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A General Framework for Regularized,
Similarity-Based Image Restoration

Amin Kheradmand, Student Member, IEEE, and Peyman Milanfar, Fellow, IEEE

Abstract— Any image can be represented as a function defined
on a weighted graph, in which the underlying structure of the
image is encoded in kernel similarity and associated Laplacian
matrices. In this paper, we develop an iterative graph-based
framework for image restoration based on a new definition of
the normalized graph Laplacian. We propose a cost function,
which consists of a new data fidelity term and regularization
term derived from the specific definition of the normalized graph
Laplacian. The normalizing coefficients used in the definition of
the Laplacian and associated regularization term are obtained
using fast symmetry preserving matrix balancing. This results
in some desired spectral properties for the normalized Laplacian
such as being symmetric, positive semidefinite, and returning zero
vector when applied to a constant image. Our algorithm com-
prises of outer and inner iterations, where in each outer iteration,
the similarity weights are recomputed using the previous
estimate and the updated objective function is minimized using
inner conjugate gradient iterations. This procedure improves the
performance of the algorithm for image deblurring, where we
do not have access to a good initial estimate of the underlying
image. In addition, the specific form of the cost function allows
us to render the spectral analysis for the solutions of the corre-
sponding linear equations. In addition, the proposed approach
is general in the sense that we have shown its effectiveness for
different restoration problems, including deblurring, denoising,
and sharpening. Experimental results verify the effectiveness of
the proposed algorithm on both synthetic and real examples.

Index Terms— Deblurring, kernel similarity matrix,
sharpening, graph Laplacian, denoising.

I. INTRODUCTION

MOST real pictures exhibit some amount of degradation
depending on the camera and settings used to capture

the scene, environmental conditions, and the amount of relative
motion between camera and subject, among other factors.
Restoration algorithms aim to undo undesired distortions like
blur and/or noise from the degraded image. In this paper,
we concentrate on problems where the main distortion of the
image comes from blurring. We assume linear shift invariant
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point spread functions (PSFs), such that the blurring process
is described through the following linear model

y = Az + n. (1)

In this model, y is a lexicographically ordered vector represen-
tation of the input n×n blurred and noisy image, z is the latent
image in vector form, and n is a noise vector consisting of
independent and identically distributed zero mean noise with
standard deviation σ . Also, A is an n2 × n2 blurring matrix
which is constructed from the corresponding PSF and usually
has a special structure depending on the type of boundary
condition assumptions [1], [2].

Most existing deblurring methods rely on optimizing a cost
function of the form

E(z) = ‖y − Az‖2 + η R(z) (2)

with respect to the unknown image vector z. The first term
in the above is the data fidelity term and the second term
implies a prior term which regularizes the inherently ill-posed
problem. In such algorithms, the parameter η controls the
amount of regularization to keep the final estimate from being
too smooth or exhibiting unpleasant noise amplification and
ringing artifacts. Deblurring algorithms can be classified based
on the type of blurs they deal with, and also different choices
of the regularization term they exploit to solve the deblurring
problem [3], [4]. A large class of deblurring algorithms
take advantage of a total variation (TV)-type regularization
term [5]–[7]. They mostly differ in the specific definition of the
TV term and the optimization method for solving the resulting
cost function. Other methods use a nonlocal differential oper-
ator as the regularization term with different norms [8]–[10].
Sparsity-based methods are also motivated by sparse repre-
sentation of images in some appropriate domain [11], [12].
In [13], a Hessian norm regularization is used for deblurring,
with biomedical applications. Example-based manifold priors
are used in [14] to regularize the deblurring problem. In [15],
a prior term is added to encourage the estimate to have
a gradient distribution similar to a reference. Furthermore,
some recent algorithms are based on the idea of decoupling
deblurring and denoising and exploiting the powerful BM3D
algorithm [16] in their denoising phase [17], [18]. In [18],
BM3D frames are defined explicitly and based on a general-
ized Nash equilibrium approach, the two objective functions
for denoising and deblurring parts are balanced. This algorithm
is one of the best existing deblurring methods for symmetric
blurs (e.g., Gaussian and out-of-focus blurs). For motion
deblurring applications [19], [20], a hyper-Laplacian prior

1057-7149 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



KHERADMAND AND MILANFAR: GENERAL FRAMEWORK FOR REGULARIZED, SIMILARITY-BASED IMAGE RESTORATION 5137

Fig. 1. Block diagram of our proposed iterative deblurring method. K is the kernel similarity matrix, and W is the doubly stochastic filtering matrix. ẑ(k) is
the estimate corresponding to optimization of the objective function at the kth outer iteration of the algorithm.

Algorithm 1 Iterative Restoration Algorithm

based on the statistics of natural images is used. A progressive
intra-scale, inter-scale approach is used in [21] for non-blind
image deconvolution. Shan et al. [22] have proposed a cost
function in which the data fidelity term involves different
derivative terms for motion deblurring of natural images.

In this paper, we propose a new approach for kernel
similarity-based image deblurring by introducing a novel data-
adaptive objective function. We also show that special cases
of the proposed approach can be used for image denoising and
sharpening. Figure 1 depicts a block diagram of our iterative
deblurring method. As shown in Fig. 1 and Algorithm 1,
the proposed method consists of a number of steps (outer
iterations), such that at each step k, an updated objective
function is minimized using Conjugate Gradient (CG) inner
iterations to obtain the corresponding estimate ẑ(k). To clarify
the differences and contributions of this work as compared to
some other nonlocal regularization works [8], [9], [23]–[29],
it is worthwhile listing them here.

1) We propose a new cost function (16) for image restora-
tion based on a new definition of the normalized graph
Laplacian. The proposed cost function (16) includes a
normalized regularization term derived from this new
definition of the graph Laplacian as well as a new data
fidelity term. The normalizing coefficients are obtained
from a fast symmetry preserving matrix balancing
algorithm [30]. This results in some desired spectral
properties for the graph Laplacian. Namely, the proposed

Laplacian is symmetric, positive semi-definite, and when
applied to a constant vector, it returns the zero vector.
In this paper, we will discuss the spectral properties of
the proposed graph Laplacian and compare its attributes
and performance with the existing graph Laplacians.

2) Taking advantage of the quadratic form of the proposed
cost function as well as spectral properties of the
proposed Laplacian matrix, we present a filtering
interpretation for different terms in our objective
function as a tool for spectral analysis of the resulting
restoration algorithms. Moreover, the symmetric and
sparse nature of the resulting filtering and Laplacian
matrices equips us with the required tools for efficient
implementation of the algorithm using CG and fast
sparse matrix-vector products.

