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Efficient Generalized Cross-Validation with
Applications to Parametric Image Restoration and
Resolution Enhancement

Nhat Nguyen, Peyman Milanfagenior Member, IEEEand Gene Golub

Abstract—n many image restoration/resolution enhancement when superior equipment is available, resolution enhancement
applications, the blurring process, i.e., point spread function (PSF) algorithms can provide an inexpensive alternative.
of the imaging system, is not known or is known only to within a set A related problem, image restoration is a well-known area of

of parameters. We estimate these PSF parameters for this ill-posed h with tablished algorith | torati
class of inverse problem from raw data, along with the regulariza- research with many established algorithms. Image restoration

tion parameters required to stabilize the solution, using the gen- Produces an estimate of the original image given a degraded
eralized cross-validation method (GCV). We propose efficient ap- imageat the same resolution scalblot surprisingly, restora-
proximation techniques based on the Lanczos algorithm and Gauss tion and resolution enhancement are closely related problems.

quadrature theory, reducing the computational complexity of the 1, 464 image restoration is simply a special case of resolution
GCV. Data-driven PSF and regularization parameter estimation ’ 9 ply:asp
ge€nhancement.

experiments with synthetic and real image sequences are presente X . . . .
to demonstrate the effectiveness and robustness of our method. In this paper, we are mainly interested in robust techniques
for solving restoration and resolution enhancement in im-

perfectly known imaging conditions. We consider when the
blurring process is known only to within a set of parameters,
and the noise process variance’s unknown. We propose efficient
. INTRODUCTION techniques for parametric blur identification and regularization
MAGE resolution enhanceméntefers to image processingbased on generalized cross-validation and Gauss quadrature
algorithms which produce high quality, high-resolutionheory.
(HR) images from a set of low-quality, low-resolution (LR) The rest of this paper is organized as follows. In Section II,
images. While there is always a demand for better qualitye outline the problem description and model for resolution
images, the level of image detail is crucial in the performan@anhancement. Image restoration is a special case of resolution
of several computer vision algorithms. Target recognitioenhancement, and Section 1l shows the relationship between
detection and identification systems are some of the militatigem. Techniques for PSF and regularization parameter estima-
applications which require highest quality achievable imageson proposed in this paper can be applied equally well to reso-
License plate readers, surveillance monitors, and medidation enhancement or restoration. Sections IV and V describe
imaging applications are examples of civilian applicationthe blur identification problem and our approach using the gen-
with the same requirement. In many visual applications, boénalized cross-validation (GCV) method in detail. In Section VI,
civilian and military, the imaging sensors have poor resolutiome present our method for approximating the GCV criterion
outputs. When resolution can not be improved by replacivglue accurately and efficiently, based on quadrature rules and
sensors, either because of cost or hardware physical limits, the Lanczos algorithm. Blur estimation and resolution enhance-
can resort to video resolution enhancement algorithms. Evesxent results are shown in Section VII.

Index Terms—Blind restoration, blur identification, generalized
cross-validation, quadrature rules, superresolution.

Il. PROBLEM DESCRIPTION
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_ 1A related class of algorith'ms is the superresolution algori_thms [18]. Traq}'%-li” be adequate for the majority of resolution enhancement
tionally, the termsuperresolutiornas been used to mean algorithms capable Q . ..

extracting bandwidth frequencies beyond diffraction limit of the optical systeriN@ging applications.

These algorithms mainly operate on a single image. More receopgrresolu- The problem can be stated as follows.

tion has also been used for algorithms which obtain higher spatial resolution b .

interpolating subpixel informe?tion from multiple imaggs. To[?a\void ambiguity, g Given a set of degraded LR framéfk}k=l,mm each

we useresolution enhancemeitt this paper. M x N pixels in dimension under the conditions above,
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a high density CCD array placéafront ofthe camera lens. Al-

™ * * * * " " " mume: thoughthere are many different approaches (e.g., [15], [30]), we
u ot employ the following forward relationship between a degraded,
A A A a ., ... LR frame and the ideal HR image [8]:
L * ° |
= A a4 a T =DCrExx+mng, 1<k<p (1)
A A mA 4
s . s = Hix +ny (2)
L4 * * e .. Frame 2
- L. where
A Alalt A D downsampling operator;
T T—T Cy's blurring/averaging operators;
e Ey's affine transforms which map the HR grid coordinate
n A A A A . system to the LR grid systems;
| ] . Frame 3 . .
[ | - e X unknown ideal HR image;
., n;'s additive noise vectors.

