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Abstract—We present a generic detection/localization algorithm capable of searching for a visual object of interest without training.

The proposed method operates using a single example of an object of interest to find similar matches, does not require prior

knowledge (learning) about objects being sought, and does not require any preprocessing step or segmentation of a target image. Our

method is based on the computation of local regression kernels as descriptors from a query, which measure the likeness of a pixel to

its surroundings. Salient features are extracted from said descriptors and compared against analogous features from the target image.

This comparison is done using a matrix generalization of the cosine similarity measure. We illustrate optimality properties of the

algorithm using a naive-Bayes framework. The algorithm yields a scalar resemblance map, indicating the likelihood of similarity

between the query and all patches in the target image. By employing nonparametric significance tests and nonmaxima suppression,

we detect the presence and location of objects similar to the given query. The approach is extended to account for large variations in

scale and rotation. High performance is demonstrated on several challenging data sets, indicating successful detection of objects in

diverse contexts and under different imaging conditions.

Index Terms—Object detection, image representation, correlation and regression analysis.

Ç

1 INTRODUCTION

ANALYSIS of visual objects in images is a very important
component in computer vision systems which perform

object recognition, image retrieval, image registration, and
more. Areas where such systems are deployed are diverse
and include such applications as surveillance (security),
video forensics, and medical image analysis for computer-
aided diagnosis, to mention just a few. In particular, the
object recognition problem has attracted much attention
recently due to the increasing demand for developing real-
world systems.

Recognition is mainly divided into two parts: category
recognition (classification) and detection/localization [1].
The goal of object category recognition is to classify a given
object into one of the several prespecified categories, while
object detection is to separate objects of interest from the
background in a target image. In the current literature, a
popular object recognition paradigm is probabilistic con-
stellation [2] or parts-and-shape models [3] that represent not
only the statistics of individual parts, but also their spatial
layout. These are based on learning-based classifiers, which
require an intensive learning/training phase of the classi-
fier parameters and thus are called parametric methods.
Object detection is also a critical part in many applications
such as image retrieval, scene understanding, and surveil-
lance system; however, it is still an open problem because
the intraclass variations make generic detection very

complicated, requiring various types of preprocessing
steps. The sliding window scheme is usually used by
taking the peak confidence values as an indication of the
presence of an object in a given region. Most successful
localization methods at the recent PASCAL VOC 2006
challenge [4] on object localization relied on this technique
too, but these too still required a training phase. To make a
real-time object detection system while achieving high
detection rates, methods combining classifiers in a cascade
[5], [6] have been proposed.

Recently, the recognition task with only one query
(training-free) has received increasing attention [7], [8],
[9], [10] for important applications such as automatic
passport control at airports, where a single photo in the
passport is the only example available. Another application
is in image retrieval from the Web [2], [7]. In the retrieval
task, a single probe or query image is provided by users and
every gallery image in the database is compared with the
single probe, posing an image-to-image matching problem.
Recently, the face image retrieval task led to intensive
activity in this area, culminating in the Face Recognition
Grand Challenge (FRGC) [11]. More generally, by taking
into account a set of images that represents intraclass
variations, more robust object recognition can be achieved.
Such sets may consist of observations acquired from a video
sequence or by multiple still shots. In other words,
classifying an unknown set of images into one of the
training classes can be achieved through set-to-image or set-
to-set matching [10] without an intensive training phase. As
a successful example of set-to-image matching, Boiman
et al. [12] very recently showed that a trivial nearest
neighbor (NN)-based image classifier in the space of the
local image descriptors such as SIFT [13] and local self-
similarity [7] can even outperform the leading learning-
based image classifiers such as SVM-KNN [14], pyramid
match kernel (PMK) [15], and more.
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1.1 Problem Specification

Inspired by this trend toward training-free image analysis,
this paper addresses the generic detection/localization
problem of searching for an object of interest (for instance,
a picture of a face) within other “target” images with only a
single “query” image. In order to avoid the disadvantages of
learning-based methods, which require a large amount of
training examples, can result in overfitting of parameters,
and are generally slow in the training phase, we focus on a
novel and sophisticated feature and a reliable similarity
measure for comparing a collection of features.

In general, the target images may contain such similar
objects (say, other faces) but these will typically appear in a
completely different context and under different imaging
conditions. Examples of such differences can range from
rather simple optical or geometric differences (such as
occlusion, differing viewpoints, lighting, and scale changes)
to more complex inherent structural differences such as, for
instance, a hand-drawn sketch of a face rather than a real
face. As an example, we refer the reader to Fig. 3a. To date,
many methods based on such features as histograms,
gradients, and shape descriptors have been proposed to
address this problem. We refer the interested reader to [16]
and the references therein for a good summary.

1.2 Overview of the Proposed Approach

In this paper, our contributions to the object detection task
are twofold. First, we propose using local regression kernels
as descriptors, which capture the underlying local structure
of the data exceedingly well, even in the presence of
significant distortions. Second, we propose a novel ap-
proach to the detection problem using a nonparametric
nearest neighbor classifier, along with a generalization of
the cosine similarity to the matrix case. The origin and
motivation behind the use of these local kernels is the earlier
work on adaptive kernel regression for image processing and
reconstruction [17]. In that work, localized nonlinear filters
were derived which adapt themselves to the underlying
structure of the image in order to very effectively perform
denoising, interpolation, and deblurring [18]. The funda-
mental component of the so-called steering kernel regression
method is the calculation of the local steering kernel (LSK),
which essentially measures the local similarity of a pixel to its
neighbors both geometrically and photometrically. The key
idea is to robustly obtain local data structures by analyzing
the photometric (pixel value) differences based on estimated
gradients and use this structure information to determine the
shape and size of a canonical kernel. Denoting the target
image (T ) and the query image (Q), we compute a dense set of
local steering kernels from each. These densely computed
descriptors are highly informative, but when taken together,
they tend to be overcomplete (redundant). Therefore, we
derive features by applying dimensionality reduction
(namely, PCA) to these resulting arrays, in order to retain
only the salient characteristics of the local steering kernels.
Generally, T is bigger than the query image Q. Hence, we
divide the target image T into a set of overlapping patches
which are the same size as Q and assign a class to each patch
(Ti). The feature vectors that belong to a patch are thought of
as training examples in the corresponding class (See Fig. 2).
The feature collections from Q and Ti form feature
matrices FQ and FT i . We compare the feature matrices FTi

and FQ from the ith patch of T and Q to look for matches.
Inspired in part by the many studies [19], [20], [21], [22],
[23], [24] which took advantage of cosine similarity over the
conventional euclidean distance, we employ and justify the
use of “Matrix Cosine Similarity” as a similarity measure
which generalizes the cosine similarity between two vectors
[25], [26], [27] to the matrix case. We illustrate the optimality
properties of the proposed approach using a naive Bayes
framework, which leads to the use of the Matrix Cosine
Similarity (MCS) measure. Furthermore, we indicate how
this measure can be efficiently implemented using a nearest
neighbor formulation. In order to deal with the case where
the target image may not include any objects of interest or
when there are more than one object in the target, we also
adopt the idea of a significance test and nonmaxima
suppression [28].

Recently, Shechtman and Irani [7] introduced a related
matching framework based on the so-called “local self-
similarity” descriptor. It is worth mentioning that this
(independently derived) local self-similarity measure is a
special case of the local steering kernel and is also related to
a number of other local data adaptive metrics, such as
Optimal Spatial Adaptation (OSA) [29] and Nonlocal Means
(NLM) [30], which have been used for restoration in the
image processing community. While the local self-similarity
descriptors in [7] were modeled as a function of a simple
sum of squared difference (SSD) between a center image
patch and surrounding image patches, local regression
kernels are designed to have more sophisticated mechan-
isms to robustly obtain the local structure of images even in
the presence of data uncertainty such as noise and blur. It is
the aim of this paper to begin the process of applying the
local regression kernel idea (in particular, the local steering
kernel) to problems involving detection of similarity across
images and, later, videos. It is worth noting that our
contribution in this paper is intended in the same vein as
the recent trend toward more extensive use of statistical
signal processing and information theory, as nicely ex-
emplified by the works [31]. Fig. 1 shows an overview of
our proposed framework. The first stage consists of
computing the normalized LSKs WQ;WT and obtaining
the salient feature matrices FQ;FT . In the second stage, we
compare the feature matrices FT i and FQ using the MCS
measure. The final output is given after a sequence of
significance tests, followed by nonmaxima suppression [28].

