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Efficient Generalized Cross-Validation with
Applications to Parametric Image Restoration and

Resolution Enhancement
Nhat Nguyen, Peyman Milanfar, Senior Member, IEEE, and Gene Golub

Abstract—In many image restoration/resolution enhancement
applications, the blurring process, i.e., point spread function (PSF)
of the imaging system, is not known or is known only to within a set
of parameters. We estimate these PSF parameters for this ill-posed
class of inverse problem from raw data, along with the regulariza-
tion parameters required to stabilize the solution, using the gen-
eralized cross-validation method (GCV). We propose efficient ap-
proximation techniques based on the Lanczos algorithm and Gauss
quadrature theory, reducing the computational complexity of the
GCV. Data-driven PSF and regularization parameter estimation
experiments with synthetic and real image sequences are presented
to demonstrate the effectiveness and robustness of our method.

Index Terms—Blind restoration, blur identification, generalized
cross-validation, quadrature rules, superresolution.

I. INTRODUCTION

I MAGE resolution enhancement1 refers to image processing
algorithms which produce high quality, high-resolution

(HR) images from a set of low-quality, low-resolution (LR)
images. While there is always a demand for better quality
images, the level of image detail is crucial in the performance
of several computer vision algorithms. Target recognition,
detection and identification systems are some of the military
applications which require highest quality achievable images.
License plate readers, surveillance monitors, and medical
imaging applications are examples of civilian applications
with the same requirement. In many visual applications, both
civilian and military, the imaging sensors have poor resolution
outputs. When resolution can not be improved by replacing
sensors, either because of cost or hardware physical limits, we
can resort to video resolution enhancement algorithms. Even
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1A related class of algorithms is the superresolution algorithms [18]. Tradi-
tionally, the termsuperresolutionhas been used to mean algorithms capable of
extracting bandwidth frequencies beyond diffraction limit of the optical system.
These algorithms mainly operate on a single image. More recently,superresolu-
tion has also been used for algorithms which obtain higher spatial resolution by
interpolating subpixel information from multiple images. To avoid ambiguity,
we useresolution enhancementin this paper.

when superior equipment is available, resolution enhancement
algorithms can provide an inexpensive alternative.

A related problem, image restoration is a well-known area of
research with many established algorithms. Image restoration
produces an estimate of the original image given a degraded
imageat the same resolution scale.Not surprisingly, restora-
tion and resolution enhancement are closely related problems.
In fact, image restoration is simply a special case of resolution
enhancement.

In this paper, we are mainly interested in robust techniques
for solving restoration and resolution enhancement in im-
perfectly known imaging conditions. We consider when the
blurring process is known only to within a set of parameters,
and the noise process variance’s unknown. We propose efficient
techniques for parametric blur identification and regularization
based on generalized cross-validation and Gauss quadrature
theory.

The rest of this paper is organized as follows. In Section II,
we outline the problem description and model for resolution
enhancement. Image restoration is a special case of resolution
enhancement, and Section III shows the relationship between
them. Techniques for PSF and regularization parameter estima-
tion proposed in this paper can be applied equally well to reso-
lution enhancement or restoration. Sections IV and V describe
the blur identification problem and our approach using the gen-
eralized cross-validation (GCV) method in detail. In Section VI,
we present our method for approximating the GCV criterion
value accurately and efficiently, based on quadrature rules and
the Lanczos algorithm. Blur estimation and resolution enhance-
ment results are shown in Section VII.

II. PROBLEM DESCRIPTION

In this section, we describe a straightforward and efficient
model for resolution enhancement which will serve as the foun-
dation for the development of algorithms for the rest of the
paper. We assume consistent lighting conditions, negligible op-
tical distortions, that objects observed are acquired under or-
thographic projections, and that individual scene motions can
be modeled, or approximated, as affine transformations. While
these simplifications result in some loss of generality, the model
will be adequate for the majority of resolution enhancement
imaging applications.

The problem can be stated as follows.

Given a set of degraded LR frames each
pixels in dimension under the conditions above,
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Fig. 1. Low-resolution data on a high-resolution grid.

Fig. 2. CCD camera model.

and a desired enhancement factor, reconstruct an en-
hanced/restored HR image with dimensions .