3) The way we initially compute the kernel similarity
values is different in the sense that we start with a
once denoised version of the input noisy and blurry
image, and hence avoid the contribution of the noise
and ringing artifacts of other deblurring algorithm to
the computation of the similarity weights as in see [9].
This denoised initial image is also exploited as a
plug-in estimator of Az (blurred clean image) used in
the Predicted Mean Squared Error (PMSE) measure
for stopping the inner CG iterations. We allow the
weights to be updated during the outer iterations to
improve the performance of the algorithm by computing
the similarity weights from the enhanced versions of
the input image through the outer iterations.

4) We have introduced sharpening and denoising methods
as special cases of the proposed general cost function.
The denoising aspect is a novelty of the technique
that we have previously explored in depth in [31], but
it is worth mentioning again here because it fits the
proposed general framework.

5) Our approach is quite general in the sense that it is able
to handle a variety of different PSFs including symmet-
ric PSFs and more challenging motion blur PSFs.

We emphasize that as compared to [32] specifically, this
paper is different in the following respects:

1) Although the general symmetrizing idea is similar,
[32] focuses on symmetrizing smoothing filters, in
which it starts from a non-symmetric smoothing filter
and returns its symmetrized version using the original
Sinkhorn matrix balancing algorithm in [33] with perfor-
mance and analysis advantages described in [32]. In this
paper, we start from the symmetric and non-negative
similarity matrix K and use a different fast matrix
balancing algorithm, designed for scaling symmetric
and non-negative matrices, with fast convergence and
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Fig. 2. Graph representation of images and construction of kernel similarity
matrix K , un-normalized Laplacian D − K and normalized Laplacian
I − C−1/2 K C−1/2.

symmetry-preserving properties even when the matrix
scaling algorithm is stopped early [30].

2) We use the symmetric and doubly stochastic output
of [30] to define the normalized Laplacian and we use
it in a variational graph-based formulation for various
restoration problems.

In the rest of the paper, we elaborate on the above mentioned
properties. In Section II, we summarize some of the existing
nonlocal regularization restoration methods in a unified graph
representation framework. In Section III, we discuss how to
derive the symmetric kernel similarity and filtering matrices
as the main building blocks of our algorithm. In addition,
we present an appropriate definition of normalized Laplacian
matrix for filtering purposes and discuss its spectral properties.
Section IV is devoted to introducing the objective function
and the proposed procedure to optimize it in order to get
the final estimate. Section V discusses special cases of the
proposed objective function introduced in Section IV for image
denoising and sharpening. In Section VII, we verify the effec-
tiveness of the proposed deblurring algorithm via a number
of synthetic and real experiments of deblurring color images
for both symmetric PSFs (Gaussian and out-of-focus PSFs)
as well as nonlinear camera motion blurs. Final conclusion
and discussion is provided in Section VIII. Throughout the
paper, vectors are represented by boldface small letters, and
matrices are shown by capital letters. Also, in iterative update
equations, subscript indices for vectors indicate inner iteration
numbers, whereas superscript indices represent outer iteration
numbers.

II. RELATED WORK

In this section, we summarize some of the existing methods
based on the idea of nonlocal regularization in a graph-based
framework. We first clarify our notation and summarize some
of the definitions mostly common in the nonlocal regulariza-
tion approaches in the literature. As depicted in Fig. 2, any
image can be defined as an intensity function on the vertices V
of a weighted graph G = (V , E, K ) consisting of a finite
set V of vertices (image pixels) and a finite set E ⊂ V × V
of edges (i, j) with the corresponding weights K (i, j) which
measure similarity between vertices (pixels) i and j in the
graph (e.g., Eq. 11). The function (intensity) values of the
image can be denoted as a vector1 z = [z(1), . . . , z(N)]T .

1Note that N = n2.

The similarity weights are represented as an N × N matrix K ,
which is symmetric and non-negative.

As shown in Fig. 2, graph Laplacian matrix is derived
from K and plays an important role in describing the under-
lying structure of the graph signal. There are three different
definitions of the graph Laplacian commonly used in the liter-
ature in the context of graph signal and image processing, each
having different spectral properties [34]–[36]. In this paper, we
present a fourth one, a new normalized graph Laplacian for
image processing purposes. In Table I, we have summarized
the properties of different types of Laplacians used in the
literature along with those of our proposed definition.

In [23] and [37], the difference of a function z : V → �
on an edge (i, j) ∈ E of the graph G is defined as:

(dz)(i, j) = √
K (i, j)(z( j) − z(i)). (3)

Also, the weighted gradient vector of a function z at a vertex
i ∈ V can be expressed as:

∇z(i) = [dz(i, j1), . . . , dz(i, jm)]T , ∀(i, j) ∈ E . (4)

Accordingly, the Laplace operator of z at a vertex i is derived
as:

�z(i) =
∑

j, j∼i

K (i, j)(z(i) − z( j)). (5)

where j ∼ i stands for the vertices j in the graph such that
j is connected to i ; i.e., (i, j) ∈ E .

The authors in [23] and [37] propose a nonlocal regulariza-
tion approach by considering the following cost function:

E(z, y, η) = ‖z − y‖2 + ηR(z), (6)

where the regularization functional R is:

R(z)= 1

2

N∑

i=1

‖∇z(i)‖2 = 1

2

N∑

i=1

∑

j, j∼i

K (i, j)(z(i) − z( j))2.

(7)

It essentially enforces the similar pixels of the image -as
measured by the function K (., .)- to remain similar in the
final estimate. By minimizing the above cost function with
respect to the unknown z, they recover the desired image. Note
that the regularization term (7) can be expressed based on the
un-normalized graph Laplacian D − K as [23], [34], and [38]:

R(z) = zT (D − K )z, (8)

where D = diag{K 1N } is a diagonal matrix whose i th
diagonal element is the sum of the elements of the i th
row of K , and 1N is the N-dimensional vector of all ones.
In [23] and [37], the authors also introduce the Laplace oper-
ator associated to the traditional normalized graph Laplacian
I − D−1/2 K D−1/2. However, they do not use this definition of
the Laplacian in their formulation because of the fact that the
output of this operator is not null when the input is constant.

In [25], Gilboa and Osher consider the same nonlocal
functional as the one in (6) for image denoising. They
discuss the case η = ∞ as well, for which they derive the
diffusion flows (iterations) defined based on the un-normalized
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TABLE I

PROPERTIES OF DIFFERENT GRAPH LAPLACIANS. LAST ROW IS OUR DEFINITION

Laplacian D − K . They show these types of iterations give
better performance than the diffusion iterations corresponding
to another type of normalized Laplacian (called random walk
Laplacian and defined as I −D−1 K ). Also, in [26], the authors
introduce the gradient-based and difference-based regularizing
functionals, respectively as (we consider here their discrete
versions):

J (z) =
N∑

i=1

φ(‖∇z(i)‖2)

=
N∑

i=1

φ(
∑

j, j∼i

K (i, j)(z( j) − z(i))2), (9)

Ja(z) =
N∑

i=1

∑

j, j∼i

φ(K (i, j)(z( j) − z(i))2), (10)

in which φ(s) is a positive function, convex in
√

s, with
φ(0) = 0. They consider the quadratic case φ(s) = s, where
the above functionals coincide. They also investigate the case
φ(s) = √

s, for which nonlocal TV and anisotropic nonlo-
cal TV functionals are derived from the gradient-based and
difference-based approaches, respectively. They have applied
their framework to inpainting and detecting and removing
irregularities from textures.