Before we begin a more detailed description, it is
worthwhile to highlight some aspects of the proposed
framework.

. Since the calculation of local regression kernels is
stable in the presence of uncertainty in the data [17],
our approach is robust even in the presence of noise.
In addition, normalized local regression kernels
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Fig. 1. System overview (there are broadly three stages).
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provide a certain invariance to illumination changes
(see Fig. 4.)

. The approach in [7], similar to selective feature
techniques such as SIFT [16], filters out “noninfor-
mative” descriptors, while in our method we apply
Principal Components Analysis (PCA) to a collection
of LSKs in order to learn the most salient features of
the data.

. While Shechtman and Irani [7] explicitly model local
and global geometric relationship between features,
we simply propose using Matrix Cosine Similarity,
which is a generalized version of the cosine
similarity that has been shown to outperform the
conventional euclidean distance for subspace learn-
ing and classification tasks [19], [20], [21], [22], [23],
[24]. We further propose “Canonical Cosine Similar-
ity” to extend the proposed framework to the case of
vector data such as a color image. As we shall see in
Section 4.3, the Canonical Cosine Similarity is related
to the concept of Canonical Correlation analysis [33].

. We employ nearest neighbor classification [12] to
solve the object detection problem and show that,
under the naive-Bayes assumption, theoretically
optimal Bayes decision rule is approximated by the
MCS measure. This is in the same spirit as [21],
which shows that the Bayes decision rule can be
deduced by the whitened cosine similarity under
four strong assumptions.

. From a practical standpoint, it is important to note
that the proposed framework operates using a single
example of an image of interest to find similar
matches, does not require any prior knowledge
(learning) about objects being sought, and does not
require any preprocessing step or segmentation of
the target image.

The proposed framework is general enough to be extendable
to 3D for such applications as action recognition [8], [10],
suspicious behavior detection [34], etc., using an analogous
3D local steering kernel [35]. The discussion of this aspect of
the ongoing work is outside the scope of this paper. The
paper is organized as follows: In Section 2, we specify the
algorithmic aspects of our object detection framework, using
a novel feature (the local steering kernel) and a reliable
similarity measure (the Matrix Cosine Similarity). Section 3
provides a theoretical formulation and justification of the
proposed method. In Section 4, we extend the proposed
method to more general scenarios, accounting for larger

variations in scale and rotation, and for color images by
introducing Canonical Cosine Similarity. In Section 5, we
demonstrate the performance of the system with some
experimental results, and finally, we conclude the paper in
Section 6.

2 TECHNICAL DETAIL OF THE FRAMEWORK

As outlined in the previous section, our approach to detect
objects consists broadly of three stages. Below, we describe
each of these steps in detail.

2.1 Extracting Features from the Local Steering
Kernel Descriptors

The key idea behind local steering kernel is to robustly
obtain the local structure of images by analyzing the
photometric (pixel value) differences based on estimated
gradients, and to use this structure information to deter-
mine the shape and size of a canonical kernel. The local
kernel Kð�Þ is modeled as a radially symmetric function:

Kðxl � x; HlÞ ¼
K
�
Hl
�1ðxl � xÞ

�
detðHlÞ

; l ¼ 1; . . . ; P 2; ð1Þ

where xl ¼ ½x1; x2�Tl is the spatial coordinates, P 2 is the
number of pixels in a local window (P � P ), and the so-
called steering matrix is defined as

Hl ¼ hC
�1

2

l 2 IRð2�2Þ; ð2Þ

where h is a global smoothing parameter and the matrix Cl

is a covariance matrix estimated from a collection of spatial
(x1; x2) gradient vectors within the local analysis window
around a position x. The steering matrix Hl modifies the
shape and size of the local kernel in a way that roughly
encodes the local geometric structures present in the image
(See Fig. 3b for an example.) With such steering matrices,
we choose a Gaussian function for Kð:Þ, which leads to the
following form for the LSKs:

Kðxl � x; HlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðClÞ

p
2�h2

exp �ðxl � xÞTClðxl � xÞ
2h2

( )
:

ð3Þ

We provide some discussion of this choice below, but for a
more in-depth analysis, we refer the interested reader to
[17]. In what follows, at a position x, we will essentially be
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Fig. 2. (a) Given a query image Q, we want to detect/localize objects of
interest in a target image T . T is divided into a set of overlapping
patches. (b) Local steering kernels represent the geometric structure of
underlying data. Fig. 3. (a) A face and some possibly similar images. (b) Examples of

LSK in various regions.
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using (a normalized version of) the function Kðxl � x; HlÞ
as a function of xl and Hl to represent an image’s inherent
local geometry. To be more specific, the local steering kernel
function Kjðxl � x; Hl) at a patch indexed by j is densely
calculated and normalized as follows:

Wj
Qðxl � xÞ ¼

Kj
Qðxl � x; HlÞPP 2

l¼1 K
j
Qðxl � x; HlÞ

;
n j ¼ 1; . . . ; n;

l ¼ 1; . . . ; P 2;

Wj
T ðxl � xÞ ¼ Kj

T ðxl � x; HlÞPP 2

i¼1 K
j
T ðxl � x; HlÞ

;
n j ¼ 1; . . . ; nT ;

l ¼ 1; . . . ; P 2;

ð4Þ

where n and nT are the number of patches where LSKs
are computed in the query image Q and the target image
T , respectively.1 Next, we describe some key properties of
the above.

Takeda et al. [17] showed that LSK based on the locally
quadratic data model (regression order N ¼ 2) consistently
outperforms steering kernels based on the locally constant
and the locally linear model (regression order N ¼ 0 and
N ¼ 1) in their kernel regression framework for the tasks of
image denoising and interpolation. They further provided
the so-called “equivalent kernel” formulation, which is a
computationally more efficient and intuitive solution to
kernel regression. To simplify the notation, we describe the
normalized local steering kernels with the regression orderN
as Wðxl � x;NÞ. We observe that 2nd order LSK Wðxl �
x; 2Þ provides better descriptive powers than zeroth order
LSK Wðxl � x; 0Þ and first order LSK Wðxl � x; 1Þ even in
complex texture regions or in the presence of moderate
levels of noise. Normalization of this kernel function yields
invariance to brightness change and robustness to contrast
change as shown in Fig. 4. When large amounts of noise are
present, the locally quadratic data model tends to be more
sensitive to noise than the locally linear and the locally
constant model. Hence, there is a trade-off between
descriptive power of LSK and sensitivity to noise. Recently,
Han and Vasconcelos [36] have proposed complex feature
selection based on discriminant saliency for object classifi-
cation. They showed that complex discriminant features
tend to improve the performance of training-based image
classifiers. Meanwhile, many studies [12], [37], [38] have
shown that densely computed local image features
give better results in classification tasks than key-point-
based local image features, such as SIFT [13], which are

designed for mainly invariance and compact coding.
According to these studies, the distribution of the local
image feature both in natural images as well as images of a
specific object class follows a power-law (i.e., a long-tail)
distribution [12], [37], [38]. In other words, the features are
scattered out in a high-dimensional feature space and thus
there basically exists no dense cluster in the feature space.
In order to illustrate and verify that the normalized LSKs
also satisfy this property as described in [7], [12] and follow
a power-law distribution, we computed an empirical bin
density (100 bins) of the normalized LSKs (using a total of
31,319 LSKs) densely computed from 60 images (from
Shechtman’s general object data set [7]) using the K-means
clustering method. (See Fig. 5 for an example.)