The LR framed;, are given, and the decimation operaidris
known. The blurring operataf;, and camera lens characteris-
tics are in general unknown. However, the blurring process can
be well approximated as linear spatially invariant (LSI). The
scene motions for each frame relative to the reference frame are
also generally not known. Finally, with multiple independent
sources of error, the central limit theorem allows us to assume
white Gaussian distribution for the additive noise vectags
with possibly unknown variance. Each frafig M x N pixels

in dimension, becomes a columd N x 1 vector by column-
wise reordering. Pixel (1,1) of the 2-D frame is ordered first,
pixel (1,2) is second, and so forth. The unknown ideal image
x is reshaped into a2AM/ N x 1 column by the same colum-
nwise ordering. The matrices;, are square?MN x r*M N

and a desired enhancement factarreconstruct an en-  matrices representing the affine transforms applied to the ideal
hanced/restored HR image with dimensieg x V. image. The matriceS},, alsor? M N x r2M N square matrices,

Fig. 1illustrates the problem setup. The figure shows thre@4 represent the blurring operators, alids anM N x 2 M N dec-
pixel LR frames on an & 8 HR grid. Each symbol (square,imation matrix. By stacking the frame equations (2) we get
circle, triangle) indicates the sampling points of a frame with re-
spect to the HR grid. We pick an arbitrary frame as a reference f=Hx+n (3)
frame; in this case, the frame marked by the circular symbols.
The sampling grid for the triangular frame is a simple translatiagheref, n are nowpM N x 1 vectors andH is the complete
of the reference frame grid. The difference between the sagystem matrix with dimensionsM N x r?M N. The shape of
pling grid for the square frame and the reference frame grid ithe system depends on the number of available LR frames. If
cludes translational, rotational, and magnification (zoom) corg- < 72, we have an underdetermined systenyp K= +2, the
ponents. The goal of resolution enhancement is to interpolaigstem will be square. And if > 72, we have an overde-
and restore values at the HR grid points. termined system. Techniques developed in this paper are ap-
In order to solve for the unknown HR values, we first modglicable for all three cases. The matdX is structured, typi-
the forward process, which takes the ideal HR image to a deally ill-conditioned, and very large. The dimensionsibfare
graded LR frame. Many imaging devices today utilize chargedirectly related to the number of data samples and unknowns,
coupled devices (CCD) which are arrays of light detectors. which are usually in the tens of thousands. Even under favor-
detector determines pixel intensity values depending upon thigle conditions where the PSF is known and noise is negligible,
amount of light detected from its respective area in the sceselving (3) is a formidable computing challenge. The reader is
Resolution of images produced by the camera is proportionalrsferred to our previous publications [24]-[26], where we have
the density of the detector array. Fig. 2 shows a simplistic mod##alt with some of these computational and numerical issues.
of a CCD camera. In order to extract subpixel information content from an
The camera lens and aperture produce a blurred version ofiflmiage sequence, each frame must be registered accurately with
object. The CCD array turns this degraded analog signal intaespect to some reference to within subpixel accuracy. In this
discrete two-dimensional (2-D) image. In addition, the imaggmper, we assume that motion estimation has been performed
are contaminated by additive noise from various sources: quan-that image registration parameters are known explicitly. For
tization errors, sensor measurement, model errors, etc. Ideallyzomprehensive review on the topic, the reader is referred to
we would like to produce an HR image corresponding to placirige survey by Brown [6].

Fig. 1. Low-resolution data on a high-resolution grid.