In [28], Szlam, Maggioni, and Coifman propose function
adapted diffusion processes (using the random walk Laplacian
I − D−1 K ). They also propose a filtering procedure using a
type of thresholding of the expansion coefficients of the input
function on the linearly independent bases of the operator
D−1 K . Reference [29] is also based on the same idea
(expansion of the input data on the space spanned by the right
eigenvectors of random walk Laplacian) for surface smoothing
with weights derived locally in a non data-adaptive manner.
The denoising method in [27], exploits a similar filtering
idea as in [28]; i.e., constructing a weighted graph from
the input image characterized by its normalized Laplacian
I − D−1/2 K D−1/2, and expanding the noisy image using the
orthonormal bases of the normalized graph Laplacian, then
hard thresholding of the transform coefficients to derive the
corresponding estimates for image pixel intensities in different
patches of the image. In [24], a patch-based functional is
considered for denoising 3D image sequences acquired
via fluorescence microscopy. This functional is based on
minimizing a difference penalty term which is defined using
the weighted difference between its patches rather than the
weighted difference between its pixels. The minimizer of such
a cost function can be equivalently expressed as a nonlocal
filtering process; i.e., ẑ = D−1 K y.

Finally, the most relevant paper to our work is reference [9],
in which Zhang et al. propose two efficient algorithms for
solving nonlocal TV-based image deconvolution.2 They also
provide a weight updating strategy within these iterative
methods which was found to be ineffective in improving the
performance of their algorithms. Therefore, they chose to
compute the similarity weights only once from the simple
Tikhonov regularization based deblurring estimate. Also, [8]
proposes a regularization technique using total variation on
nonlocal graphs for inverse problems, when the input data
has undergone linear degradation as well as additive noise.
Note that our deblurring algorithm uses a different nonlocal
approach, in which the corresponding regularization term
is defined using the normalizing coefficients derived from
Sinkhorn’s algorithm in [30]. Moreover, based on our exper-
iments, the weight updating strategy is indeed effective in
improving the performance of the proposed algorithm within
the same quadratic framework. Furthermore, according to the
analysis provided in [22], using the data fidelity term involving
different derivatives of the residual is better able to model the
underlying process for deblurring problems (especially for real
motion blurred images).

III. DERIVATION OF BUILDING BLOCK MATRICES

OF THE PROPOSED ALGORITHM

In this section, we introduce the kernel similarity matrix K
and a closely related doubly stochastic symmetric matrix W
as the main filtering building block of our iterative algorithm
from a graph point of view. Having these matrices at hand,
we can define the normalized Laplacian matrix whose spec-
tral properties are crucial for analyzing the behavior of the
algorithm.

A. Kernel Similarity Matrix K and Filtering Matrix W

While our approach is general enough to include any valid
kernel similarity function [39], [40], the (i, j)th element of the
kernel similarity matrix K is computed here using the nonlocal
means (NLM) definition as [41]

K (i, j) = exp(−‖ẑi − ẑ j‖2

h2 ), (11)

in which ẑi and ẑ j are patches around the pixels i and j of
the image ẑ, and h is a smoothing parameter. Note that at each
outer iteration, the kernel similarity weights are re-computed
from the estimate at the previous iteration. As a result of the

2As mentioned, the corresponding regularization term is derived using
φ(s) = √

s in Eq. (9).
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above definition for the kernel similarity weights, the matrix K
would be a symmetric non-negative matrix. Furthermore, we
only compute the similarity between each patch and a small
neighbourhood of patches around it (e.g., a search window of
size 11 × 11 of patches around each patch). Therefore, the
matrix K is sparse. This sparse structure is appealing from a
computational point of view.

Applying Sinkhorn matrix balancing procedure [33] to the
matrix K yields the doubly stochastic filtering matrix W .
We use a recent fast version of the original algorithm
for symmetric non-negative matrices [30]. This balancing
algorithm returns a diagonal scaling matrix C , such that
the resulting matrix W = C−1/2 K C−1/2 is a symmetric
non-negative doubly stochastic matrix. Since W is symmetric,
it can be decomposed as W = V SV T , where V is an
orthonormal matrix whose columns are the eigenvectors
of W , and S = diag{λ1, λ2, . . . , λN } is a diagonal matrix
consisting of eigenvalues of W as its diagonal elements.
Moreover, since W is doubly stochastic, it has eigenvalues
in the range λ1 = 1 > λ2 ≥ · · · ≥ λN ≥ 0 [40]. The largest
eigenvalue is exactly equal to 1 with the corresponding DC
eigenvector v1 = (1/

√
N )[1, 1, . . . , 1]T = (1/

√
N )1N [40].

Intuitively, it means that applying W to a signal, preserves
the DC component of the signal. This is a desirable property
for filtering purposes. Note that the spectral analysis of the
matrix W reveals its inherent low-pass nature (the largest
eigenvalue corresponds to the DC component) [32].

B. Normalized Graph Laplacian Matrix

At this point, we define our normalized graph Laplacian
matrix as

I − W = I − C−1/2 K C−1/2. (12)

This is the proper definition of the normalized graph
Laplacian matrix for image filtering purposes, as opposed
to its traditional definition in graph theory literature
I − D−1/2 K D−1/2 [34], [38]. It is worthwhile comparing
this traditional definition of the normalized Laplacian with
our proposed definition which is based on a very different
scaling of the similarity matrix K using matrix balancing [30].
Our definition of the normalized Laplacian (I − W =
I − C−1/2 K C−1/2) is symmetric, positive semi-definite, with
the zero eigenvalue associated to the constant eigenvector

