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This paper describes a novel approach to monitoring the
condition of small permanent-magnet synchronous motors
(PMSM) operating under thermal stress. The approach begins
dent motor parameters

with the estimation of t ature-dep

from measurements of line voltages and currents. The parameters
are then used to derive estimates of motor temperatures. Next, the
electrically estimated temperatures are combined with a surface
measurement of motor temperature and a dynamic thermal

model of the motor to yield an observer that is a Kalman filter.
The temperatures estimated by the observer are used for failure
prevention. Finally, by modifying the observer, it is tuned to use
the geometric properties of its innovation for failure detection.
The innovation, that is, the difference between the thermally and
electrically estimated temperatures, is monitored and compared
against appropriate thresholds to detect failures. Failure detection
is demonstrated experimentally, and shown to be capable of
distinguishing the conditions of normal operation, and operation

with obstructed cooling.
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I. INTRODUCTION

Monitoring the condition of a motor is of interest
for several reasons. Firstly, during manufacturing, a
monitoring system can be used to assure compliance
with quality standards. Secondly, an on-line monitoring
system can prevent stressful operation, thereby
improving the reliability of the motor, or detect failures
that may occur as a result of stressful operation,
thereby increasing the reliability of the greater system.
Furthermore, the analysis underlying the design of a
monitoring system can yield hard limits on the physical
capabilities of the motor, and hence improve the
possibility of reliably using a smaller motor to perform
a more demanding task.

This paper specifically develops a monitoring
system for small permanent-magnet synchronous
motors (PMSM) operating under thermal stress. The
monitoring system is based on a thermal model of
the motor. There has been considerable work on
the development of such models; examples of this
work can be found in [6, 19, 22]. However, this work
has either concentrated on static thermal models, or
has not used dynamic information to formally detect
and/or prevent failures. The work presented here is
not intended as a contribution to failure detection
theory. Rather, in this work, we present results of our
study of a particularly important application of this
theory. Namely, the use of a dynamic thermal model
along with the estimation of temperature-dependent
electrical parameters in an observer structure that
detects anomalous thermal behavior in small industrial
motors. This, we believe, forms the basis for a novel
thermal monitoring system for electric motors.

The estimation of temperature-dependent
parameters in the electrical model of a motor provides
a noninvasive way of estimating the temperature within
the motor. Such estimates are referred to here as
electrically estimated temperatures. By themselves,
these estimates may not be sufficiently accurate
to serve as reliable indicators of thermal stress or
thermally induced failures. Alternatively, a dynamic
thermal model of the motor, driven by models of
losses in the motor, may also be developed to provide
noninvasive temperature estimates. Such estimates are
referred to here as thermally estimated temperatures.
By themselves, these estimates may also not be
sufficiently accurate to serve as reliable indicators
of thermal stress or thermally induced failures.
However, the errors within the electrically estimated
temperatures and the thermally estimated temperatures
should be sufficiently different that a thermal observer
which combines both estimates and a measurement
of motor surface temperature could produce internal
temperature estimates which are sufficiently accurate
for thermal condition monitoring. This is the principal
conclusion of this work.
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Fig. 1.

A general failure monitoring system of the type
developed here is shown in Fig. 1. Measurements of
motor line voltages, line currents, and position are
combined to estimate an average phase resistance and
permanent magnet strength. These parameters are
then used to estimate the average temperature of the
phases and the magnets. This is described in Sections
II and III. Next, measurements of motor line currents
and velocity are combined with the estimated electrical
parameters to model losses in the motor. These losses
form the input to a dynamic thermal model. This
is also described in Section II. Next, the thermal
model, the electrically estimated temperatures, and a
directly measured surface temperature are combined to
form an observer, which is designed to be a Kalman
filter. This is described in Section IIL. Finally, the
observer gains are modified so that the innovation in
the observer can be easily monitored, and compared
against thresholds to detect various failures. This is
also described in Section III. Experiments based on
the thermal monitoring system shown in Fig. 1 are
described in Section IV.

