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Abstract
The concept of prior probability for signals plays a key role in the successful
solution of many inverse problems. Much of the literature on this topic can
be divided between analysis-based and synthesis-based priors. Analysis-based
priors assign probability to a signal through various forward measurements
of it, while synthesis-based priors seek a reconstruction of the signal as a
combination of atom signals. The algebraic similarity between the two suggests
that they could be strongly related; however, in the absence of a detailed
study, contradicting approaches have emerged. While the computationally
intensive synthesis approach is receiving ever-increasing attention and is
notably preferred, other works hypothesize that the two might actually be
much closer, going as far as to suggest that one can approximate the other.
In this paper we describe the two prior classes in detail, focusing on the
distinction between them. We show that although in the simpler complete
and undercomplete formulations the two approaches are equivalent, in their
overcomplete formulation they depart. Focusing on the �1 case, we present
a novel approach for comparing the two types of priors based on high-
dimensional polytopal geometry. We arrive at a series of theoretical and
numerical results establishing the existence of an unbridgeable gap between
the two.

1. Introduction

The general inverse problem seeks the recovery of an unknown signal X ∈ R
N (a vector of

dimension N over the real numbers) based on indirect measurements of it given in the vector
Y ∈ R

M . A typical model for describing the relation between X and Y is

Y = T{X} + V , (1)

0266-5611/07/030947+22$30.00 © 2007 IOP Publishing Ltd Printed in the UK 947

http://dx.doi.org/10.1088/0266-5611/23/3/007
mailto:ronrubin@cs.technion.ac.il
http://stacks.iop.org/IP/23/947


948 M Elad et al

where T : R
N → R

M is a (possibly nonlinear) known operator, and V ∈ R
M is a zero-mean

white Gaussian additive noise vector (other models for the noise could also be considered, but
here we restrict the discussion to the assumptions made above for simplicity). Many important
problems in signal and image processing are represented using this structure: these include
denoising, interpolation, scaling, super-resolution, inverse Radon transform, reconstruction
from projections in general, and motion estimation, to name just a few. In all these problems,
the general task is an inversion of the operator T.

Inverting the above process can be done in many different ways. When lacking any
a priori knowledge about the unknown, maximum likelihood (ML) estimation suggests finding
the X that leads to the most probable set of measurements Y . We get a solution of the form

X̂ML = Argmax
X

Prob{Y |X}

= Argmax
X

exp

{
− 1

2σ 2
v

‖Y − T{X}‖2

}
= Argmin

X
‖Y − T{X}‖2

2.

As an example, if T{X} = HX, where H is a known degradation operator represented as a full
rank matrix with more columns than rows, the ML solution amounts to the pseudo-inverse of
the degrading operator, thus X̂ML = H+Y . For the denoising problem (H = I), ML suggests
the solution X̂ML = Y , which clearly demonstrates the weakness of ML.

Generally speaking, the literature today offers, through the Bayesian approach, a stabilized
solution to the inverse problem posed above. We concentrate on the use of the maximum a
posteriori probability (MAP) estimator, which regularizes the estimation process using an
assumed prior distribution on the signal space. Indeed, such signal priors are implicitly
used in many other signal processing applications such as compression, signal decomposition,
recognition and more.

1.1. MAP-analysis approach

When studying the variety of published work in the field, two main prior types emerge. The
first utilizes an analysis-based approach, deriving the probability of a signal from a set of
forward transforms applied to it. Such priors form the backbone of many classic as well as
more recent algorithms, and most commonly appear as regularizing elements in optimization
problems or PDE methods. In this paper, we focus on a robust Gibbs-like distribution of the
form

Prob{X} = Const · exp
{−α · ‖ΩX‖p

p

}
,

where Ω ∈ M [L×N] is some pre-specified matrix and ‖ · ‖p
p is the �p norm. The term ‖ΩX‖p

p

is an energy functional that is supposed to be low for highly probable signals, and higher if the
signal is less probable. We refer to Ω as the analysing operator. Merged with the Gaussianity
assumption on the additive noise, this poses the MAP recovery process as the minimization
problem