Fig. 1 illustrates the problem setup. The figure shows three 44
pixel LR frames on an 8 8 HR grid. Each symbol (square,
circle, triangle) indicates the sampling points of a frame with re-
spect to the HR grid. We pick an arbitrary frame as a reference
frame; in this case, the frame marked by the circular symbols.
The sampling grid for the triangular frame is a simple translation
of the reference frame grid. The difference between the sam-
pling grid for the square frame and the reference frame grid in-
cludes translational, rotational, and magnification (zoom) com-
ponents. The goal of resolution enhancement is to interpolate
and restore values at the HR grid points.

In order to solve for the unknown HR values, we first model
the forward process, which takes the ideal HR image to a de-
graded LR frame. Many imaging devices today utilize charged-
coupled devices (CCD) which are arrays of light detectors. A
detector determines pixel intensity values depending upon the
amount of light detected from its respective area in the scene.
Resolution of images produced by the camera is proportional to
the density of the detector array. Fig. 2 shows a simplistic model
of a CCD camera.

The camera lens and aperture produce a blurred version of the
object. The CCD array turns this degraded analog signal into a
discrete two-dimensional (2-D) image. In addition, the images
are contaminated by additive noise from various sources: quan-
tization errors, sensor measurement, model errors, etc. Ideally,
we would like to produce an HR image corresponding to placing

a high density CCD array placedin front of the camera lens. Al-
though there are many different approaches (e.g., [15], [30]), we
employ the following forward relationship between a degraded,
LR frame and the ideal HR image [8]:

(1)

(2)

where
downsampling operator;

’s blurring/averaging operators;
’s affine transforms which map the HR grid coordinate

system to the LR grid systems;
unknown ideal HR image;

’s additive noise vectors.
The LR frames are given, and the decimation operatoris
known. The blurring operator and camera lens characteris-
tics are in general unknown. However, the blurring process can
be well approximated as linear spatially invariant (LSI). The
scene motions for each frame relative to the reference frame are
also generally not known. Finally, with multiple independent
sources of error, the central limit theorem allows us to assume
white Gaussian distribution for the additive noise vectors
with possibly unknown variance. Each frame pixels
in dimension, becomes a column vector by column-
wise reordering. Pixel (1,1) of the 2-D frame is ordered first,
pixel (1,2) is second, and so forth. The unknown ideal image

is reshaped into a column by the same colum-
nwise ordering. The matrices are square
matrices representing the affine transforms applied to the ideal
image. The matrices , also square matrices,
represent the blurring operators, andis an dec-
imation matrix. By stacking the frame equations (2) we get

(3)

where are now vectors and is the complete
system matrix with dimensions . The shape of
the system depends on the number of available LR frames. If

, we have an underdetermined system. If , the
system will be square. And if , we have an overde-
termined system. Techniques developed in this paper are ap-
plicable for all three cases. The matrix is structured, typi-
cally ill-conditioned, and very large. The dimensions ofare
directly related to the number of data samples and unknowns,
which are usually in the tens of thousands. Even under favor-
able conditions where the PSF is known and noise is negligible,
solving (3) is a formidable computing challenge. The reader is
referred to our previous publications [24]–[26], where we have
dealt with some of these computational and numerical issues.

In order to extract subpixel information content from an
image sequence, each frame must be registered accurately with
respect to some reference to within subpixel accuracy. In this
paper, we assume that motion estimation has been performed
so that image registration parameters are known explicitly. For
a comprehensive review on the topic, the reader is referred to
the survey by Brown [6].
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III. RESTORATION AND RESOLUTIONENHANCEMENT

Image restoration and image resolution enhancement are
closely related problems. In image restoration, the goal is
to reconstruct the original image given a degraded (e.g.,
blurred) imageat the same resolution scale. Image resolution
enhancement reconstructs a higher resolution, restored image
from several aliased, degraded,low-resolutionframes. General
restoration problems can be modeled as

(4)

where
observed degraded image;
original image we wish to estimate;
various additive system noise sources;
convolution operator representing the blur.

In most instances, blurring is assumed to be linear shift in-
variant. We recover the original imageby deconvolving the
blur from the degraded observed. This classical problem
has been thoroughly studied and can be solved by several well-
known techniques such as Wiener filtering, recursive Kalman
filtering, and iterative deconvolution methods (cf. [1], [35], and
[4]).