Boiman et al. [12] observed that while an ensemble of local
features with little discriminative power can together offer a
significant discriminative power, both quantization and
informative feature selection on a long-tail distribution can
lead to a precipitous drop in performance. Therefore, instead
of any quantization and informative feature selection, we
focus on reducing the dimension of densely computed LSKs
using PCA to enhance the discriminative power and reduce
computational complexity. It is worth noting that this
approach was also taken by Ke and Sukthankar in [39],
where PCA was applied to SIFT features, leading to
enhanced performance. Ali and Shah [40] also applied PCA
to derive salient kinematic features from optical flow in the
action recognition task. This idea results in a new feature
representation with a moderate dimension, which inherits
the desirable discriminative attributes of LSK. The distribu-
tion of the resulting features sitting on the low-dimensional
manifold also tends to follow a power-law distribution as
shown in Fig. 5b and this attribute of the features will be
utilized in applying a nearest neighbor approximation in the
theoretical formulation in Section 3.

2.1.1 Feature Representation

In order to organize Wj
Qðxl � xÞ and Wj

T ðxl � xÞ, which are
densely computed from Q and T , let WQ;WT be matrices
whose columns are vectors wj

Q;w
j
T , which are column-

stacked (rasterized) versions of Wj
Qðxl � xÞ;Wj

T ðxl � xÞ,
respectively:

WQ ¼
�
w1
Q; . . . ;wn

Q

�
2 IRP 2�n;

WT ¼
�
w1
T ; . . . ;wnT

T

�
2 IRP 2�nT :

ð5Þ
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Fig. 5. (a) Some example images (Shechtman and Irani’s object data set
[7]) where LSKs were computed. (b) Plots of the bin density of LSKs and
their corresponding low-dimensional features.

1. Note that images here are gray scale (luminance channel only). In
Section 4.3, we will deal with color images as well.

Fig. 4. Invariance and robustness of local steering kernel weights
W ðxl � x; 2Þ in various challenging conditions. Note that WGN means
white Gaussian noise.
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As described in Fig. 1, the next step is to apply PCA2 to WQ

for dimensionality reduction and to retain only its salient
characteristics. By applying PCA to WQ, we can retain the
first (largest) d principal components,3 which form the

columns of a matrix AQ 2 IRP 2�d. Next, the lower dimen-
sional features are computed by projecting WQ and WT

onto AQ:

FQ ¼
�
f 1
Q; . . . ; fnQ

�
¼ AT

QWQ 2 IRd�n;

FT ¼
�
f 1
T ; . . . ; fnTT

�
¼ AT

QWT 2 IRd�nT :
ð6Þ

Fig. 6 illustrates the principal components in AQ and shows
what the features FQ;FT look like for some examples such
as face and car.

2.2 Matrix Cosine as a Measure of Similarity

The next step in the proposed framework is a decision rule
based on the measurement of a “distance” between the
computed features FQ;FT i . Earlier works, such as [19], [20],
[24], have shown that correlation-based metrics outperform

the conventional euclidean and Mahalanobis distances for
the classification and subspace learning tasks. Motivated by
the effectiveness of correlation-based similarity measure, we
introduce Matrix Cosine Similarity for the matrix case and

explore the idea behind this measure in this section. In
general, “correlation” indicates the strength and direction of
a linear relationship between two random variables. But the
idea of correlation is quite malleable. Indeed, according to

Rodgers and Nicewander [27], there are at least 13 distinct
ways to look at correlation. However, we are interested in two
main types of correlation: the Pearson’s correlation coeffi-
cient, which is the familiar standard correlation coefficient,

and the cosine similarity (so-called non-Pearson compliant).
Note that the cosine similarity coincides with Pearson’s
correlation when each vector is centered to have zero mean.
In several earlier papers, including [25], [26], it has been
shown that Pearson correlation is less discriminating than the
cosine similarity due to the fact that centered values are less
informative than the original values and the computation of
centered values is sensitive to zero or small values in the
vectors. Since the discriminative power is critical in our
detection framework, we focus on the cosine similarity. The
cosine similarity is defined as the inner product between two
normalized vectors as follows:

�ðfQ; fT iÞ ¼
*

fQ
kfQk

;
fTi
kfTik

+
¼ fQ

T fTi
kfQkkfTik

¼ cos �i 2 ½�1; 1�;

ð7Þ

where fQ; fTi 2 IRd are column vectors. The cosine similarity
measure, therefore, focuses only on the angle (phase)
information while discarding the scale information.

If we deal with the features FQ;FT i that consist of a set of
vectors, “Matrix Cosine Similarity” can be defined as a
natural generalization using the “Frobenius inner product”
between two normalized matrices as follows:

�ðFQ;FTiÞ ¼ <FQ;FTi>F

¼ trace

 
FT
QFTi

kFQkFkFT ikF

!
2 ½�1; 1�;

ð8Þ

where FQ ¼ ½
f 1
Q

kFQkF
; . . . ;

fnQ
kFQkF

� and FT i ¼ ½
f1
Ti

kFTi
kF
; . . . ;

fnTi
kFTi

kF
�.

It is worth noting that this generalization is also known as
“vector correlation” in the statistics literature [43]. Fu et al.
[19] also applied a generalized cosine similarity to the tensor
case for subspace learning and showed performance im-
provement in the task of image classification. Returning to
our definition, if we look at (8) carefully, it is interesting to
note that one can rewrite it as a weighted average of the
cosine similarities �ðfQ; fT iÞ between each pair of corre-
sponding feature vectors (i.e., columns) in FQ;FT i as follows:
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Fig. 6. Face and car examples: (a) AQ learned from a collection of LSKs WQ, (b) feature row vectors of FQ from query Q, (c) feature row vectors FT

from target image T . Eigenvectors and feature vectors were reshaped into image and upscaled for illustration purpose.

2. It is worth noting that the use of the PCA here may not be critical in the
sense that any unsupervised subspace learning method such as Kernel
PCA, LLE [41], LPP [42] CDA [24], CPCA [19], and CEA [19] can be used.

3. Typically, d is selected to be a small integer such as 3 or 4 so that 80-

90 percent of the “information” in the LSKs would be retained (i.e.,

Pd

i¼1
�iPP2

i¼1
�i

�
0:8 (to 0.9), where �i are the eigenvalues).
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�ðFQ;FT iÞ ¼
Xn
‘¼1

f ‘Q
T
f ‘T i

kFQkFkFT ikF

¼
Xn
‘¼1

�
�
f ‘Q; f

‘
T i

� kf ‘Qkkf ‘T ik
kFQkFkFTikF

: ð9Þ

The weights are represented as the product of

kf ‘Qk
kFQkF

and
kf ‘T ik
kFTikF

;

which indicate the relative importance of each feature in the

feature sets FQ;FTi . We see here an advantage of the MCS in

that it takes care of the strength and angle similarity of

vectors at the same time. Hence, this measure not only

generalizes the cosine similarity, but also overcomes the

disadvantages of the conventional euclidean distance,

which is sensitive to outliers. We compute �ðFQ;FT iÞ over

all of the target patches and this can be efficiently

implemented by column-stacking the matrices FQ;FTi and

simply computing the cosine similarity between two long

column vectors as follows:

�i � �ðFQ;FTiÞ

¼
Xn
‘¼1

f ‘Q
T
f ‘T i

kFQkFkFT ikF

¼
Xn;d

‘¼1;j¼1

f
ð‘;jÞ
Q f

ð‘;jÞ
T iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn;d

‘¼1;j¼1 jf
ð‘;jÞ
Q j2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn;d
‘¼1;j¼1 jf

ð‘;jÞ
T i
j2

q
¼ �ðcolstackðFQÞ; colstackðFTiÞÞ 2 ½�1; 1�;