Object Lens

Fig. 2. CCD camera model.
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I1l. RESTORATION AND RESOLUTION ENHANCEMENT ® n ¢ B ® L L I

Image restoration and image resolution enhancement are
closely related problems. In image restoration, the goal is & ¢ — &k —¢—&—¢—A& —¢
to reconstruct the original image given a degraded (e.g.,
blurred) imageat the same resolution scalemage resolution ® » ® » ® - ® N

*

enhancement reconstructs a higher resolution, restored image
from several aliased, degradéaolv-resolutionframes. General

restoration problems can be modeled as A—0 A& —9¢ A A—¢
f=0Cx+n @ eo—m—eo—m—90o w0 n

where
f observed degraded image; A < A < A < A 4

X original image we wish to estimate;

n various additive system noise sources;

C  convolution operator representing the blur.
In most instances, blurring is assumed to be linear shift in-
variant. We recover the original imageby deconvolving the A < A < A < A L g
blur C from the degraded observéd This classical problem
has been thoroughly studied and can be solved by several welf: 3
known techniques such as Wiener filtering, recursive Kalman
filtering, and iterative deconvolution methods (cf. [1], [35], an@e categorized into two main classes: methods which separate

Image restoration as a special case of image resolution enhancement.

[4]). blur identification as a disjoint procedure from restoration, and
Resolution enhancement includes restoration as a spegi@thods which combine blur identification and restoration in
case. Namely, equation (4) can be rewritten as one procedure. Methods in the first class tend to be computation-

) ally simpler. Blind deconvolution methods can also be general-
fp = DCEx+mny, 1<k<r (5)  ized to handle multiple observations [31]. Multiframe blind de-

wherer is an arbitrary decimation factor. equivalent to the resc:_onvolution is better at suppressing noise and edge artifacts and
qution7 enhancemen)t/ factor. the LR “frémgﬁic"s are the de- preventing PSF estimates from converging to the trivial delta

: . . . function.
graded data image having been shifted horizontally and VerH'Technically, blind deconvolution is a factorization problem

cally by multiples of one HR pixel and downsampled by afact%rf 2-D polynomials in thez-transform domain (see e.g., [21]).

ofr, aan’“ s represent the relanvg motion Sh'“?- Thus, 'Ma%8 2sed on this observation and the fact that multidimensional
restoration can be restated as an image resolution enhanceme

t . .
problem with a desired enhancement factoraind a set of poR/nomlaIs are generally not factorizable, Lane and Bates
22] find the blurring and original image polynomial factors

72 LR frames with all possible horizontal and vertical HR pixeL examining the roots of the polvnomial of the observed
shifts to cover the entire HR grid. Fig. 3 illustrates this processy g holy

oo . : . Image in the Z-transform domain. Although conceptually
where in this example, = 2. The noisy, blurred image is parti- . Co . ’
Ettractlve, zero sheet separation is highly sensitive to noise.

tioned into four LR “frames” each marked by a distinct symbol., . .
Using the frame marked by the circle symbol as reference, t ang multiple LR frames, Shekarforoush and Chellappa [32]

frame marked by the square symbol contains sampling point g?posed a related approach of estimating the optical transfer
y 9 y ping p unction (OTF) by finding spikes in the magnitude of the cross

one HR pixel shifted in the horizontal direction. Similarly, the :
. . . : : : ower spectrum of consecutive frames. Several researchers
triangles mark sampling points at one HR pixel shifted in the : . . ; ;

. o . ) : ve considered iterative blind restoration. The most popular
vertical direction, and the diamonds sampling points at one

. . . O imoR these is the iterative blind deconvolution (IBD) method by
pixel shifted diagonally. Image restoration is therefore S'mp)(%/lers and Dainty [2]. IBD simultaneously reconstructs the

image resolution enhancement with regularly sampled LR d%t . . .

. . . blur and image values by alternately enforcing constraints
completely covering the HR grid. As a result, parameter estima- . : . . :
. ; . In, the image and Fourier domain until estimates for both
tion techniques developed here for resolution enhancement will .

