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Shape from Moments—An Estimation
Theory Perspective

Michael Elad, Peyman Milanfar, Senior Member, IEEE, and Gene H. Golub

Abstract—This paper discusses the problem of recovering
a planar polygon from its measured complex moments. These
moments correspond to an indicator function defined over the
polygon’s support. Previous work on this problem gave necessary
and sufficient conditions for such successful recovery process and
focused mainly on the case of exact measurements being given. In
this paper, we extend these results and treat the same problem in
the case where a longer than necessary series of noise corrupted
moments is given. Similar to methods found in array processing,
system identification, and signal processing, we discuss a set of
possible estimation procedures that are based on the Prony and
the Pencil methods, relate them one to the other, and compare
them through simulations. We then present an improvement over
these methods based on the direct use of the maximum–likelihood
estimator, exploiting the above methods as initialization. Finally,
we show how regularization and, thus, maximum a posteriori
probability estimator could be applied to reflect prior knowledge
about the recovered polygon.

Index Terms—Array processing, eigenvalue, estimation, inverse
problem, matrix pencil, moments, prior information, prony,
quadrature, reconstruction, shape.

I. INTRODUCTION

AN intriguing inverse problem proposed in [26] suggests the
reconstruction of a planar polygon from a set of its com-

plex moments. If we consider an indicator function being 1 in
the interior of the polygon and 0 elsewhere, these moments are
global functions created by integrating the power function
over the plane and weighted by this indicator function. Given
such a finite list of values, the problem posed by Milanfar et al.
in [26] focuses on the necessary and sufficient conditions that
allow a recovery of the polygon vertices from the given exact
moments. In later work [11], [13], the treatment of this recon-
struction problem is extended by suggesting better numerical
procedures and treatment for a wider family of shapes such as
algebraic curves.

When the given moments are contaminated by noise, the re-
covery problem becomes an estimation one. Previous work on
the shape-from-moment problem concentrated on the numerical
aspects of the noiseless case. In this work, we would like to ex-
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tend the treatment to a given noisy but longer set of moments.
The principal question we are facing is how to robustify the ex-
isting procedures to stably recover the polygon vertices from
perturbed moment data.

As it turns out, the formulation of the shape-from-moments
problem is very similar to several other very diverse applica-
tions found in the literature, such as i) identifying an auto-re-
gressive system using its output; ii) decomposing a signal built
as a linear mixture of complex exponentials; and iii) estimating
the direction of arrival (DOA) in array processing, etc. [2], [3],
[6], [15]–[18], [21]–[24], [30]–[32], [34], [35]. All these appli-
cations lead to the very same formulation and, therefore, to the
same estimation problem when noise in involved. The litera-
ture in these fields offer many algorithms for solving the under-
lying estimation problem. It is beyond the scope of this work
to survey all these results, and we will confine our exposition
to a partial list of what we believe to be the leading contribu-
tions in these fields, namely, [2], [3], [6], [15]–[18], [21]–[24],
[30]–[32], [34], and [35].

The contributions of this paper are twofold: First, we present
a coherent overview of leading Prony- and Pencil-based
algorithms in array processing, relate them to each other, put
them in proper perspective, and then show their relevance
to our problem. Second, we present an improvement layer
over the above-mentioned methods. We start by exploring an
improvement of the above algorithms by using them for the
construction of an initial solution to be refined by exploiting the
formulation of the problem and using directly the maximum-
likelihood (ML) estimator. Through this change, we are also
able to incorporate prior knowledge about the desired polygon
and use a regularization term. By this, we introduce the use of
the maximum a posteriori probability (MAP) estimator.

This paper is structured as follows: In Section II, we es-
sentially follow [26] and formulate the shape-from-moment
problem and obtain a clear relationship between the desired
polygon vertices and the exact moments. In Section III, we
describe a family of algorithms based on the Prony’s method.
Similarly, Section IV discusses a second family of algorithms
based on the Pencil method. Section V presents the improve-
ment over the above algorithms using the ML and the MAP
estimation approaches. Simulations and discussion are given in
Section VI. Concluding remarks are given in Section VII.

II. PROBLEM FORMULATION

We start by briefly describing the formulation of the shape-
from-moments reconstruction problem. This problem finds ap-
plications in diverse fields such as computed tomography, geo-
physical inversion, and thermal imaging. For example, in to-
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mography, the X-rays of an object can be used to estimate the
moments of the underlying mass distribution, and from these,
the shape of the object being imaged may be estimated [11],
[26]. In addition, in geophysical applications, the measurements
of the exterior gravitational field of a region can be readily con-
verted into moment information, and from these, the shape of
the region may be determined [11]. In both of these examples,
the framework is that of parameterized object-based geometric
reconstruction, as opposed to direct pixel-based inversion of the
measured data.