X̂MAP-A = Argmax
X

Prob{X|Y }
= Argmax

X
P{Y |X}P{X}/P{Y }

= Argmin
X

− log P{Y |X} − log P{X}

= Argmin
X

‖Y − T{X}‖2
2 + λ · ‖ΩX‖p

p (2)
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where λ = 2ασ 2
v . When robust norms are used (p < 2 or some robust M-function [1]), an

iterative algorithm is typically employed for the minimization of (2). Preference is generally
given to p � 1 so that the overall penalty function is convex, thus guaranteeing a unique
solution. We name this method the MAP-analysis approach since the prior is based on a
sequence of linear filters applied to the signal, essentially analysing its behaviour.

The analysis structure is quite common in inverse problems in signal processing, image
processing and computer vision. In a typical image processing application where an image is
an unknown, Ω is chosen as some sort of derivative operator, promoting spatial smoothness
in the image X. As to the choice of p, choosing the �2 norm is known to lead to a simplified
analytic treatment, but also known to give non-robust results (i.e. smoothing of discontinuities).
Thus, recent contributions concentrate on robustness by using �p norms with p < 2, leading
to nonlinear filtering algorithms [1–9].

1.2. MAP-synthesis approach

The second type of prior arises from employing a synthesis-based approach. Synthesis-based
methods are a more recent contribution, and stem in a large part from the basis pursuit method
pioneered by Chen, Donoho and Saunders [10].

Suppose that a signal X ∈ R
N is to be represented as a linear combination of ‘building-

block’ atoms taken as the columns of a full-rank matrix D ∈ M [N×L], with L � N (notice
the different size compared to Ω). This matrix has N rows and L columns, and we refer to
the columns of D as the atom signals. This leads to the linear under-determined equation
set X = Dγ , where γ ∈ R

L is overcomplete. We assume for the idealized signal X that its
representation γ is sparse, implying that only a few atoms are involved in its construction.
Assuming Y is a noisy version of this signal, then the following is the MAP-synthesis option
for the recovery of X:

X̂MAP-S = D · Argmin
γ

‖Y − T{Dγ }‖2
2 + λ · ‖γ ‖p

p. (3)

In this expression, the �p-norm with p < 2 seeks the sparsest representation vector γ that
explains Y in terms of the dictionary columns. Note that if the solution of the optimization
problem is denoted as γ̂ , the estimated output signal is given by X̂MAP-S = Dγ̂ .

Synthesis-based methods have evolved rapidly over the past decade. Significant progress
has been seen in the development of modern dictionaries for sparse image representation, such
as the Ridgelet, Curvelet and Contourlet dictionaries [11–13]; training from example sets has
also been successfully explored [14]. Parallel advancements, many of them theoretical in
nature, have been achieved in the areas of sparse coding (i.e. finding sparse representations)
and sparsity-based signal recovery [15, 16].

Through the MAP framework, the synthesis approach may be generalized to incomplete
dictionaries. We let ΓX = {γ |X = Dγ } denote the set of representations of X in D, where
ΓX may be infinite, empty or a singleton. The a priori probability assumed for X depends on
its sparsest representation in D. In this setting, signals not spanned by the columns of D are
assigned a priori probability 0.

The MAP-synthesis prior is therefore given as a Gibbs distribution on the optimal
representations:

Prob{X} =
{

Const · exp
{−α · ‖γ̂ (X)‖p

p

}
if ΓX �= ∅

0 otherwise
(4)
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where

γ̂ (X) = Arg min
γ∈ΓX

‖γ ‖p
p.

This prior, when plugged into the MAP formulation, leads precisely to the process described
in (3). From a practical point of view, an iterative algorithm is required for the solution of
(3), and there are many methods to do so effectively. For p � 1, we are guaranteed to have a
unique solution.