) . converge. Biggs and Andrews [5] extended the IBD method
be applicable for restoration problems as well. : ) . X
to multiple frames using the Richardson-Lucy algorithm

under a maximume-likelihood (ML) framework. Similar ML
approaches were proposed by Shepphal.[33], Rajagopalan

In many practical applications, the blurring process is naind Chaudhuri [28], Harikumar and Bresler [17], and others.
known or known only to within a set of parameters. The probleffhe simulated annealing algorithm by McCallum [23] also
of restoring the original image from a degraded observation aastimates both the blur and image values simultaneously. This
incomplete information about the blur is called blind deconvaonethod tries to find a global minimum of a cost function
lution. There has been extensive work on blind deconvolutioby randomly perturbing blur and image estimates. Kundur
A good survey on the topic can be found in the paper by Kundand Hatzinakos [21] proposed an iterative approach based

and Hatzinakos [21]. Existing blind deconvolution methods cam recursive inverse filtering using nonnegativity and support

IV. BLUR IDENTIFICATION
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constraints. They used conjugate gradient to minimize thg these successes, we apply GCV to estimate both the PSF and
associated cost function. In addition, several methods identiggularization parameters for resolution enhancement
the blurring process by using special features such as edges and
points, in the blurred image [27]. {ocev: Agev}
Other approaches [29] have simplified the identification R [(H(o)H (o))" +AD) " ]|
o . _ = argming, y T — - (12)
problem by parametrizing the point spread function (PSF). te((H(o)H(o)T + AI)~1)

With some knowledgb? of :jhe im:gti_ng systgml an_?henvifronrr;em, [29], Reeves and Mersereau greatly simplified the minimiza-
we can impose a blur degradation model with a 1ew g, , problem above by assuming the system maif{x ) to be

par_ameters. Blur identification is then reducgd to_ﬁndlng be uare and circulant, and hence, diagonalizable by the discrete
estimates for these parameters. We generalize this approac frier transform. As a result, the numerator and denominator

our resolution enhanpement problem. We enforce a paramegﬁhe objective function in (12) could be computed easily. How-
model upon the blurring process so that (1) becomes ever, this approach is not valid for resolution enhancement be-
cause the system matrix will not typically be square or circulant.
Without these assumptions, the numerator and denominator of
= Hi(o)x + i () (12) are prohibitively expensive to evaluate directly. In the later
sections, we describe techniques to approximate the objective
eftunction (12) efficiently and accurately.
Reeves and Mersereau simultaneously estimated the optimal
P blur and regularization parameters while keeping the image
argmin, Z £ — Hy(o)x||3 + Mx* Rx (8) model parameters fixed. We found, however, that by setting
k=1 the regularization parameter to some small number, the PSF
arameters can be better estimated even in the presence of noise
1d a small number of frames. We then use the computed PSF
to determine the appropriate regularization parameter based
upon the data. Our intuition is that with under-regularization,
the noise effect is exacerbated and moves the GCV criterion
away from possible local minima. Furthermore, the estimated
PSF is less biased away from the actual PSF even though the

kaDC(O)EkX+nk, 1§/€Sp (6)

where the blurring operatdr is generated from a parameter s
o. The least-squares solution of (7) is the minimizer to

where\ can control the smoothness of the solution, and the s
bilization (or regularization) matri® is some symmetric posi-
tive definite matrix. For simplicity, we will considek to be the
identity matrix in this paper.The minimizer (for the overdeter-
mined case) to (8) can then be expressed as follows:

T 1 T
x(o,\) = (}i(g) H{o) + )\1:—,1) H{o)"f ©) variance of the estimates can be larger. In what follows, we
L L first use a small value ok = ), so that the estimated PSF
f=1:1, H=]:]. (10) ' parameters can be found by solving a one-dimensional (1-D)
f, H, nonlinear optimization problem

Our approach first estimates the unknown PSF parameter set ((H(o)H ()T + XoI)72]|2
from raw data. Once an estimate of the PSF is available, the tr((H(o)H (o) + XAoI)~1)

preconditioned conjugate gradient algorithm described in a PI& ihe simplest case, the parameter setonsists of one pa-

vious paper by the authors [26] is use_d tosolve the.resolut|on Fometer describing the smoothness of the blur, e.g., the stan-
hancement problem. In the next section, we describe our paral