ð10Þ

where f
ð‘;jÞ
Q ; f

ð‘;jÞ
T i

are elements in lth vector f ‘Q and f ‘T i ,

respectively, and colstackð�Þ means an operator which

column-stacks (rasterizes) a matrix.
In Section 4, we will show that this idea enables us to

further generalize the cosine similarity to a “Canonical

Cosine Similarity,” which is a corresponding version of the

canonical correlation analysis (CCA) [33] for the vector data

case where we have a set of features separately computed

from multiple sources (for instance, color image (YCbCr or

CIE L�a�b�) or a sequence of images). In a similar vein as

Boiman et al. [12], we will show in Section 3 that a particular

version of optimal naive Bayes decision rule can actually

lead to the use of MCS measure.
The next step is to generate a so-called “resemblance

map” (RM), which will be an image with values indicating

the likelihood of similarity between Q and T . When it comes

to interpreting the value of “correlation,” it is noted in [44],

[45] that �2
i 2 ½0; 1� describes the proportion of variance in

common between the two feature sets as opposed to �i,

which indicates a linear relationship between the two

feature matrices FQ;FTi . At this point, we can use �i
directly as a measure of resemblance between the two

feature sets. However, the shared variance interpretation of

�2
i has several advantages. In particular, as for the final test

statistic comprising the values in the resemblance map, we

use the proportion of shared variance (�2
i ) to that of the

“residual” variance ð1� �2
i Þ. More specifically, RM is

computed using the mapping function f as follows:

RM : fð�iÞ ¼
�2
i

1� �2
i

: ð11Þ

In Fig. 7, examples of a resemblance map (RM) based on j�ij
and fð�iÞ are presented. Red represents higher resemblance.
As is apparent from these typical results, qualitatively, the
resemblance map generated from fð�iÞ provides better
contrast and dynamic range in the result ðfð�iÞ 2 ½0;1�Þ.
More importantly, from a quantitative point of view, we
note that fð�iÞ is essentially the Lawley-Hotelling Trace
statistic [33], [46], which is used as an efficient test statistic
for detecting correlation between two data sets. Further-
more, historically, this statistic has been suggested in the
pattern recognition literature as an effective means of
measuring the separability of two data clusters (e.g., [47]).

2.3 Significance Test and Nonmaxima Suppression

If the task is to find the most similar patch (Ti) to the query (Q)
in the target image, one can choose the patch which results in
the largest value in the RM (i.e., maxfð�iÞ) among all of the
patches, no matter how large or small the value is in the range
of ½0;1�. This, however, is not wise because there may not
be any object of interest present in the target image. We are
therefore interested in two types of significance tests. The first
is an overall test to decide whether there is any sufficiently
similar object present in the target image at all. If the answer is
yes, we would then want to know how many objects of
interest are present in the target image and where they are.
Therefore, we need two thresholds: an overall threshold �o
and a threshold � to detect the possibly multiple objects
present in the target image.

In a typical scenario, we set the overall threshold �o to be
0.96, which is about 50 percent of variance in common (i.e.,
�2 ¼ 0:49). In other words, if the maximal fð�iÞ is just above
0.96, we decide that there exists at least one object of
interest. The next step is to choose � based on the properties
of fð�iÞ. When it comes to choosing the � , there is a need to
be more careful. If we have a basic knowledge of the
underlying distribution of fð�iÞ, then we can make
predictions about how this particular statistic will behave,
and thus, it is relatively easy to choose a threshold which
will indicate whether the pair of features from the two
images are sufficiently similar. But, in practice, we do not
have a very good way to model the distribution of fð�iÞ.
Therefore, instead of assuming a type of underlying
distribution, we employ the idea of nonparametric testing.
We compute an empirical PDF from all the given samples of
fð�iÞ and we set � so as to achieve, for instance, a 99 percent
confidence level in deciding whether the given values are in
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Fig. 7. (a) RM that consists of j�ij. (b) RM that consists of fð�iÞ. Note
that Q and T are the same examples shown in Fig. 2.
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the extreme (right) tails of the distribution (see Fig. 8).4 This
approach is based on the assumption that, in the target
image, most of the patches do not contain the object of
interest, and therefore, the few matches will result in values
which are in the tails of the distributions of fð�iÞ.

After the two significance tests with �o; � are performed,
we employ nonmaxima suppression [28] for the final
detection. We take the region with the highest fð�iÞ value
and eliminate the possibility that any other object is
detected within some radius5 of the center of that region
again. This enables us to avoid multiple false detections of
nearby objects already detected. Then we iterate this
process until the local maximum value falls below the
threshold � . Fig. 9 shows the graphical illustration of
significance tests and the nonmaxima suppression idea.

3 THEORETICAL JUSTIFICATION

As explained in the previous section, the purpose of the
proposed framework is to detect an object (or objects) of
interest in the target image given a single query. In this
section, we show that the naive-Bayes approach in a
multiple hypothesis testing framework leads to the Matrix
Cosine Similarity-based decision rule. It is worth noting that
this idea is partly motivated by Boiman et al. [12] and Liu
[21], who derived an optimal Bayes decision rule based on
euclidean distance and the whitened cosine similarity,
respectively, for the image classification task.

As described before, the target imageT is divided into a set
of overlapping patches and a class is assigned to each patch.
Our task at hand is to figure out which class (i) the features
from Q are most likely to have come from. Since we do not
know the class-conditional pdf (pðFQjclassÞ) of the normal-
ized features extracted fromQ, we set out to estimate it using
a kernel density estimation method [48]. Once we have these
estimates, we will show that the maximum likelihood (ML)
decision rule boils down to computing and thresholding
Matrix Cosine Similarity, which can be efficiently imple-
mented using a nearest neighbor formulation.

By associating each patch (Ti) of the target image with a
hypothesis, we now have the case where we wish to
discriminate between M hypotheses (H0; . . . ;HM�1) as
follows:

H0: Q is similar to T0 , FQ comes from class 0 (FT 0
) ,

H1: Q is similar to T1 , FQ comes from class 1 (FT 1
),

..

. ..
.

HM�1: Q is similar to TM�1 , FQ comes from class M � 1

(FTM�1
).

The task at hand is to find the most likely hypothesis (or a

correct class) given the query image Q. It is a well-known

fact [47], [49] that maximizing a posteriori probability

P ðHijFQÞ minimizes Bayes risk (or the average classifica-

tion error.) Assuming that the prior probabilities P ðHiÞ are

equal, then the maximum a posterior (MAP) decision rule

boils down to the M-ary ML decision rule:

bHi ¼ arg max
i
P ðHijFQÞ ¼ arg max

i
pðFQjHiÞ: ð12Þ

Since we do not know the conditional probability density

function pðFQjHiÞ of features FQ given the features FT i of

the target patch Ti, we need to estimate it using a kernel

density estimation method, which results in the naive or

empirical Bayes approach.

3.1 Locally Data-Adaptive Kernel Density
Estimation

The Parzen density estimator is a simple and generally
accurate nonparametric density estimation method [48].
However, if the true conditional density that we want to
model is close to a nonlinear lower dimensional manifold
embedded in the higher dimensional feature space, a
Parzen density estimator with an isotropic kernel is not
the most appropriate method [50], [51], [52]. As explained
before, the features FQ;FT i tend to generically come from
long-tailed distributions, and as such, there are generally no
tight clusters in the feature space. When we estimate a
probability density at a particular point, for instance, f

‘

Q, the
isotropic kernel centered on that point will spread its
density mass equally along all the feature space directions,
thus, giving too much emphasis to irrelevant regions of
space and too little along the manifold. Earlier studies [50],
[51], [52] also pointed out this problem. This motivates us to
use a locally data-adaptive version of the kernel density
estimator
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Fig. 9. (a) Query. (b) Target with detection. (c) Two significance tests.
(d) Nonmaxima suppression [28].

Fig. 8. Comparison of empirical PDF between � and �2

1��2 .

4. Yet another justification for using fð�iÞ instead of �i is the observation
that the empirical PDF of �i is itself heavy-tailed, making the detection of
rare events more difficult. The use of fð�iÞ instead tends to alleviate this
problem (see Fig. 8).