1√
N

1N . Hence, when applied to a constant function, it returns
a zero vector. The traditional definition of the normalized
graph Laplacian lacks the desired filtering property of having
DC eigenvector as one of the basis eigen functions [34].
As a result, the definition of normalized graph Laplacian
in (12) is proposed and used in this paper. This definition
has the desired spectral properties for our specific applications
as well as a nice filtering interpretation. In fact, the set
of eigenvectors of I − W can be considered as the basis
functions of the underlying graph, and its eigenvalues can
be thought of as the corresponding graph frequencies. Also,
note that the Laplacian I − W has a high-pass filtering nature
(with null eigenvalue corresponding to the DC eigenvector).
This property is consistent with the expected behavior of

the Laplacian filter in image processing. Consequently, when
applied to an image, I − W can be directly interpreted as
a data-adaptive Laplacian filter. Therefore, it enables us to
incorporate different types of filters in the data term coupled
to the regularization term based on the application at hand.
In the “random walk” Laplacian I − D−1 K , (from the theory
of Markov chains), the (i, j)th element of D−1 K represents
the probability of moving from node i to node j of the graph
in one step, given that we are in node i [42]. A similar random
walk interpretation can be provided by our symmetric doubly
stochastic filtering matrix W = C−1/2K C−1/2, with analysis
and performance advantages over D−1 K for image filtering,
as discussed in [32].3 Furthermore, for image deblurring
applications, another advantage is that our resulting linear
equations are symmetric and positive definite, providing us
with fast methods for solving large linear systems of equations
with optimization methods like CG. Compared to the un-
normalized graph Laplacian, as we have shown in [31], our
approach based on the proposed normalized graph Laplacian
I − W provides better performance.

In order to better demonstrate the different expressions of
the difference and Laplacian operators as well as the regu-
larization term corresponding to our normalized Laplacian,
we derive them here. We can define the difference operator
corresponding to the proposed normalized graph Laplacian as:

dz(i, j) = √
K (i, j)(

z( j)√
C( j, j)

− z(i)√
C(i, i)

), (13)

where C( j, j) and C(i, i) are the corresponding j and
i th diagonal elements of the diagonal matrix C derived
from the matrix balancing algorithm [30], [32]. From
the above equation along with the definition of the divergence
operator [23], the Laplace operator corresponding to the
normalized Laplacian I − C−1/2 K C−1/2 is:


z(i) = 1√
C(i, i)

∑

j, j∼i

K (i, j)(
z(i)√
C(i, i)

− z( j)√
C( j, j)

), (14)

As a result, our proposed regularization term can be written as:

R(z) = 1

2

N∑

i=1

∑

j, j∼i

K (i, j)(
z(i)√
C(i, i)

− z( j)√
C( j, j)

)2

= zT (I − W )z. (15)

Note that the Laplace operator in (14) describes the effect
of our normalized Laplacian at each pixel i , when applied to
an input vector z. As the Laplace operator is a second order
derivative operator, the name Laplacian for the corresponding
matrix operator is appropriate, and common in graph theory.
In the next section, we will describe how to use the proposed
graph Laplacian to develop a new restoration algorithm.

IV. PROPOSED DEBLURRING METHOD

As depicted in Fig. 1, the proposed algorithm consists of
inner and outer iterations. The reason is that for computing
the data-adaptive matrix K , a good rough estimate of the

3In fact, W can be thought of as the transition probability matrix of the
Markov chain defined on the graph.
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underlying unknown image is needed. This estimate is gradu-
ally improved as we proceed through iterations. In each outer
iteration, the matrix W is computed once and used to define
the following objective function to be minimized with respect
to the unknown image z

E(z) = (y − Az)T {I + β(I − W )}(y − Az)

+ η zT (I − W )z, (16)

where β ≥ −1 and η > 0 are the parameters to be tuned
based on the amount of noise and blur. Note that in the
above objective function, data and prior terms are coupled
via the matrix W . This coupling is controlled by means of the
parameter β. The first term favors a solution z such that its
blurred and then filtered version is as close as possible to the
filtered version of the input y. Frequency selectivity of this
common filter is determined by the parameter β according
to the amount of the noise and blur. The second term is
essentially a data-adaptive difference term favoring certain
smoother solutions based on the structure of the underlying
data encoded in the normalized Laplacian matrix I − W ,
defined in the previous section.

Let us take a look at the cost function in (16) from a
filtering point of view. This filtering interpretation provides
a more intuitive perspective on the objective function. For this
purpose, Eq. (16) is rewritten in the following form

E(z) = ‖{I + β(I − W )}1/2(y − Az)‖2

+ η‖(I − W )1/2z‖2. (17)

Note that I + β(I − W ) = V �V T is a symmetric and
positive semi-definite matrix. Therefore, the matrix {I + β
(I−W )}1/2 = V �1/2V T has a filtering behavior similar to that
of I +β(I −W ). Once we have the eigendecomposition of the
filtering matrix W , the i th diagonal element of the matrix �
can be written in terms of the associated i th diagonal element
of S (that is λi ) as 1 + β(1 − λi ). Since the matrix I − W
is a high-pass filter, with β > 0, I + β(I − W ) behaves like
a sharpening filter on the residuals y − Az, and so does {I +
β(I − W )}1/2. According to the analysis provided in [22],
using the data fidelity term involving different derivatives of
the residual is better able to model the underlying phenomenon
for deblurring problems (especially for real images).

The same analysis applies to the second term in (17), where
both Laplacian I −W , and its square root (I −W )1/2, are adap-
tive high-pass filters. Consequently, the resulting regularization
expression in (17) adaptively penalizes high frequencies in
the final solution to avoid unpleasant artifacts due to the
noise amplifications and ringing artifacts while maintaining
fine details in the restored image.

In order to minimize the cost function in (16) at each step,
the corresponding gradient is set equal to zero as

∇E(z) = −2AT {I + β(I − W )}(y − Az)

+ 2η(I − W )z = 0, (18)

which results in the following symmetric positive definite
system of liner equations

(AT {I + β(I −W )}A + η(I − W ))z = AT {I +β(I −W )}y.

(19)

TABLE II

CONDITION NUMBER OF (AT (I + β(I − W ))A + η(I − W )) FOR

DIFFERENT VALUES OF η AND β AND BLURRING MATRIX A

CORRESPONDING TO OUT-OF-FOCUS BLUR WITH RADIUS 7.

THE CONDITION NUMBER OF AT A IS 5.74 × 1020

Conjugate Gradient is then used to solve the above system.
Also, note that A and AT are interpreted as blurring with the
PSF or its flipped version, respectively. Our experiments show
that three outer iterations suffice to get the desired deblurred
output in most cases. Also, note that the only restriction
on the parameter β is that it should be selected such that
the corresponding system of linear equations in (19) remains
positive definite. The matrix I + β(I − W ) is also required to
be positive semi-definite for the existence of its square root in
the data fit term in (17). A sufficient condition is β ≥ −1.