. o . . ; q‘gﬁd deviation of a Gaussian PSF or the radius of a pillbox
etrized blur estimation technique using generalized Cross_vatc')'ut-of-focus) blur. Once a blur estimatés available. we com-
dation. . ;

pute the regularization parameter from

V. CROSSVALIDATION o . [(H(&)H(8)T + AI)"1f]|2
A = argmin, ~ n —.
tw((H(6)H(0)T + A1)~

(13)

ogecy = argmin,,

(14)

Generalized cross-validation is a popular method for com-
puting the regularization parameter [10]. In [26], we derived
the formula for GCV for underdetermined linear systems, which VI. QUADRATURE RULES WITH LANCZOS ALGORITHM
is typical in the resolution enhancement problem. Not surpris-

ingly, it has the same form as in the overdetermined case. For large systems, numerators and denominators in (13) and

(14) are very expensive to evaluate directly. We first approxi-
_|(HHT + A7), mate the denominator using an unbiased trace estimator intro-
Aoy = argmin, w((HHT + A1) (11)  duced by Hutchinson [19]: L&t be a discrete random variable
which takes the values1 and+1 each with probabilityl /2,

Reeves and Mersereau have used GCV for blur identificatiand letu be a vector whose entries are independent samples

under an autoregressive moving average (ARMA) model [29tom U. Then the termu” (H H? + \I)~!u is an unbiased es-

In a recent study by Chardeet al. [7], GCV has been shown timator of tr((HH® + A\I)71).

to be an effective tool in parametric blur estimation. Motivated Now, in order to estimate both the numerators and denom-

. . . ) inators in (13) and (14), we need to estimate quadratic forms
2We note that since any positive definite choicefdtan be reduced to the

T - - . .
standard caseR = I) by redefining the variables, this assumption results irY J(M)v, whereM is some Symmet”_c pOS|t|ve_ def!n'te ma-
no loss of generality. trix and f(¢) = £77, p = 1,2. There is extensive literature
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on the application of Gauss quadrature rules to bound bilinear TABLE |

forms; see papers by Golub and collaborators [3], [9], [11], [12], MSEN PSF ETMATES FORGAUSSIAN BLUR WiTH 10 RaNDOMLY
[14]. This paper applies these techniques to our blur identifica-

tion problem.

. - . SHR
Let the eigendecomposition 8f be given byM = QT=0Q, :
where( is an orthogonal matrix and is a diagonal matrix of " = - .
eigenvalues in increasing order. Then ' e | ke
vIipanyv =vtQr f(2)Qv o ar
= VT (@)
=Y &) (15)
=1 20 ) 30 [LER]
wherev = (7;) = Qv. Suppose that we have bounds on the
spectrum ofM, (e.g., by Gershgorin circle theorem), such that TABLE I
a < 51_ < ... £ & < b. The last sum can be considered \sg \y psF ETiMaTES FORGAUSSIAN BLUR WITH ALL 16 FRAMES
as a Riemann-Stieltjes integral with nondecreasing piecewise AVAILABLE —EXAMPLE |
constant measure [14]
n b SHR
> @i = [ seaue) (16)
i=1 a & 48 60 o2 30 o
where the measure(¢) is defined as
[l 1] [l 1]
0, if £ <&
N(S) = 23 =1 ~12, |f 57 S 5 < 57‘,-1—1 (17) 150 [ 17 104 117
Sy v, if & <&
The key to efficiently and accurately estimating the quadratic 2i0 nm om 1
forms is that we can approximate the Riemann-Stieltjes integral
(16) with Gauss-type quadrature rules. o
The general form for quadrature rules is from recurrence coefficients of sequences of orthogonal poly-
nomials via the Lanczos bidiagonalization algorithm (cf. [11]
u ! and [14]). The next subsection describes quadrature bounds on
= Z wif(0:) + Z vif(7 quadratic forms.
A. Quadrature Error and Bounds
/ £(€) dn(€) = 111) + RIf) (18)
The quadrature errdg[f] from (18) can be expressed as
where the weightss; andv; and the node#; are unknown, @0y k
the nodesr; are predetermined, ang[f] is the error term. R fl= f / H(g_ T H ) (22)
The Gauss-type quadrature rules differ from one another by the 2k +0)! el

number of prescribed nodes. If there are no prescribed nodes,
then we obtain the standard Gauss quadrature: for'somen € (a,b). We have the following bound for the Gauss
quadrature rule [11].