5. The size of this “exclusion” region will depend on the application at
hand and the characteristics of the query image.

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on July 30,2010 at 05:03:18 UTC from IEEE Xplore.  Restrictions apply. 



The estimated conditional density bpðFQjHiÞ is defined as a

sum of kernels centered at the features fTi in Ti which belong

to the hypothesis Hi. More specifically,

bpðFQjHiÞ ¼
Pn

j¼1 K
j
�
f
‘

Q � f
j

T i
;x‘Q � xjT i

�
P

‘2�Q

Pn
j¼1 K

j
�
f
‘

Q � f
j

T i
;x‘Q � xjT i

� ; ‘ 2 �Q;

ð13Þ

where Kj is a locally data adaptive kernel function, �Q is

the query image domain consisting of j�Qj pixels, and

x‘Q;x
j
T i

are column vectors denoting spatial coordinates of

corresponding features f
‘

Q and f
j

T i
. A simple and intuitive

choice of the Kj is to consider two terms for penalizing the

spatial distance between the point of interest and its

neighbors, and the photometric “distance” between the

corresponding features f
‘

Q and f
j

T i
. More specifically, the

kernel function is defined as follows:

Kj ¼ Kj
rðf

‘

Q � f
j

T i
ÞKj

sðx‘Q � xjT iÞ

¼ exp �
dist

�
f
‘

Q; f
j

T i

�
2�2

r

 !
exp �

��x‘Q � xjT i

��2

2�2
s

 !
; ‘ 2 �Q;

ð14Þ

where we define distðf ‘Q; f
j

T i
Þ ¼ k f ‘Q

kFQkF
�

f j
Ti

kFTi
kF
k2, and �r; �s

are parameters controlling the falloff of weights in photo-

metric and spatial domains.
Inserting (14) into (13), the estimated conditional densitybpðFQjHiÞ becomes

bpðFQjHiÞ ¼
1

�

Xn
j¼1

exp �
dist

�
f
‘

Q; f
j

T i

�
2�2

r

�
��x‘Q � xjT i

��2

2�2
s

 !
;

ð15Þ

where � ¼
P

‘2�Q

Pn
j¼1 K

jðf ‘Q � f
j

T i
;x‘Q � xjT iÞ is a normal-

ization factor. Fig. 10 depicts how the conditional density

function bpðFQjHiÞ is estimated, given Q and Ti.
In principle, all n features should be employed to

obtain an accurate density estimate. However, this is too
computationally time-consuming. Hence, as we describe

next, we use an efficient approximation of this kernel
density estimator.

3.2 Approximation of Locally Data-Adaptive Kernel
Density

Assuming that f
1

Q; f
2

Q; . . . ; f
n

Q are i.i.d. given hypothesis Hi,
the ML decision rule can be rewritten by taking the log
probability of the ML decision rule (12) as

bHi ¼ arg max
i

log bpðFQjHiÞ ¼ arg max
i

log bp�f 1

Q; . . . ; f
n

QjHi

�
¼ arg max

i

Xn
‘¼1

log bp�f ‘QjHi

�
:

ð16Þ

What we do next is to estimate each local individual
probability density bpðf ‘QjHiÞ separately:

bp�f ‘QjHi

�
¼ 1

�0

Xn
j¼1

Kj
�
f
‘

Q � f
j

T i
;x‘Q � xjT i

�
; ‘ ¼ 1; . . . ; n;

ð17Þ

where �0 ¼
Pn

‘¼1

Pn
j¼1 K

jðf ‘Q � f
j

T i
;x‘Q � xjT iÞ is a normal-

ization factor. As nicely motivated in [12] and discussed in
Section 2.1, since the distribution of the features on the low-
dimensional manifold tends to follow a power-law, it
should be sufficient to use just a few features in Ti to get
a reasonable estimate of the conditional density bpðf ‘QjHiÞ.
Therefore, we consider using a single (spatially nearest)
neighbor for the approximation, which yields:

bp�f ‘Q��Hi

�
	 exp � 1

2�2
r

dist
�
f
‘

Q; f
‘

T i

�	 

; ‘ ¼ 1; . . . ; n;

¼ exp
�
� kf ‘Qk2

kFQk2
F

þ kf ‘Tik
2

kFTi
k2
F

� 2�ðf ‘Q;f
‘
Ti
Þkf ‘Qkkf

‘
Ti
k

kFQkF kFTi
kF

�
2�2

r

0B@
1CA:
ð18Þ

The approximate version of density estimator using one
sample is compared to bpðFQjHiÞ estimated using all
n samples in Fig. 11. Qualitatively, we observe that the
resulting estimates are quite similar. More precisely, con-
sistent with [12], we have verified that the use of the
approximation takes little away from the performance of
the overall algorithm.
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Fig. 10. The estimated conditional density bpðFQjHiÞ is a sum of
kernels (weight functions) centered at the features fT i in Ti, which
belongs to the hypothesis Hi. In the density estimate map, red value
means a high conditional probability density bpðfQjHiÞ while blue value
represents a low conditional probability density bpðfQjHiÞ .

Fig. 11. The estimated conditional probability densities bpðFQjHiÞ using
n samples and one sample are shown in the middle and the scores on
the right side mean

Pn
‘¼1 log bpðf ‘QjHiÞ. The higher this score is, the more

likely it is that FQ comes from class i (FTi ).
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Since log bpðf ‘QjHiÞ is approximately proportional to

�
kf ‘Qk

2

kFQk2
F

þ
kf ‘T ik

2

kFT ik
2
F

� 2�
�
f ‘Q; f

‘
T i

� kf ‘Qkkf ‘T ik
kFQkFkFT ikF

 !
;

the ML decision rule becomes

bHi ¼ arg max
i

Xn
‘¼1

log bp�f ‘QjHi

�
) arg max

i

Xn
‘¼1

�
kf ‘Qk

2

kFQk2
F

þ
kf ‘T ik

2

kFT ik
2
F

�
2�ðf ‘Q; f ‘T iÞkf

‘
Qkkf ‘T ik

kFQkFkFTikF

 !

¼ arg max
i
�2þ 2

Xn
‘¼1

f ‘Q
T
f ‘T i

kFQkFkFTikF

 !

¼ arg max
i

Xn
‘¼1

f ‘Q
T
f ‘T i

kFQkFkFT ikF

¼ arg max
i

FQ

kFQkF
;

FTi

kFT ikF


 �
F

:

ð19Þ

We can clearly see that the ML decision rule in (19) boils
down to the computation of the Matrix Cosine Similarity,
due to the relationship

FQ

kFQkF
;

FTi

kFT ikF


 �
F

	
2þ

Pn
‘¼1 log bpðf ‘QjHiÞ

2
:

While the assumptions leading to the above conclusions may
seem somewhat restrictive, in practice they appear to hold
true, and they do provide a framework in which the
proposed algorithm can be considered optimal in the naive
Bayes sense. Indeed, as can be seen from the practical
experimental results in Section 5, the range of applicability of
the algorithm thus justified is quite wide. To summarize, the
overall pseudocode for the algorithm is given in Algorithm 1.

Algorithm 1. Pseudocode for the nonparametric object

detection algorithm
Q: Query image, T : Target image, �o: Overall threshold, 	:

Confidence level, P 2: Size of local steering kernel (LSK)

window.

Stage 1: Feature representation

1) Construct WQ;WT (a collection of normalized LSK

associated with Q;T )

2) Apply PCA to WQ and obtain projection space AQ from

its top d eigenvectors.
3) Project WQ and WT onto AQ to construct FQ and FT .

Stage 2: Compute Matrix Cosine Similarity

for every target patch Ti, where i 2 ½0; . . . ;M � 1� do

�i ¼ < FQ

kFQkF
;

FTi

kFTi
kF
>F and compute (RMÞ : fð�iÞ ¼ �2

i

1��2
i

.

end for

Then, find maxfð�iÞ.
Stage 3: Significance tests and Non-maxima suppression

1) If maxfð�iÞ > �o, go to the next test. Otherwise, there is
no object of interest in T .