A. Spectral Analysis of the Overall Deblurring Algorithm

For analysis purposes, we are able to provide a filtering
interpretation of the final estimate at each outer step of the
algorithm. Note that the minimizer of the cost function in (17)
can be expressed as:

ẑ = F(A, W )AT (I + β(I − W ))y, (20)

where

F(A, W ) = {AT (I + β(I − W ))A + η(I − W )}−1. (21)

Eq. (20) can be interpreted as (1) filtering y by I +β(I − W ),
(2) back projection through multiplication by the transpose of
the blurring matrix A, and (3) applying the symmetric matrix
F(A, W ). In other words, if we consider the spectral decom-
position of this symmetric matrix as F(A, W ) = 	ϒ	T , the
columns of the matrix 	 serve as an orthonormal basis for
filtering the vector AT (I + β(I − W ))y, thereby providing a
spectral filtering interpretation for the corresponding deblur-
ring solution at each outer step of the algorithm. Since an
inverse operation is involved in (20), we consider a simple
experiment investigating the condition number of the matrix
AT (I + β(I − W ))A + η(I − W ). For this purpose, we use
the MATLAB code in [44] to explicitly construct the blurring
matrix A related to out-of-focus blur with radius 7. Table II
illustrates the condition number of AT (I + β(I − W ))A +
η(I − W ) for different values of the parameters η and β. The
condition numbers of AT (I + β(I − W ))A + η(I − W ) for
different values of η in comparison to the condition number
of AT A show the effectiveness of our procedure for regular-
izing the ill-posed deblurring problem and the corresponding
linear equations. Also, the basis eigenvectors in 	 correspond-
ing to the four largest eigenvalues of F(A, W ) are depicted
in Fig. 3. As can be seen in Fig. 3, the eigenvectors asso-
ciated with the largest eigenvalues of F(A, W ) indicate the
data-adaptive nature of the corresponding filter.
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Fig. 3. (a) Original 41 × 41 image, and (b), (c), (d), (e) the eigenvectors
of F(A, W ) corresponding to the four largest eigenvalues for β = 0.7 and
η = 0.2.

V. SPECIAL CASES OF THE PROPOSED

OBJECTIVE FUNCTION

It is interesting to consider two special cases of the above
objective function in (16) for two different applications,
namely denoising and sharpening.

A. Image Denoising

When A = I in (16), the problem reduces to that of
image denoising. This case has been discussed in our previous
work [31]. It turns out that β = −1, is the appropriate
choice for image denoising [31]. Also, the optimal value of
the regularization parameter η is selected using a SURE-based
estimated MSE approach [45]. The proposed denoising formu-
lation is able to describe some of the existing kernel similarity-
based denoising algorithms, and provides an iterative approach
for their further improvement [31].

B. Image Sharpening

Another special case is when image contains a moderate
blur, but no information about the blurring process is avail-
able. In such cases, one can resort to the following cost
function

E(z) = (y − z)T {I + β(I − W )}(y − z), (22)

which comes from Eq. (16), by setting A = I and η = 0.
Optimizing the above objective function using simple

steepest descent, yields:

ẑ� = ẑ�−1 + μ{I + β(I − W )}(y − ẑ�−1). (23)

By selecting the step size parameter μ = 1, and with zero
initialization of the SD iterations in (23); i.e., ẑ0 = 0, the first
iteration takes the form

ẑ1 = {I + β(I − W )}y. (24)

For β > 0, Eq. (24) can be interpreted as data-adaptively
adding to the input image some amount of its high-pass filtered
version. This procedure results in a sharper image. Although
there is no access to the exact PSF, since the matrix W
is computed from the input blurred image, it contains
some information about the original image as well as
the blurring process. Therefore, Eq. (24) provides us with
a data-adaptive sharpening (or to say rough deblurring)
technique.

VI. IMPLEMENTATION DETAILS

The first step of the iterative algorithm is to compute the
kernel similarity matrix4 K . At each outer iteration k, we
compute this matrix from the final estimate of the previous
step, i.e., from ẑ(k−1), as shown in Fig. 1. The values of
the regularization parameters η and β are selected based on
the noise variance and blurring scenario, and are kept fixed
at each step of the algorithm, for all the test images. For
deblurring examples, for instance, the parameter β lies in the
range (0, 1), and the parameter η is empirically selected in the
range (0, 0.4). The closer is β to 1, the larger is the effect of
the data-adaptive high-pass filter I + β(I − W ) in the data
term of the cost function in (16), which results in encouraging
higher frequencies of Az to be close to those of y. Similarly,
the larger is the value of η, the more penalty is put on the norm
of the high-pass filtered version of the desired solution z. For
instance, larger values of η and smaller values of β are used
when the amount of noise is high in the input image, and the
image is moderately blurred. Similarly, when the amount of
noise is low while the image is severely blurred, larger values
of β and smaller values of η are used. These tunings are done
for each scenario of blur and noise for a set of test images to
have visually pleasant results, and are kept fixed for all other
input images with the same degree of degradation, as shown
in the next section.

To further speed up the convergence of the iterative
algorithm, each step of the algorithm is initialized with the
corresponding estimate from the previous step. In experiments,
in order to avoid noise amplification and ringing artifacts,
the maximum number of inner and outer iterations are
set beforehand based on the amount of degradation,5 and
then the iterations are stopped using a rough estimate of
Predicted-MSE (PMSE) measure as6

̂P M SE(q, k) = 1

n2 ‖ Âz − Aẑ(q)
k ‖2, (25)

where Âz is an estimate of the blurred clean image (Az),
which is derived by denoising input noisy blurry image, and
ẑ(q)

k is the corresponding estimate of the desired image at the
kth CG iteration of the qth outer iteration. That is, we stop
CG iterations whenever ̂P M SE(q, k + 1) > ̂P M SE(q, k).

There are two main computational burdens for the
algorithm. First is the computation of the kernel similarity
coefficients, where its special form allows us to take
advantage of the idea of integral images [47]. This technique
is very effective to reduce the computational complexity
of the algorithm. Second is the matrix-vector products
required at each iteration of CG method for optimizing the
objective function in (16). However, because of the special
structure of the matrices involved, it is possible to implement
the algorithm using Fast Fourier Transform (FFT) and fast

4This is computed from the denoised version of the input image at the
beginning of the algorithm.

5For more blurry images, we need more iterations for convergence of CG
iterations. Also, as we initialize the CG iterations with more enhanced images
as we proceed through the outer iterations, the number of inner iterations is
decreased by a step nDec, as the number of outer iterations increases.

6Predicted-MSE is defined as P MS E(q, k) = 1
n2 ‖A(z − ẑ(q)

k )‖2 [46].
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Fig. 4. Set of color images used for evaluation of our method: (a) Building image (480 × 640), (b) Motocross bikes image (494 × 494), (c) Girl image
(496 × 700), (d) Street image (480 × 640), (e) Boat image (420 × 520), and (f) Book shelf image (580 × 520).

sparse matrix-vector products. It is also possible to exploit
the symmetric structure of the kernel similarity matrix K
(and of course that of W ) to reduce memory requirements.