k Theorem 1: Suppose thaf®*)(¢) > 0,Vk,Vé,a < € < b,
= szf(ez) (19) then
=1 b
If one node is prescribed, we get the Gauss—Radau quadrature Ig[f]1 < / F(& du(8). (23)

rule; with two nodes prescribed, the Gauss—Lobatto rule
Proof: For the Gauss rule, there are no prescribed nodes,

Zw )+ v () (200 *°
f(2k)
Rg[f] =

/Hs 02 du(e).  (24)

o Since f¥) () > 0,Yk,¥n,a < n < b, and [ T, (¢
The Gauss—Radau rule is often applied with eithe= a or 8;)2 duu(€) > 0, thenRg[f] > 0. Therefore ¢

7 = b. Gauss—Lobatto has both endpoints prescribed—=
a, 2 = b. As will be described below, we can compute the un-
known noded); and weightsy;, 1; for these Gauss-type rules Islf] < /a F(&) dn(8). (25)

szf )+ rif(m) v f(m). (21)
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Fig. 4. Parametric resolution enhancement for synthetic sequence—example |, 30 dB.

Analogous theorems for Gauss—Radau and Gauss—Lobatto rthesrems to boung"; F(© du(€) with Gauss-type quadrature

are also available. O
Theorem 2: Suppose thaf (?*+1)(¢) < 0,Vk,V¥€,a < € <
b, then

hﬂ%/f@@@éhﬂ] (26)

where Ir,(Ir,) corresponds to Gauss—Radau rule with pre-

scribed node at = a(b). O

Proof: Similar proof as in Theorem 1. |

Theorem 3: Suppose thaf(®*)(¢) > 0,Vk,V¢,a < € < b,
then

b
/ﬂ@@@ﬁhm (27)

with prescribed nodes;, = a, > = b.

rules. Define

L[f] := max({g[f], Irs[f])
l][f] = Inin(IRa[f]v IL[f])

wherelg,(Igs) is the Gauss—Radau rule with the prescribed
node atr = a(b). We have the following bounds

(28)
(29)

b
LA < [ 1©du© <UL (30)
As the number of nodefs increases, the bounds f] andU [ f]
become tighter. To find quadrature bountls] andU[f], we
need the unknown weights and nodgs;, andé;. Appendix A
describes how these quantities can be computed from sequences
of orthogonal polynomials associated with the weight measure
du(€). In practice, we usé/[f] as the approximate value for

Proof: Similar proof as in Theorem 1.

o Je H©duE) = v f(M)v.

Recall that the quadratic terms which we are interested in
approximating have forrv’ A/—Pv.p = 1,2. The function
f(&) = &P satisfies the hypotheses of Theorems 1, 2, and 3,We estimate blur and regularization parameters using the
for M positive definite{a > 0). Hence, we can apply the aboveGCV criterion with quadrature rule bounds as described above.