1.3. Analysis versus synthesis

Comparing the two recovery processes in (2) and (3), we see that they describe very similar
structures. The heuristic behind each remains sparsifying the representation of the signal—
be this its forward projection on the basis elements, or its reconstruction as their linear
combination.

How do the two methods compare? The conjecture that natural images can be effectively
described as sparse combinations of atomic elements has found empirical support [17] which
the analysis-based approach lacks. The concept also has clear advantages in applications
such as image compression, feature extraction, content-based image retrieval and others.
Furthermore, as opposed to the analysis approach, the synthesis approach has a constructive
form providing an explicit description of the signals it represents, and as such, is more intuitive
to interpret and design.

A different concern about the analysis approach is its capacity to benefit from the increased
redundancy. As this approach requires a signal to simultaneously agree with all the rows of Ω,
this might become impossible with a highly redundant operator, rendering the prior useless.
The synthesis approach, in contrast, seems to benefit from higher redundancy, as this enriches
the prior, enabling it to describe more complex types of signals.

On the other hand, the compactness promoted by the synthesis approach might also
come as a weakness. In such a framework where only a small number of atoms are used to
represent each signal, the significance of every atom grows enormously; any wrong choice—in
a denoising scenario for instance—could potentially lead to a ‘domino effect’ where additional
erroneous atoms are selected as compensation, deviating further from the desired description.
In the analysis formulation, however, all atoms take an equal part in describing the signal, thus
minimizing the dependence on each individual one, and stabilizing the recovery process.

Analysis-based methods, specifically in their robust form (p < 2), are a very common
structure in image processing and computer vision applications. In a large part, this is because
MAP-analysis leads to a simple optimization problem, which (in the overcomplete case) is
considerably easier to solve—due to the smaller dimension of the unknown—compared to a
similar-sized MAP-synthesis form. At the same time, however, a growing number of works
are employing the synthesis approach for inverse problem regularization. The synthesis-based
approach is attractive due to its intuitive and versatile structure, and, informally, is widely
considered to provide superior results. This recent trend is strengthened by a wealth of
theoretical and practical advancements, making the synthesis approach both more appealing
and computationally tractable [15, 16, 18].

Nonetheless, MAP-synthesis remains a prohibitive option in many cases. This has led
several works to seek alternative approaches over direct minimization. One option which has
been proposed is the use of an analysis-based method to approximate the synthesis-based one,
as is done in [19] where the analysis operator is taken as the pseudo-inverse of the synthesis
dictionary. This approach has only been partially justified, however, leaving the question of
its generality much unattended.
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1.4. This paper’s contribution

As can be seen from the discussion, the literature to date is highly ambivalent with respect
to the two regularization approaches. The extensive research of the synthesis-based methods
implicitly suggests that MAP-synthesis is superior to MAP-analysis—especially considering
the huge gap in complexity between the two structures. At the same time, other works, building
on the algebraic similarity presented in the next section, hypothesize that the two are actually
much closer, in fact close enough to approximate one another [19].

In light of these developments, it is our goal in this paper to clarify the distinction between
the two approaches, and shed some light on the conceptual and technical gaps between them.
We show that indeed for specific cases the two approaches are equivalent, utilizing a pseudo-
inverse relation between the analysis operator and synthesis dictionary. Such is the case for
the square and undercomplete formulations, as well as for the �2 (i.e. p = 2) choice. However,
as we go towards the general overcomplete formulation (L > N), we find that the equivalence
between the two MAP options breaks. Concentrating on the p = 1 case, often favoured due
to its convexity and robustness, we provide theoretical as well as numerical results indicating
that the two methods are fundamentally distinct. Our results break, in fact, both of the
above common assumptions: first in establishing the gap between the two approaches, and
second by presenting simulations where the analysis approach actually supersedes its synthesis
counterpart.