VII. NUMERICAL EXPERIMENTS

In this section, the effectiveness of our iterative approach is
verified through a number of synthetic and real experiments.
Throughout the deblurring experiments, our focus is on more
practical cases with severe blur and small amount of noise in
the captured images. We have set up experiments for Gaussian,
out-of-focus, and nonlinear camera motion blur. For all cases,
we have compared the performance of our algorithm with
some of the best existing non-blind deblurring algorithms.
Also, for both motion and out-of-focus blurs, the iterative
algorithm is applied to real images to evaluate its performance
for such more complicated cases. Since the proposed method
is a non-blind deblurring algorithm, for real deblurring
examples, we use PSFs derived from other existing blur
kernel estimation methods. For this purpose, in case of real
out-of-focus blur, the PSF is estimated using “deconvblind”
MATLAB function. In case of real motion deblurring, the
estimated PSFs from [22] and [48] are used. Furthermore,
synthetic and real image sharpening examples are provided.
For color images, the proposed deblurring algorithm is applied
independently to R, G, and B channels of the input color image
to get the final estimate. In all the experiments, object oriented
MATLAB functions in [49] are used for performing matrix-
vector products of the form Az and AT z. PSNR in dB and
the SSIM index are used for comparison purposes [50].
SSIM index is shown to be a more reliable metric for
comparison of deblurring algorithms than the widely used
PSNR measure [50]. In order to show the effectiveness
of our proposed method compared to one of the existing
approaches based on nonlocal means regularization for image
deconvolution [9], we first demonstrate deblurring examples
related to this comparison.

A. Comparison With Nonlocal Means Regularization
Deconvolution Algorithm

In the following experiments, Cameraman image is
circularly convolved with box average and motion blurs, and
white Gaussian noise with standard deviation σ = 1 is added
to generate the noisy blurred examples. The regularization
parameters of both algorithms are selected for the best
performance in each case.7 For the next deblurring example

7We use the MATLAB and mex codes provided by the authors in
http://www.math.ucla.edu/∼xqzhang/html/code.html.

with nonlinear motion blur and the same noise level (σ = 1),
the regularization parameter μ of the algorithm in [9] and
the parameters η and β in our algorithm are changed and the
other parameters in both algorithms remain the same as the
first experiment. Note that for fair comparisons, we are using
the same definition of the nonlocal similarity function as
the one in [9] and [41] with the corresponding Gaussian
weighting for the patch elements.

For box average blur kernel, as can be seen from the results
in Fig. 5, while our method gives slightly better visual quality,
both algorithms show comparable quantitative performance.
However, for nonlinear motion blur, the algorithm in [9] almost
fails with the current settings provided by the authors as
shown in Fig. 6, while our proposed algorithm shows superior
performance in this case in terms of both PSNR and SSIM
values. This is due to our definition of the cost function, and
the new normalized regularization term as well as a different
data fit term. This good performance can also be attributed
to the way we initialize the algorithm, such that we do not
compute the weights from the output of another deblurring
algorithm to avoid contributing the deblurring artifacts to the
similarity weights. Instead, we allow the weights to be updated
as we proceed through iterations.

B. Symmetric Blurs

Two kinds of symmetric blur are considered for these
examples: Gaussian blur and out-of-focus blur. A 25 × 25
Gaussian blur with standard deviation 1.6 is convolved with a
set of color images8 shown in Fig. 4. Also, out-of-focus blur
is produced using a disk function with radius 7 and is used to
generate the corresponding blurred examples. Then, additive
white Gaussian noise with variances equal to 0.2 and 1 is
added to the blurred images. We compare the performance
of our algorithm with that of IDDBM3D algorithm in [18].
Periodic boundary conditions are used in these examples [1].
Also, we use patch size of 5 × 5, search neighborhood size
of 11 × 11, number of outer iterations equal to 3, and the
step decrement of the number of inner iterations (nDec) equal
to 30 in these experiments. The values of the parameters
η, β, h, and maximum number of inner CG iterations have
been summarized in Table IV. Note that, the parameters of
both algorithms are set for best performance in each case for
this set of images, and for the given blurs and noise variances.

Figures 7 and 8 depict deblurring outputs of our algorithm
compared to those of IDDBM3D for noise variance of 0.2

8Test images are from Kodak Lossless True Color Image Suite
(http://r0k.us/graphics/kodak/) and the web page for [51].
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Fig. 5. Deblurring example with noisy blurred Cameraman image with 9 × 9 box average blur kernel and additive white Gaussian noise with standard
deviation σ = 1: (a) clean image, (b) blurred noisy image, (c) output of [9] with regularization parameter μ = 14 in the algorithm (PSNR = 27.43dB,
SSIM = 0.8544), and (d) output of our proposed deblurring algorithm with η = 0.02 and β = 5 × 10−4 (PSNR = 28.02dB, SSIM = 0.8537).

Fig. 6. Deblurring examples with blurred noisy Cameraman image with nonlinear motion blur and additive white Gaussian noise with standard deviation
σ = 1: (a) clean image, (b) blurred noisy image, (c) output of [9] with the regularization parameter μ = 80 in the algorithm (PSNR = 16.82dB,
SSIM = 0.3969), and (d) output of our proposed deblurring algorithm with η = 0.022 and β = 0.2 (PSNR = 27.94dB, SSIM = 0.8581).

TABLE III

SSIM AND PSNR PERFORMANCE OF THE KERNEL SIMILARITY-BASED ALGORITHM AND IDDBM3D [18] FOR GAUSSIAN BLUR KERNEL OF SIZE

25 × 25 WITH STANDARD DEVIATION 1.6 AND OUT-OF-FOCUS BLUR GENERATED USING DISK FUNCTION OF RADIUS 7. IN EACH CELL,

THE FIRST NUMBER DENOTES SSIM VALUE, AND THE SECOND NUMBER REPRESENTS PSNR VALUE IN DB

TABLE IV

SET OF PARAMETERS IN DIFFERENT SYNTHETIC COLOR IMAGE

DEBLURRING EXAMPLES IN THIS PAPER. NINNER IS THE

MAXIMUM NUMBER OF THE INNER CG ITERATIONS

and synthetic Gaussian and out-of-focus blurs, respectively.
Also, Table III summarizes the numerical deblurring results.
As can be seen in Table III, our kernel similarity-based
algorithm shows very close performance to the state-of-the-art
IDDBM3D algorithm in [18] in the case of Gaussian blur.