The experimental motor studied here is
manufactured with samarium-cobalt magnets, the
strength of which does not change significantly with
temperature. Therefore, the more general thermal
condition monitoring system shown in Fig. 1 is
reduced, in what follows, to eliminate Tx and the use
of magnets as internal thermometers. However, in

1422

Inverter
i v
4 Te ]
Electrical
Estimation
R K
Electrical to
Thermal a/dt
Conversion
o |
Dynamic 1 Strict Failure Warning
Thermal Threshold
Madel Analysis
Corrective %f:mﬁ“;l; |_Failure Warning
Feedback esho
Analysis

Thermal condition monitoring system.

those cases where the magnet strength is a useable
function of temperature, the magnets should be
reinstated as internal thermometers.

II. MODELING

This section presents both the electrical and
thermal models of the PMSM studied here.

A. Electrical Model

The electrical model of the PMSM assumes three
balanced phases wound with a single harmonic, and
connected in a wye or delta configuration. Given this
assumption, the electrical dynamics of the PMSM in
the rotor frame are modeled by

Le 07di
[ ¢ }ﬂz—Ri+Nw[ 0 L‘i]i
0 L,)dt “Ls 0

~ NKw [ﬂ +v 1)

where v is the two-axis voltage, i is the two-axis
current, w is the rotor velocity, R is the phase
resistance, Ly and L, are the direct-axis and
quadrature-axis inductances, respectively, K is the
permanent magnet strength, and N is the number of
magnetic pole pairs in the motor [18]. Note that

the voltage and current vectors are further defined
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by
i) @
where ’ denotes algebraic transposition. Both v and i
can be readily determined from measurements of the
motor line voltages and currents, and rotor position
6 [18].

The temperature-dependent parameters in (1)
arc the phase resistance R, and the magnet strength
K. In general, both parameters can be used as
“thermometers.” The phase resistance is temperature
dependent because the conductivity of copper is a
function of temperature [5]. The magnet strength is
usually temperature dependent (e.g., samarium-cobalt
being an exception) because the magnetization of the
permanent magnets is a function of temperature.

v=[vs v, i=l[ia

B. Thermal Model

On the basis of experimentation, it was determined
that the PMSM studied in the experiments reported
here exhibits linear dynamic thermal behavior with two
prominent states [21]. One state is primarily associated
with the temperature of the aggregated stator and rotor
core, while the second is primarily associated with the
phases1 Additionally, it is observed that the motor has
three independent internal sources of heat. These are
losses in the phases, the stator and rotor core, and
the bearings. Since the motor is manufactured with
thermally insensitive samarium-cobalt magnets, we use
a thermocouple measurement (T;), made at the surface
of the motor, to better capture the thermal dynamics of
the stator and rotor core.

Given the characteristics of the experimental
motor, it is appropriate to use a second-order
dynamic thermal model with the temperatures of the
thermocouple and phases serving as the two states. An
appropriate thermal model is then

T=[T. ] 3
dT
=7 =AT +Bu @)

where T, and T, are the thermocouple and phase
temperature rises above ambient, respectively, A and
B are 2 x 2 and 2 x 3 matrices, respectively, and u is a
vector related to the heat sources. We have more to say
about the structure of 4 and B later.

The three primary losses in the motor are in the
phases, the core and the bearings. Consequently, u can

11t should be noted that more complex thermal models of the motor
can certainly be hypothesized which take into account localized
variations of temperature directly. Such models would be very useful
for monitoring hot spots in the motor which can cause significant
damage. In our framework, we chose to concentrate on a coarser
thermal model of the motor which only takes into account aggregate
temperatures in the motor.
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be modeled by

U, R(T,)i'i
u=|u| = |w((Laia+K)*+L22) ®)
Up w

Note that u, is proportional to the square of the phase
flux linkage and the motor velocity. Therefore, core
losses are modeled primarily as resulting from eddy
currents. Note further that u, is dependent on T,
through R.

It is convenient to eliminate the coupling between
u and T. To do so, make use of the definitions

R =R,y +CT, (6)
0 ByCi'i

y= [ . ] ™
0 BnCi'i

Ut = Rompi'i ®)

where Ramp is R at the ambient temperature Tamb, and
C is the temperature coefficient of R. Then, (4) may
be replaced by

‘2—{ =(A+DT +Bu*

®
in which u* differs from u only in that u, is replaced
by uy, and the matrices 4 and B in (9) are the same
as in (4).