2) Threshold RM by � which is set to achieve 99 percent

confidence level ð	 ¼ 0:99Þ from the empirical PDF of fð�iÞ.
3) Apply nonmaxima suppression to RM until the local

maximum value is below � .

4 HANDLING VARIATIONS IN SCALE AND ROTATION

AND COLOR IMAGES

Up to now, we only dealt with the detection of objects in a
gray image at a single scale. Although our detection
framework can handle modest scale and rotation variations
by adopting a sliding window scheme, robustness to larger
scale and rotation changes (for instance, above 
20 percent
in scale, 30 degrees in rotation) are desirable. Furthermore,
the use of color images as input should be also considered
from a practical point of view. In this section, the approach
described in the previous sections for detecting objects at a
single scale is extended to detect objects at different scales
and at different orientations in an image. In addition, we
deal with a color image by defining and using “Canonical
Cosine Similarity.”

4.1 Multiscale Approach

In order to cope with large-scale variations, we construct a
multiscale pyramid of the target image T . This is a
nonstandard pyramid as we reduce the target image size
by steps of 10-15 percent so that a relatively fine quantiza-
tion of scales is taken into account. Fig. 12a shows the block
diagram of the multiscale approach. The first step is to
construct the multiscale pyramid T 0; T 1; . . . ; TS , where S is
the coarsest scale of the pyramid. As shown in Fig. 12a,
FQ;FT 0 ;FT 1 ;FT 2ðS ¼ 2Þ are obtained by projecting WQ and
WT 0 ;WT 1 ;WT 2 onto the principal subspace defined by AQ

as follows:

FQ ¼ AT
QWQ; FT 0 ¼ AT

QWT 0 ;

FT 1 ¼ AT
QWT 1 ; FT 2 ¼ AT

QWT 2 :
ð20Þ

We obtain three resemblance maps, RM0, RM1, and RM2, by
computing fð�iÞ ¼ �2

i

1��2
i

. These resemblance maps represent
the likelihood functions pðfð�iÞjSiÞ, whereSi is the scale at the
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Fig. 12. (a) Block diagram of multiscale object detection system.
(b) Block diagram of multirotation object detection system.
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ith point. However, the sizes of the respective resemblance

maps RM0, RM1, and RM2 are naturally different. Therefore,

we simply upscale all of the resemblance maps by pixel

replication so that they match the dimensions of the finest

scale map RM0. Next, the maximum likelihood estimate of the

scale at each position is arrived at by comparing the upscaled

resemblance maps as follows:6

Ŝi ¼ arg max
Si

pðRMjSiÞ: ð21Þ

4.2 Multirotation Approach

In order to cope with large rotations, we take a similar

approach and generate rotated images (this time, of the query

image Q) in roughly 30 degree steps. As seen in Fig. 12b,

FQ0 ;FQ1 ; . . . ;FQ11 , and FT are obtained by projecting

WQ0 ; . . . ;WQ11 , and WT onto the principal subspace defined

by AQ0 ; . . . ;AQ11 . After computing fð�iÞ ¼ �2
i

1��2
i

from 12 pairs

by employing the sliding window scheme, we obtain

12 resemblance maps RM0; . . . ;RM11. We compute the

maximum likelihood estimate of the best matching pattern

accounting for rotation as follows:

R̂i ¼ arg max
Ri

pðRMjRiÞ: ð22Þ

4.3 Canonical Cosine Similarity

Now, we define Canonical Cosine Similarity (CCS) to

extend the proposed framework with a single gray-scale

query image to vector-valued images. In particular,

suppose, at each pixel, the image has q values. As per the

earlier discussion (Section 2.2), we generate q feature sets

F‘
Q;F

‘
T i

(‘ ¼ ½1; . . . ; q�) by projecting W‘
Q;W

‘
T i

onto the

subspaces A‘
Q, respectively, and form the overall feature

set as follows:

FI ¼
�
colstack

�
F

1

I

�
; . . . ; colstack

�
F
q

I

��
2 IRðd�nÞ�q; I 2 fQ;Fig:

ð23Þ

The key idea is to find vectors uQ and uT i which maximally

correlate two data sets (FQ, FTi ).

vI ¼ FIuI ¼ uI1
colstack

�
F

1

I

�
þ � � � þ uIqcolstack

�
F
q

I

�
2 IRðd�nÞ;

ð24Þ

where

uQ ¼
�
uQ1

; . . . ; uQq

�T 2 IRq and uT i ¼
�
uT 1

; . . . ; uTq
�T 2 IRq:

Then, the objective function we are maximizing is the

cosine similarity as follows:

� ¼ max
uQ;uTi

vTQvT i

kvQkkvTik
¼ max

uQ;uTi

uTQFT
QFT iuT i

kFQuQkkFTiuT ik
;

such that kFQuQk ¼ kFT iuTik ¼ 1;

ð25Þ

where uQ and uT i are called canonical variates. The above

is inspired by CCA [33].

The canonical cosine similarity � and canonical variates

uQ;uTi can be obtained by solving the coupled eigenvalue

problems as follows (derivation is given in the Appendix):�
FT
QFQ

��1�
FT
QFT i

��
FT
Ti

FT i

��1�
FT
Ti

FQ

�
uQ ¼ �2uQ;�

FT
Ti

FTi

��1�
FT
T i

FQ

��
FT
QFQ

��1�
FT
QFTi

�
uT i ¼ �2uT i :

ð26Þ

The positive square root of eigenvalues �2 is the “Canonical

Cosine Similarity”. If FQ;FTi are each composed of a single

vector ðcolstackðFQÞ; colstackðFTiÞÞ, the above equations

reduce to

ðcolstackðFQÞT colstackðFTiÞÞ
2

kcolstackðFQÞk2kcolstackðFT iÞk
2
¼ �2;

which is just the squared cosine similarity defined earlier

in Section 2.2.

Now, we take a closer look at the particular case of

color images, where q ¼ 3. A natural question here is

whether we can gain more if we use the color informa-

tion instead of using only the luminance channel as we

have so far. The answer to this question is positive. There

exist many color spaces such as RGB, YCbCr, CIE L�a�b�,

etc. We observe that the CIE L�a�b� color model provides

the most discriminative information among all, as also

observed by Shechtman and Irani [7]. We define the

respective RM7 as the summation of mapping function

fð�ið‘ÞÞ of CCS �ið‘Þ between a set of features, which are

calculated from each channel (‘ ¼ 1; . . . ; q), wherePdc
‘¼1

�2
i ð‘Þ

1��2
i ð‘Þ

(dc is the number of canonical cosine

similarity values �ið‘Þ greater than zero). Also illustrated

in the next section, the color approach based on CCS not

only provides better discriminative power, but also gives

more accurate localization results than the luminance

channel only does.

5 EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of the
proposed method with comprehensive experiments on three
data sets, namely, the UIUC car data set [53], MIT-CMU
face data set [54], and Shechtman’s general object data set [7].
The proposed algorithm provides a series of bounding boxes
around objects of interest using the criterion described in
[53]. More specifically, if the detected region by the proposed
method lies within an ellipse of a certain size centered around
the ground truth, we evaluate it as a correct detection.
Otherwise, it is counted as a false positive. Eventually, we
compute Precision and Recall defined as

Recall ¼ TP
nP

; Precision ¼ TP

TP þ FP ; ð27Þ

where TP is the number of true positives, FP is the number

of false positives, nP is the total number of positives in the

data set, and 1� Precision ¼ FP
TPþFP .
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6. By RM we mean a collection of RM indexed by i at each position.

7. Again as mentioned before, note that
Pdc

‘¼1
�2
i ð‘Þ

1��2
i ð‘Þ

is analogous to the
Lawley-Hotelling trace test statistic

P �2

1��2 that is used in the significance
test of canonical variates in canonical correlation analysis [33], [46].
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Experimental results on each data set will be presented
as recall versus (1-precision) curve and detection equal-
error rate8 in the following sections.