An arbitrary closed -sided planar polygon is assumed. Its
vertices are denoted by , where these values are scalar
and complex. Based on Davis’s Theorem [4], [5], there exists a
set of coefficients , depending only on the vertices,
such that for any analytic function in the closure of , we
have

(1)

Davis’ Theorem shows that the coefficients are related
to the vertices via the equation

(2)

where , and is the complex conjugate of . Note
that since the polygon is closed, we define for all

. This formula is exploiting not only the vertices themselves,
but also their connection order. For a geometric interpretation
of this relationship, see [11], [26].

A special case of interest is obtained for the analytic function
. Using (1), we get

(3)

The expression stands for the th
moment computed over the indicator function defined
as 1 inside the polygon and zero elsewhere. We denote

as the complex moment . Clearly,
by definition, we have that .

Our reconstruction problem is defined as follows: Assume
that complex moments are measured and known ex-
actly. How can we recover the polygon vertices using the above
existing relationships between these components? Note that the
overall recovery problem is much more difficult if we insist on
finding not only the vertices but the interior of the polygon as
well, since then, we have to find the order of the vertices [7].
In this work, we concentrate on the problem of finding the ver-
tices only. Moreover, we assume that the number of vertices
is known a priori.

In order to answer this question, we start by forming a set of
equations from (3)

...

...
...

. . .
...

...
(4)

Define as the column vector of length containing
the complex moments starting with . In addition, define

as the Vandermonde matrix of size built from
the vertices with powers starting with . Finally,
define the vector as a column vector of length containing
the parameters . Then, the above equation can be rewritten as

(5)

where both and are functions of the vertices. It is
interesting to note that in related problems mentioned above,
such as AR system identification, decomposition of a mixture of
complex exponentials, and the DOA problem, a similar equation
is obtained but with coefficients that are independent
of the unknown vertices. Nevertheless, the results obtained in
this paper may be applicable to these cases as well.

This equation as posed is hard to use for solving for ,
given the complex moments, since it is nonlinear as appear
both inside the Vandermonde matrix [10] and are also hidden
in the values of . Moreover, solving for , using this
equation requires not only the vertices but their order as well.
Alternative relations can be suggested, leading to a practical es-
timation procedure. These will be discussed in Section III.

To conclude the description of our problem, we have to add
the perturbation (noise) issue. We assume that instead of the de-
sired set of complex moments , we have a noisy version
of them , where , and are assumed to
be white i.i.d. zero-mean complex Gaussian noise with variance

. Given these contaminated complex moments, we are inter-
ested in estimating the vertices . We may consider, as a
byproduct of the estimation process, the estimation of the clean
version of the complex moments as well.

III. PRONY-BASED METHOD

A. Basic Formulation

One alternative relation to (4) can be suggested, leading to
Prony’s method [14], [26]. From (4), we see that sat-
isfies an th-order difference equation. Thus

(6)
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Without loss of generality, we can assume that by di-
viding throughout by . This is allowed since otherwise, the
above difference equation would no longer be of th order.1

Thus, we get a system of equations of the form

. . .
. . .

. . . ...

(7)

Simple reordering of this set of equations leads to a regular
linear set of equations [11], [26]

...
...

...
. . .

...

...
(8)

Again, for notational brevity, define as the Hankel
matrix of size , built from the complex moments se-
quence such that the is the top left-most entry. Clearly, the
matrix uses the moments . The vector denotes
the column vector consisting of the difference equation coeffi-
cients as shown above. Using this notation, the above equation
is rewritten as

(9)

Note that this equation is true if the exact moments are used.
Using the noisy moments, we should expect to deviate from this
relationship.

In [26], it is proven that for nondegenerate polygons, the
above matrix is of full
rank. Therefore, since we have equations and
unknowns, requiring leads to an overcomplete
and well-posed system of equations.

As we will describe shortly, the difference equation coeffi-
cients can now be estimated using (8) in a variety of
ways, such as ordinary or total least-squares. Armed with these
coefficients, the vertices can be found by computing
the roots of the polynomial

(10)

1There are a variety of techniques for solving homogeneous linear set of
equations, such as Gauss-elimination, QR-decomposition, and the SVD. By as-
signing p = 1, the calculation is simplified, but it may not be numerically
satisfactory. Later, we indeed relax this assumption.

The above polynomial equation can be obtained by applying the
Z-Transform [29] to the difference equation (6).

B. Least-Squares Prony

The simplest idea for solving the above set of equations is
the least-squares (LS) method of minimizing the norm of the
equation’s error. Then, the solution is given by [10]

(11)

where denotes the Moore–Penrose pseudo-inverse. Given
the estimated polynomial coefficients , its roots are the esti-
mated vertices. An efficient and stable method for finding the
roots is the companion matrix method. For an matrix of
the form

...
...