The thermal model of (9) can be inverted to
determine the maximum permitted steady-state iy
and i, for a specified temperature rise. These current
limits can in turn be used to determine the maximum
steady-state torque which the motor can produce for a
specified temperature rise. This information is useful in
sizing a motor to a given task.

The matrices A and B in (4) must be determined
before the thermal model is useful. For the motor
studied in the experiments reported here, 4 and B
are determined experimentally. To do so, the motor
is thermally exercised in several different ways: it
is heated through its phases with w = 0; it is driven
at different speeds with i = 0; and it is operated
normally over a wide range of loads. The transient
and steady-state data for all experiments are combined
and used to formulate a constrained least-square-error
estimate of the parameters within A and B based
on techniques described in [1, 2]. During these
experiments, 7, is actually measured by first measuring
R, and then converting this measurement according
to the dependence of the resistivity of copper on
temperature.

The estimation of the parameters in A and B is
constrained because they represent the dynamics of a
thermal system. Lumped-parameter thermal systems
have passive electrical resistor-capacitor networks as
analogs [9]. In fact, we can directly model the thermal
system in (4) as an RC circuit shown in Fig. 2 where
i.q denotes a current source (or heat flux) describing
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Fig. 2. RC circuit model for thermal system.

the thermal heat sources in the motor, while R.,

is intended to capture other unmodeled thermally
resistive elements affecting the thermal dynamics of
the motor. It is not difficult to show that with this
circuit model, the matrix 4 has the following form:

1 ( 1 + 1) 1
G \Rp R GRz

1 1 ( 1 1 1 )
CiR12 Ci\Riz Ri Ry
(10)
It can be shown that if the capacitor voltages are
chosen as the states, any system matrix (such as our
A), derived from a corresponding RC network, is the
negative of an M-matrix [4, 21]. This class of matrices
can be characterized by two properties [3]: 1) all
diagonal entries of an M -matrix are strictly positive,
while all off-diagonal entries are negative or zero, and
2) the real part of each eigenvalue of an M-matrix is
positive. For 2 x 2 M-matrices, condition 2 amounts to
the determinant of the matrix being strictly positive [3].

Instead of attempting to estimate all the unknown
resistance and capacitance values within the circuit
model of Fig. 2, we use the M-matrix constraints to
compute a constrained least-squares estimate of the
elements of A directly. Given that A4 is only 2 x 2,
using the M -matrix constraints results in a reasonably
simple and numerically well-conditioned estimation
problem for A.

As for B, to be physically meaningful, it must have
all positive elements since all thermal inputs always
contribute to rising temperatures in the motor. This is
the only constraint we impose on B when computing a
least-squares estimate of it. If these constraints are not
imposed on the estimation of A and B, then they must
at least be used to check that the estimated 4 and B
make physical sense.

. CONDITION MONITORING

The essence of the thermal monitoring system is
shown in Fig. 1. It consists of three parts. The first
part is an estimator of temperature rises based on
clectrical measurements. The second part is a thermal
observer based on the thermal model. The third part is

a condition monitor with failure detection based on the
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observer output and its innovation. Each of these parts
is described in the subsections which follow.

A. Electrical Temperature Estimation

In steady-state, (1) can be rewritten as
ig NwLgig+vy
[iq] [—Ndeid+vq—NwK
Now, given measurements of v, i, w, and K, R can
be estimated by least-square-error estimation [23].
Note that v and i can be readily obtained from
measurements of the line voltages, line currents, and
#, while K is assumed fixed and measured off-line.
Finally, from R, estimates of 7, can be obtained.
It should be noted that the use of least-square-error
estimation is somewhat out of place when applied
to (11) because there is measurement noise on both
sides of (11). Consequently, total least-square-error
estimation is more appropriate [8]. However, because
there is (relatively) much more noise on the right-hand
side of (11), ordinary least-square-error estimation
works quite well.