Resolution enhancement includes restoration as a special
case. Namely, equation (4) can be rewritten as

(5)

where is an arbitrary decimation factor, equivalent to the res-
olution enhancement factor, the LR “frames”’s are the de-
graded data image having been shifted horizontally and verti-
cally by multiples of one HR pixel and downsampled by a factor
of , and ’s represent the relative motion shifts. Thus, image
restoration can be restated as an image resolution enhancement
problem with a desired enhancement factor ofand a set of

LR frames with all possible horizontal and vertical HR pixel
shifts to cover the entire HR grid. Fig. 3 illustrates this process,
where in this example, . The noisy, blurred image is parti-
tioned into four LR “frames” each marked by a distinct symbol.
Using the frame marked by the circle symbol as reference, the
frame marked by the square symbol contains sampling points at
one HR pixel shifted in the horizontal direction. Similarly, the
triangles mark sampling points at one HR pixel shifted in the
vertical direction, and the diamonds sampling points at one HR
pixel shifted diagonally. Image restoration is therefore simply
image resolution enhancement with regularly sampled LR data
completely covering the HR grid. As a result, parameter estima-
tion techniques developed here for resolution enhancement will
be applicable for restoration problems as well.

IV. BLUR IDENTIFICATION

In many practical applications, the blurring process is not
known or known only to within a set of parameters. The problem
of restoring the original image from a degraded observation and
incomplete information about the blur is called blind deconvo-
lution. There has been extensive work on blind deconvolution.
A good survey on the topic can be found in the paper by Kundur
and Hatzinakos [21]. Existing blind deconvolution methods can

Fig. 3. Image restoration as a special case of image resolution enhancement.

be categorized into two main classes: methods which separate
blur identification as a disjoint procedure from restoration, and
methods which combine blur identification and restoration in
one procedure. Methods in the first class tend to be computation-
ally simpler. Blind deconvolution methods can also be general-
ized to handle multiple observations [31]. Multiframe blind de-
convolution is better at suppressing noise and edge artifacts and
preventing PSF estimates from converging to the trivial delta
function.

Technically, blind deconvolution is a factorization problem
of 2-D polynomials in the -transform domain (see e.g., [21]).
Based on this observation and the fact that multidimensional
polynomials are generally not factorizable, Lane and Bates
[22] find the blurring and original image polynomial factors
by examining the roots of the polynomial of the observed
image in the -transform domain. Although conceptually
attractive, zero sheet separation is highly sensitive to noise.
Using multiple LR frames, Shekarforoush and Chellappa [32]
proposed a related approach of estimating the optical transfer
function (OTF) by finding spikes in the magnitude of the cross
power spectrum of consecutive frames. Several researchers
have considered iterative blind restoration. The most popular
of these is the iterative blind deconvolution (IBD) method by
Ayers and Dainty [2]. IBD simultaneously reconstructs the
blur and image values by alternately enforcing constraints
in the image and Fourier domain until estimates for both
converge. Biggs and Andrews [5] extended the IBD method
to multiple frames using the Richardson-Lucy algorithm
under a maximum-likelihood (ML) framework. Similar ML
approaches were proposed by Sheppardet al.[33], Rajagopalan
and Chaudhuri [28], Harikumar and Bresler [17], and others.
The simulated annealing algorithm by McCallum [23] also
estimates both the blur and image values simultaneously. This
method tries to find a global minimum of a cost function
by randomly perturbing blur and image estimates. Kundur
and Hatzinakos [21] proposed an iterative approach based
on recursive inverse filtering using nonnegativity and support
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constraints. They used conjugate gradient to minimize the
associated cost function. In addition, several methods identify
the blurring process by using special features such as edges and
points, in the blurred image [27].

Other approaches [29] have simplified the identification
problem by parametrizing the point spread function (PSF).
With some knowledge of the imaging system and environment,
we can impose a blur degradation model with a few free
parameters. Blur identification is then reduced to finding best
estimates for these parameters. We generalize this approach to
our resolution enhancement problem. We enforce a parametric
model upon the blurring process so that (1) becomes

(6)

(7)

where the blurring operator is generated from a parameter set
. The least-squares solution of (7) is the minimizer to

(8)

where can control the smoothness of the solution, and the sta-
bilization (or regularization) matrix is some symmetric posi-
tive definite matrix. For simplicity, we will consider to be the
identity matrix in this paper.2 The minimizer (for the overdeter-
mined case) to (8) can then be expressed as follows:

(9)

...
... (10)

Our approach first estimates the unknown PSF parameter set
from raw data. Once an estimate of the PSF is available, the
preconditioned conjugate gradient algorithm described in a pre-
vious paper by the authors [26] is used to solve the resolution en-
hancement problem. In the next section, we describe our param-
etrized blur estimation technique using generalized cross-vali-
dation.