...
. . .

...
...

(12)

its eigenvalues are the roots of the polynomial
[10]. This way, a root-finding problem is

converted into an eigenvalue one.

C. Total-Least-Squares Prony

A total-least-squares (TLS) alternative should be preferred
if we assume that error in the equations appear on both sides
of (8). This corresponds to a perturbation of the complex mo-
ments sequence that introduces noise both on the entries of the
vector , as well as on the entries of the matrix

.
Numerically, the TLS problem is solved using the singular

value decomposition (SVD) [10]. Equation (8) implies that the
matrix (note that this matrix is built with an
additional column) is expected to be singular. Thus, by applying
SVD on it and taking the right singular vector that corresponds
to the smallest singular value, we have an alternative solution for
the vector . Note that normalization of this vector is required
such that its last entry is 1; this is the coefficient of the in the
polynomial. Finding the vertices is accomplished, as above, by
finding the roots of the polynomial, and again, the companion
matrix could be used.

D. Cadzow’s Iterated SVD Algorithm

Applying the SVD method as discussed above is clearly sub-
optimal because we are interested in a constrained SVD oper-
ation that manages not only to reduce the rank of the matrix

by one but do so while creating a new ma-
trix having the same Hankel structure.
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In his paper, Cadzow [3] suggested a simple numerical algo-
rithm that attempts to solve this structured SVD problem. The
idea is to apply an SVD rank-reduction operation by replacing
the smallest singular value by zero. Since the result no longer
has a Hankel structure, we need a “Hankelize” operation that
averages the values along antidiagonals. Iterating between these
two operations, Cadzow’s algorithm converges to a local min-
imum of the function defined by the distance to the closest re-
duced-rank Hankel matrix (cf. [3]).

Cadzow’s algorithm is a preprocess applied to the matrix
. This matrix is constructed from the noisy

complex moments, and after applying this algorithm, we may
consider the new sequence as “cleaned.” The left singular vector
that corresponds to the smallest singular value (which is zero
due to the Cadzow algorithm) leads to the estimated polynomial
coefficients.

E. Other Advanced Prony-Based Methods

The methods discussed above can be considered to be ap-
proximate and inconsistent estimators [19]. They do not pose
the problem as a statistical estimation one, which exploits sto-
chastic estimators such as the maximum-likelihood [33] in order
to propose an optimal solution with respect to some reasonable
optimality criterion. In terms of the ML estimator, we exploit the
assumption that the noise is i.i.d., Gaussian, white, and with zero
mean. It is not hard to see that using the ML estimator amounts
to finding the closest set of moments to the measured one, where
distance is measured in the -norm. This minimization should
be done while forcing (8) (evaluated using the newly found mo-
ments) as a constraint.

Several successful attempts to start from this formulation of
the problem and lead to a suitable numerical solution are found
in the literature. Using the ML view of the problem, Bresler and
Macovski suggested the iterative quadratic maximum likelihood
(IQML) method [2]. Their idea is an iterative procedure that
solves the total-least-squares problem with the reweighting of
the noise in order to color it properly from one iteration to an-
other. The first iteration of their method coincides exactly with
the TLS method mentioned above.

Alternatively, we may regard the problem as a structured-total-
least-squares one, as analyzed extensively in [6], [21]–[23], and
[35]. The proposed algorithms in these works are all iterative,
leading to a local minimum. The above cited analysis indicates
improvement over the IQML algorithm.

Other Prony-based methods such as the modified Prony
method described in [25], [27], and [28] also propose to
improve the regular Prony formulation. In this work, we do not
delve further into these methods, as our interest lies in the next
family of Pencil-based approaches.

IV. PENCIL-BASED METHODS

A. Basic Formulation

Starting again from (4), we now show another helpful rela-
tionship, which leads to the pencil method [11]. From the ex-

isting equations in this set, take only , starting
with an arbitrary index , and obtain

...

...
. . .

...

...

...
. . .

...

. . .
...

Diag (13)

In the above equation, we define the operator Diag as the con-
struction of a diagonal matrix from a given vector. By row-con-
catenation of the columns corresponding to ,
we get

Diag (14)

A similar concatenation could be built with columns corre-
sponding to , resulting in

Diag

Diag Diag (15)

The matrix Diag is an diagonal matrix with
on its main diagonal. The square Vandermonde matrix

is nonsingular since the polygon is assumed to be non-
degenerate [10], [11], [26]. Based on (14) and (15), we obtain

Diag

Diag

Diag Diag

Diag

Diag

Diag

(16)
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This cumbersome relationship actually implies that for the pair
of matrices and , the vertices
are their generalized eigenvalues, and the columns of the matrix

are their generalized eigenvectors. Thus, given the se-
quence of moments , we are to form the two

Hankel matrices and
and then solve for their generalized eigenvalues using the rela-
tion

(17)

The eigenvalues are the vertices we desire. A complicating as-
pect in this relationship is the fact that the obtained pencil is
rectangular with more rows than columns. Note that this rela-
tionship is true for the noiseless complex moments, and even
weak noise added to these moments may lead to no solution for
this system of equations.