This paper is organized as follows. Section 2 describes the square and under-determined
cases, where the two methods exhibit almost complete equivalence. In section 3 we turn to
discuss the overcomplete case, focusing on the �1 choice. Taking a geometrical viewpoint,
we construct the theoretical model describing the gap between the two methods, and discuss
some consequences of this model. Simulation results are provided in section 4, and section 5
concludes with a summary of the claims made in the paper.

2. The square and under-determined cases

We begin by showing that in the (under-)determined case (i.e., L � N ), the two methods are
practically equivalent.

Theorem 1 (square non-singular case—complete equivalence). MAP-analysis and MAP-
synthesis are equivalent if MAP-analysis utilizes a square and non-singular analysing operator
Ω. The equivalent MAP-synthesis method is obtained for the dictionary D = Ω−1.

Proof. We start with the MAP-analysis approach as posed in equation (2). Since Ω is square
and non-singular, defining ΩX = γ leads to X = Ω−1γ . Putting this into (2), we get an
alternative optimization problem with γ replacing X as unknown,

X̂ = Ω−1 · Argmin
γ

‖Y − T{Ω−1γ }‖2
2 + λ · ‖γ ‖p

p,

and the equivalence to the MAP-synthesis method in (3) is evident. Likewise, starting from
the MAP-synthesis formulation and using the same argument, we can obtain a MAP-analysis
one and thus the two methods are equivalent. �

The generalization of theorem 1 for the L � N case requires more care, and is only true for
the denoising (T = I) case. Before stating the theorem, we point out that complete equivalence
cannot be guaranteed in this case due to the property of MAP-synthesis to only produce results
in the column-span of D, while MAP-analysis poses no such restriction. Nevertheless, the
following theorem represents both conceptually and computationally a complete equivalence
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between the two, as knowing the solution to either one immediately fixes the solution to the
other. We arrive at the following result, whose proof is postponed until the appendix.

Theorem 2 (undercomplete denoising case—near-equivalence). MAP-analysis denoising
with a full-rank analysing operator Ω ∈ M [L×N] (L � N) is nearly equivalent to MAP-
synthesis with the dictionary D = Ω+. This is expressed by the relation X̂MAP-A =
X̂MAP-S + Y D⊥, with Y D⊥ representing the component of the input orthogonal to the columns
of D.

The proof is given in appendix A.
We also see that when the input is in the column-span of D (as in the square non-singular

case), we obtain X̂MAP-A = X̂MAP-S.

3. The over-determined case

We have seen that the two methods are practically equivalent for the L � N case. Our main
interest however is in the overcomplete (L > N) case, advocated strongly by the basis pursuit
approach. A natural starting point for analysing the overcomplete case is the pseudo-inverse
relation, which, as we have just seen, successfully achieves equivalence in the (under-)complete
case. We assume hereon that Ω has full column rank, and hence Ω+Ω = I . Beginning with
the MAP-analysis formulation in (2), we let ΩX = γ . Since Ω+Ω = I , recovering X from
γ is done by X = Ω+γ . However, in replacing the unknown from X to γ we must add the
constraint that γ is spanned by the columns of Ω, due to its definition (this can be represented
by the constraint ΩΩ+γ = γ ). Thus we obtain the following equivalent MAP-analysis form:

X̂MAP-A = Ω+ · Argmin
γ :ΩΩ+γ=γ

‖Y − T{Ω+γ }‖2
2 + λ · ‖γ ‖p

p. (5)

Comparing this to (3), we see that if the MAP-synthesis solution (with D = Ω+) satisfies
the constraint ΩΩ+γ = γ , then omitting it in (5) has no effect, and both approaches arrive at
the same solution. However, in the general case this constraint is not satisfied, and thus the two
methods lead to different results. An interesting observation is that while the representation
solutions could differ vastly, the final estimators X̂ = Ω+γ̂ in both might be very similar;
this is because in multiplying by Ω+ we null out content not in the column-span of Ω,
essentially satisfying the constraint. However, as we will see, this does not turn out to close
the gap between the two methods. The exception to this is the non-robust �2 case, in which
equivalence still holds.