Also, our iterative algorithm performs acceptably in the case
of out-of-focus blur. In some cases, our algorithm exhibits
slightly better visual quality as can be seen, e.g., in smooth
parts of the face of the Girl image in Fig. 8. There is one key
difference between our proposed algorithm and IDDBM3D.
IDDBM3D is a two step algorithm, in which denoising and
deblurring are decoupled. Each step of IDDBM3D essentially
involves solving two different objective functions, one for
deblurring and the other for denoising. Regarding the com-
putational complexity, even though our algorithm has been
written entirely in MATLAB (except the initial denoising
step which we use the code provided by the authors in [16]),9

our algorithm runs faster, making it more appropriate for

9In contrast, the computational demanding parts of IDDBM3D have been
implemented in C++ using MATLAB mex files.
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Fig. 7. Deblurring example with Gaussian blur: (a) clean Motocross bikes image, (b) blurred noisy image, (c) output of [18], and (d) output of our algorithm.

Fig. 8. Deblurring example with out-of-focus blur: (a) clean Girl image, (b) blurred noisy image, (c) output of [18], and (d) output of our algorithm.

practical image deblurring applications. To be more specific,
for a 480×640 color image, the MATLAB implementation of
our kernel similarity-based method runs 4 times faster than the
code for IDDBM3D run on a 2.8 GHz Intel Core i7 processor.
Furthermore, our method just relies on an initial denoising,
whereas IDDBM3D depends on an appropriate estimate from
another deblurring algorithm in its grouping phase. In addition,
as we demonstrate in the remaining experiments, the proposed
method has the flexibility to be applied to a wide variety
of blurs including both symmetric and non-symmetric blurs,
while IDDBM3D has been designed and tested specifically for
symmetric blurs.

Figure 9 shows the output of our algorithm when applied
to real noisy and out-of-focus blurred images compared to the
outputs of the Focus Magic deblurring software. As can be
seen, our algorithm is better able to handle noise amplification
related issues. In the following subsections, we consider the
effect of different factors on the performance of the proposed
deblurring method.

1) Effect of the Patch Size on the Performance of the
Proposed Algorithm: In this subsection, we add an experiment
investigating the relationship between the patch size and blur
kernel width in the deblurring algorithm for the case of

out-of-focus blur. Synthetic examples are produced by apply-
ing out-of-focus blur kernels with radii 5, 7, 9, and 11 to the
Girl image. White Gaussian noise with variance σ 2 = 0.4 is
also added to the blurred images. The corresponding SSIM
values are plotted in Fig. 10 versus the patch size for different
radii of the out-of-focus blur.10 It can be seen that for out-of-
focus blur, the best performance is not strongly dependent on
the patch size regardless of the out-of-focus blur kernel radius.
It shows that for such blur kernels, the structure around each
pixel is described well just by considering a small 5×5 patch
around it. In other words, there is no specific relation between
the patch size and the size of the blur kernel. In fact, one
can fix this parameter and change other parameters like the
regularization parameter η to control the quality of the output
image.

2) Effect of the Smoothing Parameter h on the Performance
of the Proposed Algorithm: In order to investigate the effect
of the parameter h, we apply out-of-focus blur with radius 7
to the clean Girl image and then add noise with two different
variances (0.2 and 1) to it. The results are shown in Fig. 11.
Note that the same set of parameters are used for both cases

10We consider patch sizes 3, 5, and 7.
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Fig. 9. Real sharpening examples: left column: input blurred noisy image, middle column: output of Focus Magic software at http://www.focusmagic.com,
and right column: output of our algorithm (η = 0.1 and β = 0.06 for both images).

Fig. 10. The relationship between the patch size and blur kernel width for
Girl image and out-of-focus blur with different radii.

Fig. 11. The effect of the smoothing parameter h in the kernel similarity
function for Girl image and out-of-focus blur with radius 7 for two different
noise variances.

of noise variance. As can be seen, with the same set of
parameters, the optimal smoothing parameter h is greater for
the higher noise level. Also, it is evident from Fig. 11 that

Fig. 12. Convergence plots of the CG iterations for different initializations.

the algorithm is not very sensitive to the selection of this
parameter.

3) Effect of the Initialization of the CG Iterations on the
Performance of the Algorithm: In order to investigate the effect
of the specific initialization for CG iterations at first step of
the deblurring algorithm, we consider a simple experiment
with Girl image for Gaussian blur with standard deviation
1.6 and noise variance σ 2 = 1. We consider two different
initializations, of CG iterations with (1) the denoised version of
the input noisy and blurred image versus (2) initializing it with
zero image, i.e., ẑ0 = 0. As can be seen in Fig. 12, in case of
initializing with the denoised image, the algorithm converges
faster. However, with simple zero initialization, we obtain
the same result only after more CG iterations. The proposed
algorithm is not sensitive to the initialization.

4) Effect of Oracle Scenario on the Performance of the
Proposed Algorithm: It is instructive to show reconstructions
starting from the oracle scenario where the true images are
used for the weights and applied to noisy data. we consider
a deblurring scenario in which test images are synthetically
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TABLE V

PSNR ORACLE PERFORMANCE OF THE PROPOSED

ALGORITHM VS. THE LOW-NOISE CASE

TABLE VI

ISNR VALUES FOR THE GIRL IMAGE AND OUT-OF-FOCUS BLUR WITH

DIFFERENT NOISE STANDARD DEVIATION WHEN THE WEIGHTS ARE

COMPUTED FROM THE INPUT NOISY BLURRED IMAGE

blurred with 25 × 25 Gaussian blur kernel with standard
deviation 1.6 and the additive white Gaussian noise with
variance 0.4 is added. Then, we compare the performance
of the proposed algorithm, when the similarity weights are
computed from the oracle images compared to the cases when
these weights are derived from the given input (blurred, noisy)
images. The results are summarized in Table V. As expected,
using the oracle image for computing the similarity weights
improves the performance of the algorithm. Also, it can be
seen that for practical cases when the amount of noise is low,
the results of the algorithm are not much different from their
oracle counterparts.

5) Effect of the Noise Level in the Computation of the
Similarity Weights: We add an experiment considering
the effect of noise in computing the similarity weights.
The Girl image is blurred by out-of-focus blur (of radius 7),
and different amounts of noise (up to standard deviation
equal to 30) are added to the blurred image. We fix all the
parameters for different noise levels except the regularization
parameter η which is changed proportional to the noise
standard deviation as h = 0.05σ . In all the experiments, the
similarity weights are computed from the noisy blurred input
image in the first step of the algorithm. Table VI shows the
ISNR values for different noise levels.11 As can be seen
even for very high noise levels and with computation of the
weights from the input image, the algorithm is able to provide
improvement with respect to the input degraded image.
Although one can assume that the algorithm will fail at some
noise level, we can conclude that it is robust enough to the
errors in the input image for computing the similarity weights.