B. Intuitive Pencil Averaging

One natural and completely heuristic measure to cope with
such rectangular pencils is taking only a square slice of it using
only rows. Clearly, for the noiseless moments, this should
work well. Then, given the created square pencil, a regular gen-
eralized eigenvalue solver, such as the QZ decomposition algo-
rithm [10], can be used. The found eigenvalues are our estimated
vertices.

Since, for the pencil in (17), there are many subgroups
of rows, we may consider picking several of them, computing
the eigenvalues, and averaging the results. In particular, we may
sweep with a sliding window of length through the
rows and use the squares systems. Note that a diffi-
culty of the latter approach is the need to correspond the eigen-
values one to another between different solutions. This could be
done by some clustering method. Our experiments indicates that
this method is very sensitive and does not show promise.

C. Squaring the Pencil

If we could square the pencil to an one, we could have
proposed a solution. A sophisticated, yet presumably arbitrary
squaring method, is multiplying both sides of (17) with either

or . This of course will square
the pencil as desired. Can we justify such an operation?

As it turns out, one could prove an exact equivalence between
both these squaring methods and the employment of the Prony’s
method based on least-squares [15], [16]. Let us briefly show
this result, as it sheds light on the Pencil method and its claimed
superiority over the Prony’s approach.

Based on the prony-LS solution, as given in (11), we may
write the following extended equation:

...
...

...
. . .

...
...

(18)

In this result, the right columns exactly form the companion
matrix , as described in (12). Therefore, we have immedi-
ately that

(19)

Returning to the squaring method discussed here, assume that
we have multiplied both sides of (17) with ,
getting

(20)

A somewhat unstable solution of the obtained generalized
eigenvalue problem is obtained by multiplying both sides by
the inverse of the right matrix, resulting in

(21)

In this way, we find that the squaring method of the pencil
leads to the need to find the eigenvalues of the matrix

, and as we have shown above,
this is exactly the companion matrix used by the LS-Prony
method. Therefore, we see a close relation between the pro-
posed squaring method and the LS-Prony method. A similar
equivalence could be shown for squaring using
instead of .

Note that in favor of the pencil-squaring method, we should
mention that solving a square generalized eigenvalue problem

by converting it to a regular eigenvalue one of
the form is considered to be a crude and
poor numerical method. Thus, the pencil-squaring approach is
expected to give better accuracy. However, since it is closely re-
lated to the Prony-LS method, we see its suboptimality since it
disregards the inherent Hankel structure. On the other hand, in
favor of the LS-Prony method, we should say that it is specifi-
cally using the knowledge that some of the entries in the matrix
given in (18) are exact zeros. The pencil-squaring method does
not use this knowledge; hence, it does not exploit the
columns overlap between the two involved matrices.

D. “Generalized Pencil of Function” Method

The method “generalized pencil of function” (GPOF), which
has been promoted by Hua and Sarkar [15]–[18], is a successful
attempt to improve on the above squaring method. It leads again
to a square pencil that can be dealt with in the usual way. This
squaring method, however, is somewhat more complicated than
the one discussed in Section IV-C. A perturbation analysis done
on this method indicates results close to those predicted by the
Cramér–Rao bound [2], [33], which basically means a near-op-
timal solution. In [17], a relationship between this method and
several variants of the ESPRIT method [31], [32] is derived
showing comparable performance. Later work described in [24],
[30], and [34] further improved the GPOF results by forcing the
Hankel structure based on the Cadzow procedure or by easing
the algorithm’s complexity. In what follows, we will confine our
presentation to the core GPOF idea.
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When forming the pencil in (17), we gathered exactly
columns per both and . What
happens if we gather more? Returning to (14) and (15), assume
that columns are gathered using the columns with

. Since we have a finite moments set
at our disposal, we must use fewer rows so that the new matrix
pair exploits only the existing moments. Originally,
rows were used, and now, this should change to .
Thus

Diag (22)

This matrix uses in its entries. Its size is
, but its rank is due to the diagonal matrix in

this decomposition. Note that is bounded from above by
, as any value above this limit results with a matrix

with fewer rows or columns and, thus, lower rank than . A
similar concatenation corresponding to the columns
results in

Diag Diag

(23)

The Vandermonde matrix has rows and
columns, and due to the nondegenerate polygon, it is nonsin-
gular and of rank . We now show that these two matrices still
satisfy a pencil relationship since for , we have

Diag Diag

Diag

Diag

Diag (24)

Here, we have used the fact that is a square
full rank matrix, and thus, it is invertible. For a new

pair of matrices, we got a pencil just as
before, with eigenvectors being the columns of the matrix

. To summarize, we require that the
following generalized eigenvalue problem be solved:

(25)

and this equation is a generalization of (17); when , these
equations coincide.