] .y

B. Thermal Observer

An observer for the thermal model of (9) can be
readily developed following [20]. To do so, define the
output vector y to comprise the electrical estimate of
7, and the thermocouple surface measurement of T,.
Then,

y=T+n (12)

where 7 is a vector of measurement noise which we
assume is Gaussian and white. Note that by selecting
the states to be the measurable temperatures, a
minimal mode] is obtained. Then, an appropriate
thermal observer is

(13)

where G is a matrix of gains. Note that to implement
(13), both J and u* must be determined. This involves
measurements of i and w, which will be noisy. If the
measurement noise is small, then its presence can be
linearized. In this case, it can be treated as an additive
process input noise in the usual manner for observer
development [20]. Such a simplification was found to
be appropriate in the case of the measurements of the
experimental motor studied here [21]. Therefore, to
capture the measurement uncertainty in J and u* to
first order, the noise term Bm is then added to the
right hand side of (13). This yields

dr . .
—r =+ DT +Bu" +G(y~T)

2

dt A ,
=A@+ DI +Bu + Gy -T)+Bm. (14)

The gain matrix G in (14) can be determined as
the result of a Kalman filter design. For the sake
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of simplicity, we assume that m and » are mutually
uncorrelated, Gaussian, and white noise processes. In
practice, the noises are surely not white and Gaussian.
However, we found that this simplifying assumption
was typically not a bad one [21]. The advantage of
using Kalman filter gains is that they are derived from
a meaningful analysis of the effects of the process and
measurement noise. Alternatively, G could be designed
based on a desired bandwidth for the observer.

C. Failure Prevention and Detection

One important use of the temperatures estimated
by the thermal observer is the monitoring of the
thermal stress on the motor, and the prevention
of failures. For example, T can be monitored to
determine when the insulation of the phases is at risk
of thermal damage. To a certain extent, the quality
of the temperature estimates can be judged from the
magnitude of the residual (I — y) and its covariance.
The smaller the innovation, the better the estimated
temperatures, and the magnitude of the innovation
indicates the probable magnitude of the estimation
erTors.

Perhaps a more important use of the observer
and its temperature estimates is failure detection. A
number of general failure detection schemes have been
proposed and applied in the past with varying degrees
of success [13-16]. To a large extent, the success of
a particular design will depend on the nature of the
particular problem at hand. In our case, the general
technique of “failure-sensitive” filters, and in particular
the geometric failure detection methodology [10-12]
are not only useful conceptually, but they also provide
detailed failure isolation information in addition to
being very easy to implement on-line. In general
terms, observer-based failure detection, or geometric
failure detection, is based on the notion that it may
be possible to design an observer so that, in the
presence of a failure, its error dynamics evolve in a
fixed subspace of the output space [10]. In this case,
the innovation also evolves in a fixed subspace. By
monitoring the innovation, and detecting its continued
presence in the subspace associated with the failure, it
may be possible to detect the failure.

To be specific about observer-based failure
detection, consider the case of the PMSM as modeled
here. Define the estimation error e according to

e=T-T 15)

and consider its evolution in the presence of a failure
which is modeled as a change in the thermal state
matrix from A to 4 + § A. Note that the failure
becomes present in (9) but not in the observer

(14) which is based on the (failure-free) model.
Differentiating both sides of (15), and substituting the
derivatives of T and T by the right-hand sides of (14)
and (9) respectively, the evolution of e is determined
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to be

§§=Q4+J—Gk+3m+{M—ﬁAT

(16)

From (16), it is apparent that when the dynamics
of e are stable, the two noise processes m and n, and
the failure 64 drive e away from zero. Next, assume
that 6 AT is of the form fn where f is a constant event
vector, and 7 is a scalar function of time. Further,
assume that G is chosen so that f is an eigenvector of
(A +J —G). Following these assumptions, except for
the stimulus of m and n, e is driven in the direction
of f in the presence of the failure. Consequently,
the innovation (7' — y) = e — n, is also driven in that
direction. This forms the basis of geometric failure
detection. When the innovation consistently grows
sufficiently large in the direction of f so that it can
be detected above the noise threshold driven by m and
n, then the failure associated with 64 is detected. See
Fig. 5. For the second-order system considered here,

a second failure can also be independently detected
provided that its event vector does not point in the
direction of f. This method of failure detection can
be generalized greatly beyond the example discussed
here [10, 21].