5.1 Car Detection

The UIUC car data set [53] consists of learning and test sets.
The learning set contains 550 positive (car) images and
500 negative (noncar) images. The test set is divided into
two parts: 170 gray-scale images containing 200 side views
of cars of size 100� 40, and 108 gray-scale images contain-
ing 139 cars at various sizes with a ratio between the largest
and smallest cars of about 2.5. Since our method is training-
free, we use only one query image at a time from the 550
positive examples.

5.1.1 Single-Scale Test Set

We compute LSK of size 9� 9 as descriptors, as a conse-
quence, every pixel inQ andT yields an 81-dimensional local
descriptor WQ and WT , respectively. The smoothing
parameter h for computing LSKs was set to 2.1. We end
up with FQ;FT by reducing dimensionality from 81 to
d ¼ 4, and then we obtain RM by computing the MCS
measure between FQ;FTi . The threshold � for each test
example was determined by the confidence level 	 ¼ 0:99.
Fig. 13a shows the output of the proposed method on
single-scale test images.

We conducted an experiment by computing RM without
performing PCA in order to verify that the use of dimension-
ality reduction step (PCA) plays an important role in
extracting only salient features and improving the perfor-
mance. We also repeated these experiments by changing the
query image and computing precision and recall. In Fig. 14,
recall-precision curves represent a performance comparison
between the proposed method and the proposed method
without PCA using five different query images. We can
clearly see that the performance of our system is not terribly
affected by a choice of the query images, but is quite
consistent. Furthermore, PCA consistently contributes to a

performance improvement. The detection equal-error rates
comparison is provided in Table 1 as well.

To show an overall performance of the proposed method
on five different query images, we summed up TP and FP
over the entire experiment, then computed recall and
precision at various steps of the threshold value � according
to the confidence level 	. Note that, to the best of our
knowledge, there are no other training-free methods
evaluated on the UIUC data set [53], and thus, comparison
is largely only made with the state-of-the-art training-based
methods. The proposed method, which is training-free,
performs favorably against the state-of-the-art training-
based methods [53], [55], [56], which use extensive training,
as shown in Fig. 15.

5.1.2 Multiscale Test Set

As explained in Section 4, we construct a multiscale
pyramid of the target image T : five scales with scale factors
0.4, 0.6, 0.8, 1, and 1.2. More specifically, we reduce the
target image size by steps of 20 percent up to 40 percent of
the original size and upscale the target image by 20 percent
so that we can deal with both cases of either the size of
objects in the target images being bigger or smaller than the
query. The rest of the process is similar to the single-scale

1698 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 32, NO. 9, SEPTEMBER 2010

Fig. 13. (a) Examples of correct detections on the UIUC single-scale car test set [53]. (b) Examples of correct detections on the UIUC multiscale car

test set. Confidence level 	 was set to 0.99 and RM only above the threshold � corresponding to 	 is embedded in test images. Bounding boxes are

drawn at the correct locations. In case of a multiple detection, a red bounding box indicates higher resemblance to Query than a blue bounding box.

Fig. 14. (a) Recall versus 1-precision curves of the proposed method. (b)
Recall versus 1-precision curves of the proposed method without PCA
on the UIUC single-scale car test set [53] using five different query
images.

8. Note that detection equal-error rate is a detection (recall) rate when a
recall rate is the same as the precision rate.
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case. Fig. 16b shows examples of correct detections using �
corresponding to 	 ¼ 0:99.

The overall performance improvement of the proposed
method (using five different query images) over Agarwal
et al. [53] is even greater (over 30 percent) on the multiscale
test set, as shown in Table 2 and Fig. 16. As for the
interpretation of the performance on the UIUC car data set
(both single-scale and multiscale cases), our methods show
performance that is not far from the state-of-the-art training-
based methods, except that it requires no training at all.

5.2 Face Detection

We showed the performance of the proposed method in the
presence of a moderate scale variation (a ratio between the
largest and smallest objects of about 2.5) in the previous
section. In this section, we further evaluate our method on a
more general scenario, where the scale ratio between the
largest and smallest is over 10 and large rotations of objects
may exist. Therefore, a test set is chosen from a subset of the
MIT-CMU face data set [54]. The test set is composed of
43 gray-scale images9 containing 149 frontal faces at various
sizes and 20 gray-scale images10 containing 30 faces with
various rotations. A query face image of size 35� 36 was
employed as shown in Fig. 17, and images for a rotation
experiment were resized so that faces are about the same size
as the query face. Such parameters as the smoothing
parameter (h), LSK size (P ), confidence level (	) remain the
same as the ones used in the UIUC car test sets. However, we
increased scale steps for the multiscale pyramid up to 29 and
rotation steps were set to 24 (i.e., rotate the query image by
15 degrees) to achieve an accurate rotation estimation.
Figs. 17, 18, and 19 show that the proposed method is
capable of detecting and localizing faces at distinct scale and

rotation angle even in the presence of large variations in scale
and rotation. We repeated the experiment by changing the
query image. Fig. 20 shows recall versus 1-precision curves
and (for the sake of completeness) corresponding receiver
operating characteristic (ROC) curves with respect to two
different queries. Note that, in the ROC curve, detection rate
Pd and false alarm rate Pf are defined as TP

nP ð¼ recallÞ and
FP

FPþTN , respectively, where TN is the number of true
negatives. As seen in Fig. 20, the performance of our method
on this test set is consistent with the results in the UIUC car
test sets. More specifically, the performance of the proposed
method is little affected by the choice of similar query images
and is quite stable.

5.3 General Object Detection

We have shown the performance of the proposed method
on data sets composed of gray-scale images, which contain
specific objects such as car and face. In this section, we have
applied our method to a more difficult scenario, where
general real-world images containing flowers, hearts, and
human poses are considered. Furthermore, rough hand-
drawn sketches are used as a query instead of real images.
Shechtman and Irani’s general object data set [7] consists of
many challenging pairs of color images (60 pairs with
queries such as flowers, hearts, peace symbols, face, and
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Fig. 15. Comparison of recall versus 1-precision curves between the
proposed method and the state-of-the-art methods [53], [55], [56] on the
UIUC single-scale test set [53].

9. The 43 images (from http://vasc.ri.cmu.edu/idb/html/face/
index.html) are as follows: aerosmith-double.gif, blues-double.gif, origi-
nal2.gif, audrey1.gif, audrey2.gif, baseball.gif, cfb.gif, cnn1714.gif,
cnn2020.gif, cnn2600.gif, crimson.gif, ew-courtney-david.gif, gpripe.gif,
hendrix2.gif, henry.gif, john.coltrane.gif, kaari1.gif, kaari2.gif, kaari-stef.gif,
knex0.gif, lacrosse.gif, married.gif, police.gif, sarah4.gif, sarah live 2.gif,
tammy.gif, tori-crucify.gif, tori-entweekly.gif, tp.gif, voyager2.gif, class57.
gif, trek-trio.gif, albert.gif, madaboutyou.gif, frisbee.gif, me.gif, speed.gif,
ysato.gif, wxm.gif, torrance.gif, mona-lisa.gif, karen-and-rob.gif, and
Germany.gif.

10. The 20 images (from http://vasc.ri.cmu.edu/idb/html/face/
index.html) are as follows: 3.gif, 217.gif, 221.gif, af2206b.gif, am4945a.gif,
am5528a.gif, am6227a.gif, bm5205a.gif, bm6290a.gif, boerli01. gif, cast1.gif,
dole2.gif, jprc.gif, pict 6.gif, pict 28.gif, sbCelSte.gif, siggi.gif, tf5189a.gif,
tf5581a.gif, and tm6109a.gif.

Fig. 16. (a) Recall versus 1-precision curve using five different query
images. (b) Comparison of recall versus 1-precision curves between the

proposed method and the state-of-the art methods [56], [57], [53] on the
UIUC multiscale test set [53].