Theorem 3 (overcomplete case—equivalence for p = 2). MAP-analysis with a full-rank
analysing operator Ω ∈ ML×N (L > N) is equivalent to MAP-synthesis with D = Ω+ for
p = 2.

Proof. From (5) the proof is trivial. When p = 2, the unknown γ can be assumed to be the
sum of two parts, γ = γ Ω +γ Ω⊥, where γ Ω comes from the column-span of Ω, and γ Ω⊥ from
the orthogonal subspace. The second penalty term

(‖γ ‖2
2

)
clearly prefers γ Ω⊥ to be zero; as

to the first term
(‖Y − T{Ω+γ }‖2

2

)
, γ Ω⊥ has no impact on it as it is nulled out by Ω+. Thus,

γ Ω⊥ that violates the constraint in γ is chosen as zero, and the two methods coincide. �

3.1. MAP-analysis and MAP-synthesis in �1

From this point on we consider the two MAP methods with p = 1. The �1 choice is essentially
the ‘meeting point’ between the analysis and synthesis approaches, which prefer p � 1 and
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0 � p � 1, respectively. The use of the �1 norm in signal and image recovery has received
considerable attention beginning at the late 1980s, with the adoption of robust statistics by
the signal processing community. Probably most notable of the analysis-based methods is
the total-variation approach [2]3, with some additional examples including [6–9]. Classical
synthesis-based methods include the basis pursuit method [10] and the Lasso [20].

For the �1 choice, we have the following forms of the two recovery processes:

X̂MAP-A = Argmin
X

‖Y − T{X}‖2
2 + λ · ‖ΩX‖1

X̂MAP-S = D · Argmin
γ

‖Y − T{Dγ }‖2
2 + λ · ‖γ ‖1.

The �1 option is a favourable choice for these methods due to its combination of convexity,
robustness, as well as proximity to �0 in the synthesis case [15, 18].

Looking at the two MAP formulations, we see that both depend on a weighting parameter
λ to control the regularizing element; for λ = 0 both reproduce the ML estimator, and as
λ → ∞ they deviate from it until finally converging to 0. However, the rate at which this
occurs may vary substantially between the two methods, and hence this parametrization is
inconvenient for our purposes. To overcome this, we propose the following reformulations of
the two problems:

X̂MAP-A(a) = Argmin
X

‖ΩX‖1 Subject To ‖Y − T{X}‖2 � a

X̂MAP-S(a) = D · Argmin
γ

‖γ ‖1 Subject To ‖Y − T{Dγ }‖2 � a.

These formulations are conceptually simpler, with a directly controlling the deviation from the
ML estimator. The original MAP target functions are essentially the Lagrangian functionals
of these constrained versions (with λ representing the inverse of the Lagrange multiplier), and
thus the two forms are equivalent.

3.2. A geometrical viewpoint

The above formulations have a simple geometrical interpretation, which provides an interesting
way of comparing the two MAP approaches. The solutions of both problems are obviously
confined to the same region of ‘radius’ a about Y (this is true as we assume D to be full-rank);
we also assume this region does not include the origin, otherwise the solution is trivially
zero. Considering MAP-analysis first, the level-sets of its target function fA(X) = ‖ΩX‖1

are a collection of concentric, centro-symmetric polytopes {X|‖ΩX‖1 � c}. Graphically,
the solution can be obtained by taking a small level-set {‖ΩX‖1 � c} about the origin, and
gradually inflating it (by increasing c) until it first encounters the region {‖Y − T{X}‖2 � a}.
The point of intersection constitutes the solution to the MAP-analysis problem, as there cannot
be a point in this region having a smaller value of ‖ΩX‖1.