C. Synthetic Motion Blur

For assessing the performance of the algorithm in case
of motion deblurring, we use the complex camera motion
blur kernel provided by Shan et al. [22]. Again, noise with
variances equal to 0.2 and 1 is added to the blurred images.
In this case, we compare the proposed algorithm with two of
the best available non-blind motion deblurring works. Periodic
boundary conditions are used in these examples [1]. Also, we
use patch size of 5 × 5, search neighborhood size of 11 × 11,

11ISNR is defined as the difference between the PSNRs of the output image
and the input noisy blurred image.

TABLE VII

SSIM AND PSNR PERFORMANCE OF THE KERNEL SIMILARITY-BASED

ALGORITHM IN COMPARISON WITH THOSE OF MOTION DEBLURRING

METHODS IN [20] AND [22] FOR SYNTHETIC CAMERA MOTION BLUR.

IN EACH CELL, THE FIRST NUMBER DENOTES SSIM VALUE,

AND THE SECOND NUMBER REPRESENTS PSNR VALUE

number of outer iterations equal to 3, and the step decrement
of the number of inner iterations (nDec) equal to 30 in these
experiments. The values of the parameters η, β, h, and max-
imum number of inner CG iterations have been summarized
in Table IV. The parameters of all algorithms are set for best
performance. Table VII illustrates the quantitative results in
this case. From the numerical results in Table VII, it is evident
that our proposed kernel similarity-based algorithm shows very
good performance in the case of non-blind nonlinear motion
deblurring.

D. Real Motion Deblurring

Now, we deal with more challenging motion blur situations
where the blur kernel is estimated using two of the existing
blur kernel estimation methods [22], [48] from real motion
blurred test images. The estimated blur kernels are used
independently to derive the final deblurred images. The
performance of the proposed method is compared with those
of [20] and [22], which are among the best non-blind motion
deblurring methods.

For all examples, the patch size and search window size are
selected to be 5 × 5 and 11 × 11, respectively. Also, we use
reflective boundary conditions for these experiments [1], [49].
Figures 13 and 14 show the outputs of different methods, when
the blur kernels are estimated using the algorithm in [22]. Also,
Figures 15 and 16 illustrate the results of different algorithms
when applied to real blurred images using corresponding
estimated blur kernels from [48]. As can be seen, our iterative
deblurring algorithm produces high quality outputs as good as
the state-of-the art.

E. Comparison to Traditional Normalized Graph Laplacian
Through Image Deblurring Experiments

In order to compare the performance of our proposed
algorithm with the traditional normalized Laplacian
(I − D−1/2 K D−1/2) formulation, we consider the following
deblurring experiments. In these experiments, we first
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Fig. 13. Real motion deblurring example: (a) input blurred noisy image, (b) Output of hyper-Laplacian algorithm [20], (c) output of [22], and (d) output of
our algorithm (η = 0.031, β = 0.6).

Fig. 14. Real motion deblurring example: (a) input blurred noisy image, (b) Output of hyper-Laplacian algorithm [20], (c) output of [22], and (d) output of
our algorithm (η = 0.018, β = 0.9).

Fig. 15. Real motion deblurring example: (a) input blurred noisy image, (b) Output of hyper-Laplacian algorithm [20], (c) output of [22], and (d) output of
our algorithm (η = 0.031, β = 0.6).

convolve the Girl image with Gaussian blur (standard
deviation equal to 1.6) and add white Gaussian noise with
standard deviation σ = 1 to it. Then, we use the proposed

deblurring algorithm to get the desired estimate. Also, we
consider a similar cost function to the one in (16) using the
traditional normalized Laplacian I −WD = I −D−1/2 K D−1/2
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Fig. 16. Real motion deblurring example: (a) input blurred noisy image, (b) Output of hyper-Laplacian algorithm [20], (c) output of [22], and (d) output of
our algorithm (η = 0.032, β = 0.6).

Fig. 17. Deblurring examples with blurred noisy Girl image by out-of-focus blur with radius 7 and additive white Gaussian noise with standard
deviation σ = 1: (a) clean image, (b) blurred noisy image, (c) output of the deblurring algorithm with the corresponding traditional normalized Laplacian
(PSNR = 29.40dB, SSIM = 0.8734), and (d) output of our proposed deblurring algorithm (PSNR = 30.58dB, SSIM = 0.9058).

Fig. 18. Image sharpening example for a synthetic image with moderate Gaussian blur; (a) input blurred image, (b) output of (24) with β = 0.7, (c) β = 1.3,
and (d) β = 2.3.

as:

ED(z) = (y − Az)T {I + β(I − WD)}(y − Az)

+η zT (I − WD)z, (26)

in which the normalized matrix W = C−1/2 K C−1/2 has been
replaced by WD = D−1/2 K D−1/2. The same set of parameters
are used for both cases. The results are shown in Fig. 17.
As can be seen, our proposed normalized graph Laplacian
produces deblurring output with higher quality, verifying the
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Fig. 19. Sharpening example for a real image; (a) input image and
(b) sharpened image using our algorithm (β = 1.3).

superiority of the proposed normalized graph Laplacian with
respect to its traditional counterpart.

F. Image Sharpening Examples

There are many circumstances in which the image has
undergone moderate amount of blurring and there is no explicit
knowledge of the blurring kernel available. In such cases, it
is possible to exploit the data-adaptive sharpening framework
in Section V to produce a sharper and more pleasant output
from the slightly degraded input image. In this case, the
sharpened images derived through our kernel similarity-based
method have been shown in Fig. 18 for synthetic test images
and different values of the parameter β. As can be seen in
Fig. 18, as β increases, the high-pass filtering property of
I + β(I − W ) strengthens, and sharper images are produced.
This experiment demonstrates the effect of the parameter β in
the filtering term I +β(I −W ) in our general framework, such
that for β > 0, the behavior of I + β(I − W ) tends towards
a high pass filter. Also, Fig. 19 illustrates the output of our
sharpening method when applied to a real test image.

VIII. CONCLUSION

In this paper, we proposed a broad framework for kernel
similarity-based image restoration. We have introduced a new
objective function for image enhancement by coupling the data
and prior terms via structurally encoded filtering and Laplacian
matrices. Also, we have presented a graph-based filtering inter-
pretation of the proposed method, providing better intuition
for data-adaptive approaches as well as a path for further
improvement of such approaches. Through experiments, the
effectiveness of the kernel similarity-based method has been
verified for a range of blurring scenarios via comparison with
some of the existing state-of-the-art algorithms. Also, special
cases within the proposed framework were highlighted for
image sharpening and denoising. This kernel similarity-based
approach is general enough to be exploited for many different
restoration tasks, as long as there is a reasonable way to
estimate the kernel similarity matrix K .

For future works, this approach can be extended to blind
image deblurring, where the kernel similarity framework

is applicable for estimating the underlying blur kernel as
well. Also, this data-adaptive work can be applied to more
complicated non-uniform blur situations. Preconditioned
CG can also be used to further improve the convergence
properties of the proposed algorithm.
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