V. CROSS-VALIDATION

Generalized cross-validation is a popular method for com-
puting the regularization parameter [10]. In [26], we derived
the formula for GCV for underdetermined linear systems, which
is typical in the resolution enhancement problem. Not surpris-
ingly, it has the same form as in the overdetermined case.

(11)

Reeves and Mersereau have used GCV for blur identification
under an autoregressive moving average (ARMA) model [29].
In a recent study by Chardonet al. [7], GCV has been shown
to be an effective tool in parametric blur estimation. Motivated

2We note that since any positive definite choice ofR can be reduced to the
standard case(R = I) by redefining the variables, this assumption results in
no loss of generality.

by these successes, we apply GCV to estimate both the PSF and
regularization parameters for resolution enhancement

(12)

In [29], Reeves and Mersereau greatly simplified the minimiza-
tion problem above by assuming the system matrix to be
square and circulant, and hence, diagonalizable by the discrete
Fourier transform. As a result, the numerator and denominator
of the objective function in (12) could be computed easily. How-
ever, this approach is not valid for resolution enhancement be-
cause the system matrix will not typically be square or circulant.
Without these assumptions, the numerator and denominator of
(12) are prohibitively expensive to evaluate directly. In the later
sections, we describe techniques to approximate the objective
function (12) efficiently and accurately.

Reeves and Mersereau simultaneously estimated the optimal
blur and regularization parameters while keeping the image
model parameters fixed. We found, however, that by setting
the regularization parameter to some small number, the PSF
parameters can be better estimated even in the presence of noise
and a small number of frames. We then use the computed PSF
to determine the appropriate regularization parameter based
upon the data. Our intuition is that with under-regularization,
the noise effect is exacerbated and moves the GCV criterion
away from possible local minima. Furthermore, the estimated
PSF is less biased away from the actual PSF even though the
variance of the estimates can be larger. In what follows, we
first use a small value of , so that the estimated PSF
parameters can be found by solving a one-dimensional (1-D)
nonlinear optimization problem

(13)

In the simplest case, the parameter setconsists of one pa-
rameter describing the smoothness of the blur, e.g., the stan-
dard deviation of a Gaussian PSF or the radius of a pillbox
(out-of-focus) blur. Once a blur estimateis available, we com-
pute the regularization parameter from

(14)

VI. QUADRATURE RULES WITH LANCZOSALGORITHM

For large systems, numerators and denominators in (13) and
(14) are very expensive to evaluate directly. We first approxi-
mate the denominator using an unbiased trace estimator intro-
duced by Hutchinson [19]: Let be a discrete random variable
which takes the values and each with probability ,
and let be a vector whose entries are independent samples
from . Then the term is an unbiased es-
timator of .

Now, in order to estimate both the numerators and denom-
inators in (13) and (14), we need to estimate quadratic forms

, where is some symmetric positive definite ma-
trix and . There is extensive literature
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on the application of Gauss quadrature rules to bound bilinear
forms; see papers by Golub and collaborators [3], [9], [11], [12],
[14]. This paper applies these techniques to our blur identifica-
tion problem.

Let the eigendecomposition of be given by ,
where is an orthogonal matrix and is a diagonal matrix of
eigenvalues in increasing order. Then

(15)

where . Suppose that we have bounds on the
spectrum of , (e.g., by Gershgorin circle theorem), such that

. The last sum can be considered
as a Riemann–Stieltjes integral with nondecreasing piecewise
constant measure [14]

(16)

where the measure is defined as

if
if
if

(17)

The key to efficiently and accurately estimating the quadratic
forms is that we can approximate the Riemann–Stieltjes integral
(16) with Gauss-type quadrature rules.

The general form for quadrature rules is

(18)

where the weights and and the nodes are unknown,
the nodes are predetermined, and is the error term.
The Gauss-type quadrature rules differ from one another by the
number of prescribed nodes. If there are no prescribed nodes,
then we obtain the standard Gauss quadrature:

(19)

If one node is prescribed, we get the Gauss–Radau quadrature
rule; with two nodes prescribed, the Gauss–Lobatto rule

(20)

(21)

The Gauss–Radau rule is often applied with either or
. Gauss–Lobatto has both endpoints prescribed,

. As will be described below, we can compute the un-
known nodes and weights for these Gauss-type rules

TABLE I
MSE IN PSF ESTIMATES FORGAUSSIAN BLUR WITH 10 RANDOMLY

CHOSENFRAMES—EXAMPLE I

TABLE II
MSE IN PSF ESTIMATES FORGAUSSIAN BLUR WITH ALL 16 FRAMES

AVAILABLE —EXAMPLE I

from recurrence coefficients of sequences of orthogonal poly-
nomials via the Lanczos bidiagonalization algorithm (cf. [11]
and [14]). The next subsection describes quadrature bounds on
quadratic forms.