There is, in general, no guarantee that 6 AT
will take the form of fn, nor is there a guarantee
that G can be chosen so that f is an eigenvector of
(A +J — G). In some sense, the physics of the system
must cooperate. In the case of the PMSM, however,
both assumptions hold. For example, if the cooling
of the PMSM is obstructed, this can be captured
reasonably well (and experimentally verified) as an
increase in the value of R,, in (10). This, in turn, yiclds
the event vector f = [0 1]. An independent event
vector f = {1 1} results if the motor is placed in an
elevated ambient temperature.

The choice of the observer gain G is now
complicated by the dual purposes of the observer,
namely failure prevention and detection. For the
former purpose, Kalman filter gains are appropriate
since optimal estimates of temperature are sought
after. For the latter purpose, however, it is necessary
to assign the eigenvectors of (A4 +J — G). To satisfy
both needs, we can have a bank of filters, one for each
purpose. Here, however, we only concentrate on the
design of the filter for the latter purpose of failure
detection, but try to maintain robustness to noise.

The approach we take to this detection problem is to
de-tune the Kalman filter gains so that the observer
becomes a suboptimal state estimator with the desired
eigenvectors [10]. In particular, we proceed as follows.

Write the eigen-decomposition of the error

dynamics as

A+J-G=UxU"" a7

where the columns of U are the eigenvectors of the
left-hand side and ¥ is a diagonal matrix containing the
eigenvalues of the same. Now assume that the gain is
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specified by a Kalman filter design; G = Gx. We then
have
A+J -Gy =USUT (18)
Next, form the matrix U; whose columns are two
linearly independent event vectors of two fajlures of
interest. We then choose the observer gain G such that

A+ -G =Un U} (19)
or
G =A+J—UdkuaTl.

In this way, the eigenvalues of the error dynamics
A+ J — G are taken from the Kalman filter design
and the eigenvectors are those required for failure
detection. This method, although ad-hoc, provides an
effective way of adaptively updating the filter response
in the presence of changing noise statistics while
maintaining its failure detection capabilities.

To carry out failure detection, it is necessary to
determine when the error has grown significantly
in the direction of f. Thus, a threshold must be
chosen for comparison. The structure of the observer
provides a simple way to select such a threshold
by making use of the error covariance matrix of
the observer [7, 21]. This matrix can be computed
dynamically, or a steady-state matrix can be used.
In cither case, the observer need not be a Kalman
filter for this to work. The thresholds used in the
experiments reported here are computed this way with
3 standard deviations being selected as the threshold
magnitudes. Fig. 5 illustrates this failure detection. It
shows the two-dimensional innovation space, the two
independent event vectors, the detection threshold, and
the background innovation noise which is nominally
within the threshold. Failures are detected when the
innovation exceeds the detection threshold for a given
period of time. Which failure is detected depends on
which way the innovation vector points with respect
to the two event vectors. It should be noted that the
statistically optimal approach [16], which yields smaller
false alarm rates, would be to calculate the likelihood
ratios from the residuals and compare these against
a threshold for detection purposes. However, this
approach is more computationally expensive than the
one we have proposed. In effect, we have sacrificed
some performance to gain some computational savings.
To regain some of the lost performance, we filter the
residuals using a median filter [17] before comparing
them to the threshold. Since the median filtering
operation can be effected very efficiently, the overall
detection scheme is fast and tends to perform well as
we show in the next section.

(20)

IV.  EXPERIMENTS

The motor used in the experiments has a rated
torque and speed of 0.636 Nm and 3000 rpm. Its peak

1426

torque rating is 1.908 Nm. Further, it is characterized
by N =3, R = 1.82 Ohms, K =0.092 Vs/rad, L; =
9.17 mH, L, = 8.4 mH, and

-48 117 .
[ } x 10~

86 -—14

~ [0.2212 0.0022 0.0097} -

1.5781 0.0076 0.0055

where A and B are given in SI units. Using this motor,
three types of experiments are performed as described
below.

In the experiments described below, the motor
was run at a variety of speeds and against a variety
of loads, sometimes during a thermal transient and
sometimes during steady-state. In all experiments,
line voltages and currents, w, 8, R, and T, were
all measured, From the line voltages and currents,
and 6, v, and i were computed, and from R, T, was
computed.