Now, assume that we follow the squaring idea men-
tioned above, and multiply both sides of this equations by

. This way, we get an solvable pencil of
the form

(26)

An interesting property that can be exploited here is the fact
that the two matrices and

share the same -dimen-
sional null space. As shown in (22) and (23), both of these
matrices are created by multiplication with the rank matrix

on the right. Therefore, only of this pencil’s eigen-
values correspond to the desired vertices, and the remaining

refer to this common null space. A basis that spans this null
space and its orthogonal complement can be obtained by per-
forming an SVD decomposition of the form

. Then, defining as the first columns of and
as the last ones, it is clear that spans the pencil’s null
space.

Thus far, we managed to square the pencil to an one.
We still have to shrink it to get to an pencil that leads
to the vertices as eigenvalues. One step toward this goal is
the assumption that the eigenvectors to consider are to be or-
thonormal to the null space of the pencil. Thus, the candidate
eigenvectors for the pencil should be spanned by , and this
could be written as

(27)

This operation turns our pencil size to become . The
multiplication by the square and unitary matrix on
the left does not change the pencil’s solution and, thus, can
be discarded. Since the diagonal matrix is expected to have

nonzero first entries along its main diagonal and zeros else-
where, it is clear that the last rows of this pencil are ex-
pected to be zeros. Thus, defining to be the upper left
part of and to be the left columns of , we obtain

(28)

This is a square pencil, as desired, and its solution leads
to estimated vertices.

V. IMPROVED ESTIMATION ALGORITHM

A. Exact ML Refinement

Let us return now to the basic relation we saw in (4) that states
. Note that in this equation, both the

matrix and vector are functions of the vertices. If
the measured moments are contaminated with white Gaussian
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noise with variance , then the ML estimate of the vertices
is obtained by

ArgMax PDF

ArgMax

ArgMin

ArgMin

(29)

where PDF denotes the probability density function of the argu-
ment. In the above, we have used (2). As we have already said
before, using this minimization problem to directly solve for the
unknown vertices leads to two difficulties: i) Unless we success-
fully initialize the optimization procedure, we are bound to fall
into a local minimum; and ii) using this expression calls for the
need to solve the problem of ordering the vertices.

As to the first problem, we can assume that one of the above
mentioned estimation (either Prony- or Pencil-based) methods
is used, and a reasonable estimate of the polygon vertices is in-
deed given. Thus, using this solution for initial values, we can
expect to improve when minimizing, even locally, the above
function. This implies that the new method is more robust than
previously discussed algorithms. Since the exact ML method di-
rectly formulates the desired goal in our estimation task without
assumptions or approximations, it is expected to lead to better
results compared with the algebraic methods. These methods,
while mathematically more appealing, neglect the dependencies
of the coefficients on the vertices, not to mention the statistical
optimality condition provided by the ML solution.

For the problem of ordering, we may consider two options: i)
Assume that we are able to order the vertices given to us; see [7]
for discussion on how to solve this problem, or ii) disregard the
dependency of the coefficients on the vertices, and replace this
vector with the least-squares minimizer of this error, namely

(30)

This way, we ignore the relation between the unknown ver-
tices and the coefficients (and thus, we necessarily lose some-
thing), but we gain from the simplicity induced by the freedom
of finding the order of the vertices. Actually, the second ap-
proach is suitable for using the proposed idea on improvement
when dealing with applications such as AR-system identifica-
tion, and more, as indeed, is not a function of the unknowns
in any direct way.

Let us define our target function to be minimized by

(31)

Let us assume that given an initial solution, we are able to order
the vertices properly. Since this function is complicated, we pro-
pose to exploit a numerical algorithm in order to fine tune this
initial solution and, in this way obtain the desired improvement.
One such simple idea is to perform a line search for each vertex
with all the other points fixed. In this way, we update the algo-
rithm through a coordinate descent optimization procedure. Al-
ternatively, more sophisticated nonlinear least-squares methods
could be used.

It is interesting to note that there is a close relationship be-
tween the method proposed here and the variable-projection
(VarPro) method [8] and its variants [12], [20]. Starting with
the assumption that the coefficients are independent
of the vertices , the above minimization problem (31)
becomes

ArgMin

This problem is treated by the VarPro method, as originally pro-
posed by Golub and Pereyra [8]. VarPro proposes to directly
minimize the function obtained by the ML formulation instead
of using a simplified formulation such as the Prony or the Pencil
methods. VarPro exploits the fact that the variables of the opti-
mization problem are separable and that the problem is linear
with respect to the . Thus, an explicit expression for
these coefficients can be obtained by ordinary least-squares and
used in the penalty function shown above. As to the remaining
unknowns, these are found iteratively, exploiting closed-form
expressions for the derivatives of the function.