A. Quadrature Error and Bounds

The quadrature error from (18) can be expressed as

(22)

for some . We have the following bound for the Gauss
quadrature rule [11].

Theorem 1: Suppose that
then

(23)

Proof: For the Gauss rule, there are no prescribed nodes,
so

(24)

Since and
, then . Therefore

(25)
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Fig. 4. Parametric resolution enhancement for synthetic sequence—example I, 30 dB.

Analogous theorems for Gauss–Radau and Gauss–Lobatto rules
are also available.

Theorem 2: Suppose that
then

(26)

where corresponds to Gauss–Radau rule with pre-
scribed node at .

Proof: Similar proof as in Theorem 1.
Theorem 3: Suppose that

then

(27)

with prescribed nodes .
Proof: Similar proof as in Theorem 1.

Recall that the quadratic terms which we are interested in
approximating have form . The function

satisfies the hypotheses of Theorems 1, 2, and 3,
for positive definite . Hence, we can apply the above

theorems to bound with Gauss-type quadrature
rules. Define

(28)

(29)

where is the Gauss–Radau rule with the prescribed
node at We have the following bounds

(30)

As the number of nodes increases, the bounds and
become tighter. To find quadrature bounds and , we
need the unknown weights and nodes , and . Appendix A
describes how these quantities can be computed from sequences
of orthogonal polynomials associated with the weight measure

. In practice, we use as the approximate value for
.

VII. EXPERIMENTS

We estimate blur and regularization parameters using the
GCV criterion with quadrature rule bounds as described above.
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Fig. 5. GCV plot for pillbox blur—example I.

In our experiments, we assume simple PSF models with one
unknown blur parameter, designed to illustrate our methods. In
most realistic blur identification applications, these models can
be used as initial estimates.

We use Matlab’s CONSTR routine [20] to solve the GCV
minimization problem (13). For each function evaluation how-
ever, we iterate with the Lanczos algorithm with the following
stopping criterion:

For our test image sequences, Lanczos usually terminates within
70 iterations, equivalent to 140 matrix-vector multiplies. The
iteration count is quite low compared to the dimensions of the
system matrix (usually in the tens of thousands).

Example I: In the first set of experiments, 16 LR frames are
generated by blurring a 172 172 pixel HR image of the Stan-
ford quad, with a Gaussian blur and downsampling by a
factor of four in each dimension. We experiment with blurs of
standard deviations 0.75, 1, and 2 and try to estimate these pa-
rameters assuming the support of the PSF to be known. We use
the nonlinear PSF parameter estimation (13) with .
In addition, we consider realizations of 60 dB, 30 dB SNR3 and
without additive Gaussian noise added to the LR frames. Ta-
bles I and II display the mean square error (MSE) of the PSF
estimates under these conditions, with ten randomly chosen LR

3Signal to noise ratio (SNR) is defined as10 log , where� ; � are
variances of a clean frame and noise, respectively.

frames and with all 16 frames, respectively. The formula for cal-
culating percent MSE is [7]

where is the PSF estimate of , and the scaling factor

These tables show excellent PSF reconstruction results for all
cases. Next, in Fig. 4, we quantitatively compare the parametric
resolution enhancement reconstruction result against the orig-
inal HR image. The actual blur standard deviation in this ex-
ample is 0.75. We add white noise to the ten LR frames to realize
an SNR of 30 dB. We compute first the PSF estimate from (13)
using as above. With this estimated PSF, we obtain
a regularization parameter by solving (14), which is found to be
0.0249. Fig. 4 shows the result of resolution enhancement using
computed PSF and regularization parameters.

In the second set of experiments, we run tests for a pillbox
(defocussed) blur. The parameter to be estimated is the radius of
the blur. Our experiments test for out-of-focus blurs with radii
2 and 5 using the LR Stanford frames. We plot GCV values for
radius taking values from 1 to 10 at 0.2 intervals in Fig. 5. The
plots show that GCV function achieves global minimum at the
correct values in all cases.