Fig. 17. Detection results on the MIT-CMU multiscale test set [54]. 	 was
set to 0.99. Hand-drawn faces on the white board were also detected
using a real face query image.
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human poses; see Fig. 5). In order to justify the usefulness of
the MCS measure for this data set and to further verify the
advantage of the CCS defined in Section 4.3 over the MCS
measure, we begin with evaluating the proposed method on
the luminance channel only. In Fig. 21, some examples of
RM are shown. Figs. 22 and 23 show that the proposed
method is able to detect and localize reliably.

We further justify the use of LSKs by comparing the

performance with the state-of-the-art local descriptors

evaluated in [16] as was similarly done in [7]. We densely

computed such local descriptors as gradient location-orienta-

tion histogram (GLOH) [16], Shape Context [59], and SIFT [13]

using the implementation in [16]. By replacing LSKs with

these descriptors but keeping the rest of the steps the same,

we repeated the experiment on this test set. The precision-

recall curve in Fig. 24 verifies that our LSKs have more

discriminative power than other local descriptors. The

proposed method is also evaluated on full CIE L�a�b� data.

If we look at recall rates in the range of 0 � ð1-precisionÞ �
0:1 in Fig. 24, we can see that full CIE L�a�b� data provide

more information, and thus, CCS outperforms the MCS

measure as also observed in [7]. Consistent with these

results, it is worth noting that Shechtman and Irani [7] also

showed that their local self-similarity descriptor clearly

outperformed other state-of-the-art descriptors in their

ensemble matching framework. However, the performance

figures they provide are rather incomplete. Namely, they

mentioned 86 percent detection rate without specifying

either any precision rates or false alarm rates. Therefore, we

claim that our proposed method is more general and

practical than the training-free detection method in [7] .
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Fig. 19. Detection results on the MIT-CMU multirotation test set [54]. 	

was set to 0.99.

Fig. 21. Some examples of detection results with RMs in Shechtman
and Irani’s object test set [7]. RMs are shown in bottom row.Fig. 18. Detection results on the MIT-CMU multiscale test set [54]. 	 was

set to 0.99. Among 57 faces present, we detected 54 faces at a correct
location with four false alarms.

Fig. 20. Left: precision-recall curves. Right: ROC curves on the MIT-CMU test set [54] using two different query images. Note that detection rate Pd
and false alarm rate Pf are defined as TP

nP ð¼ recallÞ and FP
FPþTN , respectively, where TN is the number of true negatives.
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6 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have proposed a novel and powerful
training-free nonparametric object detection framework by
employing LSKs, which well capture underlying data
structure, and by using the MCS measure. We have justified
the approach using a naive Bayes argument, which leads to
the use of the MCS measure. The proposed method can
automatically detect in the target image the presence, the
number, as well as location of similar objects to the given
query image. To deal with more general scenarios,
accounting for large variations in scale and rotation, we
further proposed multiscale and multirotation approach.

The CCS has proven to be more effective than MCS when
vector-valued images are available though this requires
further study. Challenging sets of real-world object experi-
ments have demonstrated that the proposed approach
achieves a high detection accuracy of objects of interest
even in completely different context and under different
imaging conditions. Unlike other state-of-the-art learning-
based detection methods, the proposed framework operates
using a single example of an image of interest to find similar
matches, does not require any prior knowledge (learning)
about objects being sought, and does not require any

segmentation or preprocessing step of the target image. The
proposed framework is general enough as to be extendable
to 3D for such applications as action recognition, suspicious
behavior detection, etc., using analogous 3D LSKs [35], [60].
Since the proposed method is designed with detection
accuracy as a high priority, extension of the method to a
large-scale data set requires a significant improvement of
the computational complexity of the proposed method.
Toward this end, we could benefit from an efficient
searching method (coarse-to-fine search) and/or a fast
nearest neighbor search method (e.g., vantage point tree
[61]). Recently, large database-driven approaches [62], [63]
have shown potential for nonparametric detection. For
instance, [63] showed that with a database of 80 million
images, even simple matching based on the SSDs can
provide semantically meaningful classification performance
for 32� 32 images. Thus, we could use a fast indexing
techniques such as spatial pyramid matching (SPM) [64] or
GIST matching [65] in order to reduce the search space and
rapidly and accurately limit the number of candidate
images. Subsequently, we can apply the proposed method
for more accurate detection. Additionally, for the proposed
method to be feasible for scalable image retrieval, we may
adopt the idea of encoding the features as proposed in [66],
[67]. Interestingly, the detection framework proposed in our
paper can also be useful for solving the bottom-up saliency
detection problem [32] by computing a self-resemblance
map between a center feature set (as a query) and
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Fig. 24. Left: Comparison of recall versus 1-Precision curves between luminance channel only and CIE L�a�b� channel on Shechtman and Irani’s
test set [7]. It is clearly shown that such descriptors as SIFT [13], GLOH [16], Shape Context [59] turn out to be inferior to LSKs in terms of
discriminative power. Right: Comparison of ROC curves. Note that detection rate Pd and false alarm rate Pf are defined as TP

nP ð¼ recallÞ and FP
FPþTN ,

respectively, where TN is the number of true negatives.

Fig. 23. Query: Hearts, hand-drawn face, peace symbol, and flower.
Some targets and examples of correction detections/localizations in
Shechtman and Irani’s object test set [7] are shown. Some false
positives appeared in a girl’s T-shirt and candle. 	 was set to 0.98.

Fig. 22. Left: Hand-drawn sketch query (human poses). Right: Targets
and examples of correction detections/localizations in Shechtman and
Irani’s object test set [7]. 	 was set to 0.98.
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surrounding feature sets (as a target). We also expect to be

able to apply the proposed method to other challenging

medical/diagnostic problems such as change detection in

medical imaging applications.

APPENDIX

The Lagrangian objective function to the minimization

problem in (25) is

fð�Q; �T ;uQ;uT iÞ ¼ uTQFT
QFTiuTi

� �Q
2

�
uTQFT

QFQuQ � 1
�
� �Ti

2

�
uTT iF

T
T i

FT iuTi � 1
�
:
ð28Þ

Taking derivatives with respect to uQ and uT i , we obtain

@f

@uQ
¼ FT

QFT iuT i � �Q
�
FT
QFQuQ

�
¼ 0; ð29Þ

@f

@uT i
¼ FT

T i
FQuQ � �Ti

�
FT
T i

FTiuTi
�
¼ 0: ð30Þ

We premultiply uTTi to (30) and also premultiply uTQ to (29).

By subtracting these two equations, we have

uTQFT
QFTiuTi � �Q

�
uTQFT

QFQuQ
�
� uTT iF

T
T i

FQuQ

� �Ti
�
uTTiF

T
Ti

FT iuT i
�
¼ 0;

ð31Þ

where ðuTQFT
QFTiuT iÞ

T ¼ uTT iF
T
T i

FQuQ is a scalar.

Enforcing the constraints�
uTQFT

QFQuQ
�T ¼ �uTT iFT

T i
FT iuTi

�T ¼ 1;

we are led to the conclusion that �Q ¼ �Ti . We define

� ¼ �Q ¼ �Ti . Assuming that FT
Ti

FTi is invertible from (30),

uTi ¼
�
FT
T i

FT i

��1
FTiFQuQ

�
; ð32Þ

and so, plugging into (29), we have�
FT
QFTi

��
FT
T i

FTi

��1ðFTiFQÞuQ
�

¼ �
�
FT
QFQ

�
uQ: ð33Þ

Assuming that FT
QFQ is also invertible, we are left with�

FT
QFQ

��1�
FT
QFT i

��
FT
T i

FT i

��1�
FT
Ti

FQ

�
uQ ¼ �2uQ: ð34Þ

Similarly, we have�
FT
Ti

FTi

��1�
FT
T i

FQ

��
FT
QFQ

��1�
FT
QFTi

�
uT i ¼ �2uT i : ð35Þ
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