As was indicated before, disregarding the relationship be-
tween the and the may reduce the accuracy
of the obtained solution. A variant of the VarPro proposed by
Kaufman and Pereyra [20] is more suitable for our problem, as
it allows for the introduction of constraints as well. Our problem
thus can be rewritten as

ArgMin

Subject To:

Indeed, using VarPro with constraints as in [20], we get an algo-
rithm to minimize the ML penalty function we have defined. The
differences between this approach and ours are minor, namely,
the choice of initialization, and the fact that our algorithm em-
ploys a derivative-free optimization procedure.

B. Regularization and the MAP Estimator

From an intuitive point of view, we can suggest the following:
If we have some prior knowledge about the desired vertices,
we can exploit this information and direct the result toward this
property by adding a regularization term to (31). As an example,
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knowing that the angles formed by the vertices are close to 90 ,
we may add a term of the form

Reg

This expression exploits the geometric interpretation of the
coefficients, having a unit magnitude for vertices forming 90
angle. Since the minimization described above is done numer-
ically, any reasonable regularization function can be incorpo-
rated and used. When adding this term, we should multiply it
by some confidence factor . Large implies that we are con-
fident about this property of the vertices, and thus, this penalty
should play a stronger role. An automatic choice of can also
be made based on, for instance, the generalized cross-validation
(GCV) method [9].

There are many other choices for the regularization function.
Just to mention a few, one might be interested in smoothness of
the final polygon, suggesting

Reg

or

Reg

Alternatively, we might direct the solution to a less “rough”
polygon using the fact that the polygon area is given by

Im [see (3)], and the perimeter is

. Defining Reg
or Reg , we can measure “roughness”
and penalize for it.

This regularization idea essentially leads to the maximum
a posteriori probability (MAP) estimator. The MAP estimator
maximizes the posterior probability of the unknowns given the
measurements PDF , and using Bayes
rule, this is given by

ArgMax PDF

ArgMax PDF

PDF (32)

If we consider the same likelihood function as in (29) and further
assume that

PDF Reg (33)

where is a normalization coefficient, and the function Reg
is some energy function, then we get that our overall target func-
tion becomes

Reg (34)

and this is indeed the regularization approach of interest.

VI. RESULTS

In this section, we present reconstruction results corre-
sponding to some of the algorithms presented in this paper.

Fig. 1. Polygons used for the described experiments.

The structure of the experiment is as follows: We start by
creating a polygon and computing its complex moments using
Davis’s Theorem (2) and (4). We then add complex Gaussian
white noise to the moments and apply several of the estimation
procedures discussed above. Several comments are in order
before we proceed.

• In creating the polygon, we normalize it to be centered
around the origin and lie inside the unit disk to obtain a
stable moment series. This operation could be interpreted
as adjusting our measurement devices to cope with expo-
nentially growing/shrinking measurements. More on this
normalization effect can be found in [11] and [13].

• The noise added in the experiment is relatively weak. We
found that all the algorithms essentially fail when the noise
energy is above some threshold. This hints at the com-
plexity of the problem and its severe inherent sensitivity.
Note that regularization does improve the stability of these
algorithms to some extent.

• Each experiment is repeated 100 times (unless otherwise
stated) in order to average error results. We denote the
estimated vertices in the th experiment by
and the exact locations as . Thus, the root mean
squared error per vertex is given by
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TABLE I
STAR SHAPE WITH NOISE FACTOR � � 1e � 3—RMSE PER VERTEX

TABLE II
STAR SHAPE WITH NOISE FACTOR � = 1e � 4—RMSE PER VERTEX

TABLE III
STAR SHAPE WITH NOISE FACTOR � = 1e � 5—RMSE PER VERTEX

TABLE IV
STAR SHAPE—OVERALL RMSE ERROR PER METHOD

RMSE for all the vertices is obtained by averaging these
values. Since all the vertices are in the unit circle, by
simply estimating the vertices as being on the origin,
we obtain an error of less than 1. This should be used
as a reference value in order to interpret the presented
values. For example, when a method is shown to give an
average error of 0.5, it really means that this method fails
completely.

• In our simulation, we use the least-squares Prony
method, the TLS-Prony method, the Cadzow algorithm
with ten iterations, the pencil averaging method, the
squaring of the nonsquare pencil by the multiplication by

, and the GPOF method with .
In all these methods, we start by nulling , , and to
zero. The fact that has been indicated by (3).
In addition, since it is proportional to the center of
mass, and this is zero due to the normalization mentioned
above.