Example II: The LR FLIR images in our final parametric
resolution enhancement experiment are provided courtesy of
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Brian Yasuda and the FLIR research group in the Sensors Tech-
nology Branch, Wright Laboratory, WPAFB, OH. Each image
is 64 64 pixels and a resolution enhancement factor of five
is sought after. The objects in the scene are stationary, and 16
frames are acquired by controlled movements of a FLIR imager
described in [16]. The frame to frame motions are accurately
known for this sequence. We first estimate the blur variance as-
suming a Gaussian blur with support equaling the resolution en-
hancement factor, using (13) with . Similar to the
process outlined in example I, we compute the regularization
parameter using the PSF estimate, which turns out to be 0.0174.
Fig. 6 shows a sample LR frame from the FLIR sequence and
the resulting HR image using the computed variance and regu-
larization parameter.

VIII. C ONCLUSION

We propose a parametric blur and regularization estimation
approach, based on the generalized cross-validation method,
for restoration/resolution enhancement. We solve a multivariate
nonlinear minimization problem for these unknown param-
eters. To efficiently and accurately estimate the numerator
and denominator of the GCV objective function, we present
Gauss-type quadrature techniques for bounding quadratic
forms. Experimental results from a synthetic image sequence
show that blur parameters are accurately approximated from
Gaussian and pillbox blurs under various conditions. Image
resolution enhancement results using these computed values
are visually pleasing as well. Successful experiments with a
real FLIR image sequence illustrate that our techniques can
be a foundation for data-driven efficient restoration/resolution
enhancement algorithms.

APPENDIX A
ORTHOGONAL POLYNOMIALS AND THE LANCZOSALGORITHM

Recall from Section VI that we bound quadratic form
, where is symmetric positive definite, with

Gauss-type quadrature rules of the form

As mentioned previously, the unknown nodesand weights
needed to calculate these quadrature values are related

to the roots of orthogonal polynomials associated with the
weight measure and the coefficients of their three-term
recurrence. The following subsection describes orthogonal
polynomials in more detail and outlines the Lanczos bidiagonl-
ization used to efficiently compute the recurrence coeffcients
and quadrature values.

A. Orthogonal Polynomials

For a nondecreasing piecewise constant weight function,
we can define a sequence of orthonormal polynomials
such that

if
if

(31)

Fig. 6. Parametric resolution enhancement for FLIR sequence—example II.

These polynomials satisfy a three-term recurrence relation (see
[34])

(32)

(33)

with

... ...

. . .
. . .

. . .
(34)

It can be shown that the nodesof Gauss quadrature rule are
the eigenvalues of , which are also the zeros of the polyno-
mial . The weights are the square of the first component
of the normalized eigenvectors of . The Gauss quadrature ap-
proximation is given by (see [13])

(35)
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TABLE III
LANCZOS BIDIAGONALIZATION ALGORITHM

where is a -vector with one in the first
entry and zeros elsewhere. For the Gauss–Radau rule, we need
to adjust the last entry of so that the adjusted tridiag-
onal matrix has an eigenvalue at the prescribed node [9],
[3]. For the Gauss–Lobatto rule, the last three nonzero entries

will be adjusted to prescribe eigenvalues at
and .

Following [3], for the Gauss–Radau rule, in order to prescribe
a node at either or , we replace the last entry of by

(36)

with and being the last component of the solu-
tion to

(37)

(38)

For Gauss–Lobatto rule, to prescribe nodes atand , the last
three nonzero entries are replaced by ,
where

(39)

where and are the last components of the solutions
and to

(40)

For Gauss–Radau and Gauss–Lobatto rules, the quadrature ap-
proximations have the form

(41)

where is the tridiagonal matrix with the last few entries
adjusted accordingly.

The entries of can be computed via the Lanczos bidiago-
nalization algorithm as follows.

B. Lanczos Bidiagonalization

The matrix is the tridiagonal matrix resulting from
iterations of Lanczos bidiagonalization algorithm for with

as the starting vector. In Table III, we include the
Lanczos bidiagonalization factorization algorithm to efficiently
compute the entries of . After iterations of the Lanczos
bidiagonalization algorithm, we obtain an orthogonal
matrix

(42)

and an orthogonal matrix

(43)

with the following relations:

(44)

(45)

where is a lower bidiagonal matrix

...

...
.. .

(46)

Combining (44) and (45), we get

(47)

The tridiagonal in (32) is exactly .
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