VII. EXPERIMENTS
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Fig. 5. GCV plot for pillbox blur—example I.

In our experiments, we assume simple PSF models with oinames and with all 16 frames, respectively. The formula for cal-
unknown blur parameter, designed to illustrate our methods.dulating percent MSE is [7]
most realistic blur identification applications, these models can
initial esti [leh(6) — h(o)I3
be used as initial estimates. MSE(5) = 100 2
We use Matlab’s CONSTR routine [20] to solve the GCV 17(2)lI3
minimization problem (13). For each function evaluation how-

ever, we iterate with the Lanczos algorithm with the foIIowinéN hereh(5) is the PSF estimate di(<), and the scaling factor

stopping criterion: h(5) - h(o)
C= ——5—-
] J 2
V=L oo @3
U[f] - These tables show excellent PSF reconstruction results for all

. _ _cases. Next, in Fig. 4, we quantitatively compare the parametric
For_ourt(_ast|mage_sequences, Lanczqs usually terminates Wi, ytion enhancement reconstruction result against the orig-
70 iterations, equivalent to 140 matrix-vector multiplies. Thﬁwal HR image. The actual blur standard deviation in this ex-
iteration coum Is quite l.OW compared to the dimensions of tr}ﬁnple is 0.75. We add white noise to the ten LR frames to realize
system matrix (usual_ly in the tens of_thousands). an SNR of 30 dB. We compute first the PSF estimate from (13)

Example I: In th_e first set of exp_erlment_s, 16 LR frames arﬁsingko = 0.001 as above. With this estimated PSF, we obtain
generated bY blurring a 172 1.72 pixel HR image of th(_e Stan- aregularization parameter by solving (14), which is found to be
ford quad, W't.h al x 4 (;auss!an blur and dpwnsamplmg by & 0249. Fig. 4 shows the result of resolution enhancement using
factor of four in each dimension. We experiment with blurs Oéomputed PSF and regularization parameters.
standard deviatigns 0.75, 1, and 2 and try to estimate these pa: ' o second set of experiments, we run tests for a pillbox
rameterg assuming the support O_f the_ PSFto b? known. We '(ﬁgfocussed) blur. The parameter to be estimated is the radius of
the no_n_lmear PSF p_aramete_r e$t|mat|on (13) wkgh= 0.001. the blur. Our experiments test for out-of-focus blurs with radii
In. addition, we conS|de( reallzgnons of 60 dB, 30 dB SiiRd 2 and 5 using the LR Stanford frames. We plot GCV values for
without additive Gaussian noise added to the LR frames. Tdius taking values from 1 to 10 at 0.2 intervals in Fig. 5. The

bIe; | and Il display the mean square error (MSE) of the P lots show that GCV function achieves global minimum at the
estimates under these conditions, with ten randomly chosen LB o .t values in all cases

3Signal to noise ratio (SNR) is defined &61log, Z—g whereo?, 02 are Example 1I: The LR FLIR images in our final parametric
variances of a clean frame and noise, respectively. resolution enhancement experiment are provided courtesy of
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Brian Yasuda and the FLIR research group in the Sensors Tech- Sample LA frame
nology Branch, Wright Laboratory, WPAFB, OH. Each image
is 64 x 64 pixels and a resolution enhancement factor of five
is sought after. The objects in the scene are stationary, and 16
frames are acquired by controlled movements of a FLIR imager
described in [16]. The frame to frame motions are accurately
known for this sequence. We first estimate the blur variance as-
suming a Gaussian blur with support equaling the resolution en-
hancement factor, using (13) witkhy = 0.001. Similar to the
process outlined in example |, we compute the regularization
parameter using the PSF estimate, which turns out to be 0.0174.
Fig. 6 shows a sample LR frame from the FLIR sequence and
the resulting HR image using the computed variance and regu-
larization parameter.

20 40 &0
VIIl. CONCLUSION
We propose a parametric blur and regularization estimation Blind superresolution reconstruction

approach, based on the generalized cross-validation method,
for restoration/resolution enhancement. We solve a multivariate

nonlinear minimization problem for these unknown param- B0

eters. To efficiently and accurately estimate the numerator

and denominator of the GCV objective function, we present 100

Gauss-type quadrature techniques for bounding quadratic

forms. Experimental results from a synthetic image sequence 150

show that blur parameters are accurately approximated from

Gaussian and pillbox blurs under various conditions. Image 200

resolution enhancement results using these computed values

are visually pleasing as well. Successful experiments with a 250

real FLIR image sequence illustrate that our techniques can

be a foundation for data-driven efficient restoration/resolution 300

enhancement algorithms. 100 500 300
APPENDIX A Fig. 6. Parametric resolution enhancement for FLIR sequence—example Il.