Experiment 1: In this experiment, we use a star-shape with
ten vertices, as shown in Fig. 1(a). We assume that 101 moments
are given (i.e., ). Tables I–III show the average RMSE
per each vertex for noise factor , , and

, respectively. This variance represents the energy of
a real Gaussian noise added to the real and the imaginary parts
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Fig. 2. Estimation results for the star shape with � = 1e � 4.

of the moment values. Table IV summarizes the overall error per
each method and per each noise variance. Note that the smallest
error achieved is highlighted in bold. Fig. 2 presents the location
of the 100 estimated sets of vertices per each method for the case
of .

Experiment 2: A similar experiment on an “E” shape
shown in Fig. 1(b) and the estimation results are described in
Tables V–VIII and in Fig. 3, following the same structure. This
time, we assumed that 81 moments are given (i.e., ).
Fig. 3 corresponds to results obtained for , which
is a higher noise compared with the one used in the creation of
Fig. 2. This noise variance value was chosen in order to obtain
larger error and, thus, a richer visual effect, as we found the
results for this shape to be more robust.

In addition, the effect of changing the value of in the GPOF
algorithm is studied in Fig. 4 for this example. It can be seen that
the error is relatively insensitive over a large range of and noise
variance values. Note that the left corner value corresponds to

, where we effectively implement the LS-Prony algo-
rithm. The benefit of higher values of is thus evident.

From these results, we can conclude the following.

• It is clear that the Pencil averaging method that we pro-
posed based on intuition is very sensitive and does not
show any promise. This result is very surprising, as for the
exact moments, we know that each and every such square
pencil among those averaged should have resulted in the
proper solution. This goes to show that in passing from
simple additive noise model to an eigenvalue perturbation,
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TABLE V
E-SHAPE WITH NOISE FACTOR � = 1e � 3—RMSE PER VERTEX

TABLE VI
E-SHAPE WITH NOISE FACTOR � = 1e � 4—RMSE PER VERTEX

TABLE VII
E-SHAPE WITH NOISE FACTOR � = 1e � 5—RMSE PER VERTEX

TABLE VIII
E-SHAPE—OVERALL RMSE PER METHOD

strong nonlinear and unstable effects take place. This also
sheds some light on the sensitivity of the other algorithms
to strong noise, as seen here.

• As expected, when noise variance is reduced, accuracy
is improved. However, we see that most of the estima-
tion methods do not degrade gracefully as the noise is in-
creased. Rather, we see a strong nonlinear behavior ac-
cording to which, for weak noise the algorithm behaves
well, and for noise above some threshold the algorithm
completely breaks down. We believe that analysis of the
Cramér–Rao bound could explain this effect.

• Another effect related to the previous point is that the rel-
ative performance of the methods changes dramatically
when the noise variance is changed. An ordering of the
methods from the best to the worst is as follows: GPOF,
Cadzow, TLS-Prony, and LS-Prony or the pencil-squaring
method, which are roughly equivalent. In the TLS-Prony,
we use the fact that all the moments are corrupted by
noise and not just one column of the moments matrix.
In the Cadzow algorithm, we exploit the Hankel-structure
as well, and thus, we expect better performance than the
TLS-Prony. In the GPOF method, we exploit the fact that
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Fig. 3. Estimation results for the “E” shape with � = 1e � 3.

there is a large-dimensional subspace that should be or-
thonormal to the desired solution.

This ordering is indeed the one we find in our simu-
lations, when the additive noise is weak enough. As the
noise increases, however, the best performing algorithms
(GPOF, Cadzow, and TLS-Prony) are more sensitive,
whereas the LS-Prony and the pencil-squaring methods
exhibit quite robust behavior. This effect of breakdown of
the more accurate algorithms is more pronounced for the
star-shape because it is symmetric. More on this effect is
discussed next.

• In the star-shaped polygon, we consistently get better re-
sults with all methods for the outer vertices because they
are convex. The overall error in the estimation is mostly
driven by the error obtained for the inner vertices, which
are the concave parts of the polygon. This can be explained

by the wider angle that these vertices have and the fact that
they form a concave part of the polygon (see [11] and [13]
for more details on sensitivity in general and the geometric
interpretation of it).

• Even though the overall behavior is similar in the two
sets of experiments, it is clear that better accuracy is ob-
tained for the “E” shape, where there is a sharper con-
trast between the best and the worst results. This is caused
by the characteristics of the moment sequences involved.
Since the star-shape is near-symmetrical, its moment-se-
ries contain many zeros. On the other hand, the “E” shape
is less symmetric, and therefore, its moment series is more
spread. As our estimation problem is essentially working
with ratios between moments [see (8) or (17)], a moment
series with zeros is expected to be much more vulnerable
to errors.
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Fig. 4. Estimation results for the “E” shape with GPOF method and varying
values of L.

