkX- ]TW−1
k

[Y- k − DkHkFkX- ]

}
(6)

Equating to zero the first derivative of (Eq. (6)) with respect to
X- we get:

N∑
k=1

[DkHkFk]TW−1
k

[Y- k − DkHkFkX- ] = 0 ⇒ RX̂- = P (7)
with R=
N∑

k=1

FT
k HT

k DT
k W−1

k
DkHkFk and P=

N∑
k=1

FT
k HT

k DT
k W−1

k
Y- k

(8)
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ue the high dimension of the R matrix, solving Eq. (7) is
edious. Common iterative methods like steepest descent (SD)
lgorithm can be applied to obtain X- from R and P without
nverting R. More details about this last step the regular-
zation procedure can be found in Elad’s paper [37]. Matlab

7.1 computing environment (The Mathworks, MA, USA)
nd the freely available multi-dimensional signal processing
MDSP) toolbox [38] were used for all calculations reported
elow.

. Results and discussion
he aim of super-resolution is to estimate a HR image based
n the known LR images. The generic characteristic of such
n inverse problem is that it is an ill-posed one. It effectively

ig. 6 – Super-resolution results. The reference LR image (a); HR i
lgorithm (c); with Iterative L2 and Tikhonov regularization (d); w

e).
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fails to satisfy one of the Hadamard’s conditions [39]. This
failure comes from either the characteristics of the optical
system or the observed data. First, it is possible to observe
the non-existence of a solution. Due to the presence of noise,
the observed images can be inconsistent with any object at all.
The result is that the system is noninvertible and the object
cannot be estimated from the observations. Second, we can
observe the nonuniqueness of the solution since we have only
too few low resolution images. Since the number of unknowns
exceeds the number of equations, we can say that insufficient
equations exist to ensure the existence of a unique solution
for our problem. Third, it is possible to observe a severe depen-

dence of the solution on small changes in the data. Depending
of the characteristics of the imaging system, the inverse prob-
lem can be very sensitive to perturbations of the data. In fact,
such problem is invertible in theory but the inverse is unstable

mage obtained with Shift-and-Add method (b); with Drizzle
ith Iterative L2 and Bilateral Total Variation regularization
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in practice i.e. small noise level in low resolution images leads
to large spurious signal in the computed HR image.

In the presented work, we show that usual ill-posedness
of the super-resolution problem can be overcome with
regularization methods. Additional information is used to
compensate for the information loss in LR images. This addi-
tional information is referred to prior information as it cannot
be derived from observations. In general, the prior information
is chosen to represent desired characteristics of the solution
as for examples total energy, smoothness or positivity. Its role
is thus to constrain and reduce the space of solutions which
are compatible with the observed data. Fig. 6 presents the HR
image obtained with various super-resolution methods. Com-
pared to the reference low resolution image, we can notice
a resolution enhancement factor of 7 with a new pixel sur-
face equal to 1/49 �m2. Sub-micron details around 260 nm can
be observed on some super-resolved images like the Au and
Si zones described on the SEM images. We can also observe
that the Si signal (white color in all images) is really not con-
stant in the X direction as we expected. This is an artefact
explained by the choice of not using a laser depth control
mechanism in Z direction during spectral acquisition in order
to gain time. Nevertheless, without such a device, components
from scattered light that were generated from above or below
the desired position (ideally the first 300 nm from surface)
within the sample were also detected and thus had degraded
the quality of spectral data and observed LR images. Proposed
super-resolution images were obtained with the Shift-and-
Add method [29], Drizzle method [40] Iterative L2/Tikhonov
regularization method [37] and Iterative L2/Bilateral Total
Variation regularization method. [41] Shift-and-Add and Driz-
zle methods are the simplest techniques for inversion, and
present the worst results with less sub-micronic details and
rather low contrasts. We also observe a higher smoothing
effect on their super-resolution results. In comparison, the two
other regularized iterative L2 methods extract more features.
Nevertheless, the better results are obtained with Iterative
L2/Bilateral Total Variation regularization method compared
to Iterative L2/Tikhonov regularization method. Tikhonov reg-
ularization is one of the most referenced methods [42]. The
general principle of such method is to limit or penalize the
total energy of the image. The consequence is thus to con-
verge to a super-resolved image with no sharp edges. Same
smoothing behaviours have been observed in Bayesian MAP
framework [43] not so far from Tikhonov regularization con-
cept. As described in Farsiu’s paper [1] Bilateral Total Variation
regularization method gives better results since its first prop-
erty is to preserve edges during the reconstruction of the
super-resolved image. Nevertheless, super-resolution results
between Bilateral Total Variation and Tikhonov were not so
different in our case certainly because of a low signal to noise
ratio in LR images we used.

Results demonstrate the necessity of a regularization pro-
cedure. It is in fact the only way to find a stable solution
to super-resolution problems. Regularization also improved
the rate of convergence of super-resolution methods and

sometimes removed artefacts even if it was not seen for our
application. We can say that regularization was a good way to
compensate the missing measurement information in the LR
images.
6 0 7 ( 2 0 0 8 ) 168–175

4. Conclusion

This work presents the first attempt to use super-resolution
methodology applied to vibrational imaging spectroscopy.
Its particular characteristic is that it involves computational
post-processing of the observed LR images. This is extremely
attractive since the performance of existing Raman micro
spectrometers can be enhanced without any requirements
to modify the classical instrumentation. This first feasibil-
ity study showed very interesting results concerning the use
of Bilateral Total Variation regularization method in order to
retrieve sub-micron details of samples. Future works will be
focused on the study of factors affecting the performance of
multi-frame super-resolution restoration. It will correspond
to an optimization of the super-resolution process with the
principal idea of finding even better resolution enhancement.

From an instrumental point of view, it is really important
to know if a better sub-micron motion precision between LR
images is necessary. New instrumental setups like a piezo-
driven nano-translation XY stage and an optical table with
vibration control will be considered. The effect of signal to
noise ratio on spectra and thus on LR images will be stud-
ied following some work of Robinson and Milanfar [44]. The
number of necessary LR images should be estimated as the
influence of relative motions between them.

From a chemometrics point of view, it will be essential to
verify that the observation model accurately represents the
processes which produce the observed LR images. If not, a
better model specific to vibrational spectroscopy will permit
to retrieve a better super-resolved image. The determination
of the best regularization method for such spectroscopic appli-
cations is yet another step.

As final words, considering two decades of research and
applications of the signal processing community, the future
of super-resolution methods in spectroscopy appears promis-
ing because of a possible general extension to many imaging
spectroscopic devices. We are convinced it will provide new
trends in analytical chemistry.
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