As to MAP-synthesis, a similar process may be described using the collection of
concentric, centro-symmetric polytopes D · {γ |‖γ ‖1 � c}4. This is reasoned as follows:
consider the set D · {‖γ ‖1 � c} where c is small enough such that this set does not intersect
the region {‖Y − T{X}‖2 � a}. Then for any X in this region, there does not exist a
representation γ satisfying ‖γ ‖1 � c, or in other words, any representation as X = Dγ must
satisfy ‖γ ‖1 > c. This, of course, is true for any c which is small enough; therefore if we
inflate this set (by enlarging c) until it first touches the region at the value ĉ, then for the

3 Total variation takes a ‘true’ MAP-analysis form only in the 1D case.
4 Note that these sets exist in signal space, and have the explicit form {X|∃γ , X = Dγ ∧ ‖γ ‖1 � c}.
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intersection point X̂ = Dγ̂ we know it has a representation satisfying ‖γ̂ ‖1 = ĉ, whereas for

any c < ĉ the signals within the region have no such representation, and hence X̂ must be the
MAP-synthesis solution.

Conveniently, for both MAP methods these ‘inflations’ are performed via simple scaling:
we have {‖ΩX‖1 � c} = c · {‖ΩX‖1 � 1} and D{‖γ ‖1 � c} = c · D{‖γ ‖1 � 1}.
This implies that given the canonical MAP defining polytopes �Ω := {‖ΩX‖1 � 1} and
�D := D · {‖γ ‖1 � 1}, the inflation processes are fully defined, and so are the MAP solutions;
in fact, specifying these polytopes is completely equivalent to specifying Ω or D, respectively.
We find that the behaviour of each of the methods is governed exclusively by the geometry
of a single high-dimensional polytope, providing us with the basis for comparing the two
methods5. We therefore continue by characterizing the geometry of these two polytopes.

Before continuing, we briefly review some elementary polytope terminology. Given
an N-dimensional polytope, its boundary is an (N − 1)-dimensional manifold; each of the
polytope’s facets is an (N −1)-dimensional surface constituting one segment of this manifold.
A facet may also be referred to as an (N − 1)-dimensional face. Similarly, the boundary of
each facet consists of (N − 2)-dimensional faces, and so on. A polytope’s vertices, edges and
ridges are its faces of dimensions 0, 1 and 2, respectively.

3.2.1. The MAP-analysis defining polytope. The MAP-analysis defining polytope is a level
set of the MAP-analysis target function, fA(X) = ‖ΩX‖1:

�Ω = {X|‖ΩX‖1 � 1}.
Applying the gradient operator to fA, we find that the normal to this surface satisfies

n(X) ∝ ∇fA(X) = ΩT sign(ΩX).

Evidently n(X) is defined for any X in which all coordinates of ΩX are non-zero; where
one or more of these vanishes, n(X) exhibits a discontinuity arbitrarily filled in by the sign
function. n(X) is therefore (as expected) piecewise-smooth. Intuitively, consider the signals
X on the boundary of the defining polytope; then the facets correspond to the locations where
n(X) is smooth, whereas the other faces correspond to where n(X) is discontinuous. The
discontinuities in n(X) obviously result from X being orthogonal to rows in Ω; the following
claim, whose proof is provided in the appendix, relates the face dimension to the rank of these
rows:

Claim 1. Let X ∈ ∂�Ω (the boundary of the defining polytope), and let k denote the rank of
the rows in Ω to which X is orthogonal to. Then X resides strictly within a face of dimension
(N − k − 1) of the MAP-analysis defining polytope.

The proof is given in appendix B.
We use the term strictly within a face to indicate a signal located in the interior of a face, in

the sense that there exists a finite ε-ball about it—of the same dimension as the face—entirely
contained within this face (note that this also covers signals that are vertices, who reside strictly
within themselves). Also, as opposed to standard residence, strict residence is unique, as the
faces are considered open rather than closed, and thus do not overlap.