• There is an interesting behavior common to all algorithms
and found for very strong noise . In this case,
all the estimated eigenvalues tend to fall very close to the
unit circle. The difference between the various algorithms
is the breaking point when such a phenomenon starts to
take place. In order to explain this effect, assume that we
use the LS-Prony method. Using (8), we actually try to
suggest an th-order linear predictor of a complex sto-
chastic process sequence from its samples. The result is a
random vector, and it is known (see [1]) that a polynomial
with random coefficients lead to roots on the unit circle.

Experiment 3: We now present several results related to the
improvements discussed in Section V. In this experiment, we re-
turn to the star shape and apply the GPOF method for obtaining
an initialization solution. In this experiment, we assumed

. We then update each vertex only once based on a local
coordinate search, i.e., choosing the location corresponding to
the nearest local minimum in a search window. Fig. 5 shows the
behavior of the penalty function per each vertex while fixing
all the other vertices. The location of the true, GPOF estimated
( symbol), and improved vertices (dot symbol) are also over-
layed. In this case, no regularization was used. The error ob-
tained using the GPOF method is 0.0187, and after the update,
it becomes 0.0074. It is interesting to see that the function we
work with does not see fit to change the outer (convex) vertices;
we know that these are estimated rather accurately.

Experiment 4: Table IX summarizes the results of the av-
erage error obtained over 20 runs using the star shape, applying
the GPOF method for initialization, and applying 20 iterations
of the coordinate descent algorithm. Each such iteration updates
every vertex once, and therefore, we have 200 overall updates.
As can be seen, the results are improved dramatically compared
with the initialization.

Experiment 5: Again, using the “E” shape, assume
, and we initialize using the LS-Prony algorithm. Similar

to the process that created Figs. 5 and 6, the left side presents
the ML function, as obtained by perturbing each vertex, as-
suming that all the others are fixed. We chose LS-Prony initial-

Fig. 5. Star shape estimation improvement—the penalty function as a function
of each vertex separately.

TABLE IX
STAR-SHAPE—OVERALL RMSE FOR THE GPOF METHOD (USED AS

INITIALIZATION) AND THE DIRECT ML APPROACH

ization and high noise variance in order to better see the errors
and the achieved improvement. In this example, the error of the
LS-Prony was found to be 0.106. After the improvement stage,
we obtained an error of 0.062. Notice that we explore improve-
ment in a finite size window and may obtain our optimal result
on the boundary of this window, as indeed happens in this figure.

Experiment 6: Table X summarizes the results obtained for
the E-shape using the GPOF method as initialization and 20 iter-
ations of the coordinate descent algorithm. Again, we averaged
20 experiments in order to see the aggregate effect of the direct
ML algorithm. As can be seen, there is a consistent and marked
improvement again.

Experiment 7: For the “E” shape, we add a regularization
term promoting 90 angles, as proposed in Section V-B. This
term is added to the function in (31) with a regularization co-
efficient found empirically to be 1000. The result as a function
of each of the vertices separately is shown on the right side of
Fig. 6, and indeed, the error reduced further to 0.041 using a
simple and single coordinate descent update.

Experiment 8: The regularization impact on the results is
also summarized in Table X, averaged again over 20 experi-
ments using the same regularization function. For ,
we chose . As the noise change its energy, we change

accordingly such that is a constant. We see a consistent
improvement due to the regularization, as expected.
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Fig. 6. “E” shape estimation improvement. (Left) Direct ML approach. (Right) Adding regularization.

TABLE X
E-SHAPE OVERALL RMSE FOR GPOF AS INITIALIZATION, THE DIRECT ML, AND THE MAP APPROACHES

VII. CONCLUDING REMARKS

This paper discusses the problem of reconstructing a planar
polygon from its measured moments. When these moments
are contaminated by additive noise, estimation procedures
are required. Two families of such estimation algorithms are
presented: the Prony- and the Pencil-based methods. For both
families, we show that several algorithms emerge as candidate

solvers. Simulations comparing these methods indicate that
the GPOF method is indeed the leading method in accuracy in
most cases.

We also find here that the least-squares Prony is gen-
erally exhibiting good and robust behavior when there is
strong noise. This result is rather intriguing, as the litera-
ture dealing with this estimation problem typically tends to
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rank the LS-Prony as one of the worst methods. Claims are
also made on its relative weakness when compared with the
pencil-based methods.

Finally, in this work, we proposed a method to improve the
estimated vertices beyond the ability of the above-described
methods, exploiting more features of the underlying problem.
In this way, we showed that regularization can become part of
the recovery process in a natural and effective way. We note that
even though the applications from array processing and signal
processing have a somewhat different formulation due to the
lack of dependency of the coefficients on the vertices, we be-
lieve that the results presented here apply to these works as well.
Further work is required in order to analyze these proposed ex-
tensions and improvements.
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