ORTHOGONAL POLYNOMIALS AND THE LANCZOS ALGORITHM
These polynomials satisfy a three-term recurrence relation (see

Recall from Section VI that we bound quadratic fornT3 4])
vl f(M)v, where M is symmetric positive definite, with
Gauss-type quadrature rules of the form epr(€) = Topr(&) + Bpe(Oer, k=1,...,n, (32)
K ! p-1(§) =0, po(§) =1 (33)
/1 ;w () + 2:31 vif (7)) with
0
As mentioned previously, the unknown nodgsand weights . po(§)
w;,; needed to calculate these quadrature values are related ex=1|"|, pPrx= :
to the roots of orthogonal polynomials associated with the 0 Pr_1(€)
weight measureé.(£) and the coefficients of their three-term :1
recurrence. The following subsection describes orthogonal ar P
polynomials in more detail and outlines the Lanczos bidiagonl- B
ization used to efficiently compute the recurrence coeffcients T = . (34)
and quadrature values. a1 P
L Br—1  an
A. Orthogonal Polynomials It can be shown that the nodésof Gauss quadrature rule are

For a nondecreasing piecewise constant weight fungtiéh  the eigenvalues df;, which are also the zeros of the polyno-
we can define a sequence of orthonormal polynonfig)$;—;  mial p,. The weightsu; are the square of the first component
such that of the normalized eigenvectorsdf. The Gauss quadrature ap-

b . proximation is given by (see [13])
1 ifi =74
(Opi (&) d =97 .7 31
[remomea={y 57 e 1611 = IMPuf ST + Awy (35)
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TABLE Il B. Lanczos Bidiagonalization

LANCZOS BIDIAGONALIZATION ALGORITHM

The matrix 73 is the tridiagonal matrix resulting fronk

qo = b/||bll2 iterations of Lanczos bidiagonalization algorithm faf with

s = ATqq v/|[v|l2 as the starting vector. In Table I, we include the
Lanczos bidiagonalization factorization algorithm to efficiently

7 = |Isoll2 compute the entries dfy. After % iterations of the Lanczos

wo = so/m bidiagonalization algorithm, we obtain an orthogonalx k

matrix

for k=2:ndo

Tho1 = AWk_2 — Vh—1GQr—2

Qr = [qo- - qr-1] (42)

and ann x &k orthogonal matrix

Op—1 = ||l'k—1||2
qr-1 = rk—1/5k—1

Sg~-1 = Aqu—l — g1 Wh—2

Wi = [wo - wi_1] (43)

with the following relations:

Vi = |Isk-1l]2 AWy, = Qi By, + Srquey,, (44)
T T
Wk-1 = Sk—1/7k AT Qr = Wi By, (45)
end whereB;, is ak x k lower bidiagonal matrix
st

whereu =[1 0 --- 0]% is ak-vector with one in the first 5 -
entry and zeros elsewhere. For the Gauss—Radau rule, we need Biy= |t . (46)
to adjust the last entryy. of 7. so that the adjusted tridiag- K
onal matrix7}; has an eigenvalue at the prescribed node [9], Sk—1 Vi

[3]. For the Gauss—Lobatto rule, the last three nonzero entries
Br_1, o, Br—1 will be adjusted to prescribe eigenvaluesaat

Combining (44) and (45), we get

andb. T T T
AA* Q= Qn.ByB; Srqrer, - 47
Following [3], for the Gauss—Radau rule, in order to prescribe @ = QuBrBy + morarey (“47)
a node at eithed or b, we replace the last entry; of 73 by The tridiagonall}, in (32) is exactlyBy, BY .
¢=7+ 511 (36) REFERENCES

with 7 = {a, b} ands;_1 being the last component of the solu- [1]
tion s to

[2]
(Te 1 —71)s = B 1€k 1, BN @
Br—1 = (V-1 + % )0k—1. (38) [4]

For Gauss—Lobatto rule, to prescribe nodes ahdb, the last 5]
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