A. Electrical Estimation

To study the electrical estimation of 7, R was
estimated from the collected data following the method
of Section III. Then, 7, was determined from the
estimated R, and compared against 7, determined
from actual measurements of R. Throughout, K was
assumed to be constant. In general 7, was consistently
estimated to within 4°C by this procedure, and
often with greater accuracy. It was observed that the
estimation errors were greatest at higher speeds where
the speed voltage was a dominant term in (1). This was
directly a consequence of the (multiplicative) terms
wiy and wiy on the right-hand side of (11). Namely,
any error in the measurement of iy and i, is severly
amplified by the magnitude of w, particularly at higher
speeds.

The absence of the speed voltage at lower speeds,
however, made it difficult to estimate K should this
have been desirable. The optimal speed range for the
estimation of both parameters was observed to be
in the vicinity of 1000 to 2000 rpm with a large load
applied to the motor.

B. Thermal Observation

The thermal observer designed in Section IIT
was tested by comparing ils temperature estimates
against the measured temperatures. In the case of
T,, the temperature measurement was derived from a
measurement of R. In all experiments, G was designed
as a Kalman filter gain. In preparation for this, the
covariance matrices for m and n were experimentally
found to be, respectively,

[0.078 0
0 02925

] ¢cy 21
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The covariance matrix Q was determined by using
the degree of accuracy provided by the measurement
equipment, while the process noise covariance S
was experimentally derived based on the size of
the unmodeled thermal phenomena in the motor.
It was further experimentally determined that the
measurement noise covarjance matrix varies with the
phase resistance R; R in turn grows with temperature
and the temperature is typically greatest at high speeds.
Hence, an accurate representation of the disturbances
would relate S to the operating speed of the motor. In
the interest of simplicity, a constant value for § was
employed.

The results of a typical transient experiment are
shown in Fig. 3. In general, the estimates of T, and T,
were always within 0.5°C and 2°C, respectively. The
dashed curve is the estimated temperature, and the
solid curve is the clectrically estimated temperature;
their difference is the innovation. In this experiment,

MILANFAR & LANG: MONITORING THE THERMAL CONDITION

the velocity and the load torque were stepped up from
1500 r/min and 0.18 Nm to 2500 r/min and 0.275 Nm
after 45 min of operation. They were returned to their
original values after 90 min of operation. The figure
also shows the estimation error. Note that the error
consistently remains within three standard deviation as
determined by the design of the Kalman filter. Three
standard deviations above and below zero error are
shown by dashed and dotted lines, respectively, around
the innovations.

C. Failure Detection

An example of failure detection is shown in Fig. 4
which has the same form as Fig. 3. In this experiment,
the speed and the load torque remained at 2500 r/min
and 0.275 Nm, respectively. After 45 min of operation,
the motor was wrapped in insulating styrofoam. This
created a thermal failure whose event vector was
approximately [0 1)'. After 90 min of operation, the
insulation was removed.
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Given an event vector in the [0 1]’ direction, the
innovation should grow in the [0 1]’ direction. Thus,
the innovation should remain small for 7, but grow
large for 7,. Here, large and small may be defined by

the standard deviation of the observer in the presence

of normal noise, but in the absence of a failure. The
failure caused by the insulation is clearly visible in
the figure. Between 45 and 90 min of operation,

the estimation error for 7. remains within three
standard deviations while the estimation error for 7,
grows outside of this threshold. Thus the failure was
easily detected. Successful experimental results for
the detection of failures induced by raised ambient
temperature (f = [1 1]’) are also reported in [21].
Note that postprocessing of the failure signature
would enhance its visibility against the standard
deviation thresholds [21]. This in turn reduces the
chances of false alarms and missed detections.

One particularly useful form of postprocessing for
this application employed in [21] is the median
filter [17).

V. SUMMARY AND CONCLUSIONS

This paper presented a thermal condition
monitoring system for small PMSMs. The system
was capable of supporting both thermal failure
prevention and detection. The system was based on
electrically and thermally estimated temperatures
which were combined in a thermal observer. The

estimated temperatures, which were accurate to within
several °C, were used for condition monitoring, while

geometric analysis of the innovation in the observer

was used for failure detection. Both were demonstrated

experimentally. In summary, the failure detector was
capable of distinguishing between normal operation,
and operation with obstructed cooling. The principal

conclusion, then, was that motor temperatures could be
estimated with sufficient accuracy to support successful

condition monitoring and failure detection.
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