The claim implies that to obtain a vertex of �Ω, we choose N − 1 linearly independent
rows in Ω, determine their 1D null-space v and normalize such that ‖Ωv‖1 = 1 (note that

5 In fact, the same arguments hold for any �p formulation, replacing the �1-norms in the definitions of �Ω and �D
with the proper �p-norms. However, analysing these defining shapes for a general p is a difficult task, and thus we
restrict ourselves to the �1 case.
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this defines two antipodal vertices). Edges are similarly obtained by choosing N − 2 linearly
independent rows, and taking any properly normalized signal in their 2D null-space. This leads
to an immediate conclusion concerning the vertex complexity of the MAP-analysis defining
polytope, as its vertex count is equal to the number of possible choices of N − 1 linearly
independent rows in Ω. In the worst case, this may reach an exponential

(
L

N−1

)
, and in fact this

is a tight bound for the worst case. As an example, assume the rows of Ω are chosen such that
their directions {ŵi} are uniformly distributed on the unit sphere. Under these conditions, the
probability of any set of N − 1 rows to be dependent vanishes for all practical purposes, and
thus we obtain that for this randomized case the expected number of MAP-analysis vertices
achieves 


(
L

N−1

)
. Obviously this is also the tight bound for the worst-case vertex count.

An interesting observation is that the MAP-analysis defining polytope exhibits a highly
regular structure. For instance, consider the set of edges associated with some choice of N −2
independent rows from Ω. Letting {u, v} span their 2D null-space, these edges are obtained as
any linear combination of the two (for instance, of the form X = cos(θ)u + sin(θ)v), properly
normalized to ensure ‖ΩX‖1 = 1. It follows that this set of edges forms a closed edge-loop
of the polytope; the planar edge loop consists of consecutive edges, all existing on a common
plane. We conclude that the edges of �Ω are arranged in ‘loops’ about the origin, each loop
associated with a choice of N − 2 independent rows from Ω. Similar arguments generalize
to higher-dimensional regularities, corresponding to the choices of N − k independent rows
from Ω for k > 2.

Finally, the organized structure is also found in a highly regular neighbourliness pattern.
Since every vertex is obtained as the null-space of some N − 1 rows from Ω, and each choice
of N − 2 of these defines an edge loop passing through this vertex, we have that each vertex
of �Ω is incident to exactly N − 1 edge loops, and consequently, every vertex of �Ω has
precisely 2(N − 1) neighbours.

3.2.2. The MAP-synthesis defining polytope. The MAP-synthesis defining polytope is given
by

�D = D · {γ |‖γ ‖1 � 1}.
It is a known result that this polytope is obtained as the convex hull of the columns of D and
−D; a proof is brought in the appendix for completeness:

Claim 2. The MAP-synthesis defining polytope �D = D · {‖γ ‖1 � 1} is obtained as the
convex hull of {±di}i=1,...,L, where {di} are the columns of D.

The proof is given in appendix C.
The claim simply states that the vertices of the MAP-synthesis defining polytope are those

columns of ±D which cannot be represented as a convex combination of any other columns
(and their antipodes); the other faces are the convex combinations of neighbouring vertices.
A vertex can therefore be represented as V = Dγ , where γ has a single non-zero element
γi = ±1, and a point on an edge can be represented similarly with γ having two non-vanishing
elements γi, γj satisfying |γi | + |γj | = 1. In general, a point on a k-dimensional face will have
a representation X = Dγ with γ having k + 1 non-vanishing elements, and ‖γ ‖1 = 1. We
emphasize that this is not a sufficient condition, so a signal X = Dγ synthesized from a sparse
representation γ might not reside on a low-dimensional face if the corresponding columns of
±D are not neighbours or do not constitute polytope vertices.

An immediate implication of claim 2 concerns the redundancy of certain atom signals in
D. From the claim, it is clear that any column of D residing strictly within the convex hull of
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the remaining columns has absolutely no effect on the MAP-synthesis defining polytope and
thus can be removed.

Corollary 1. Let dk be a column of D which is obtained as a convex combination of the
remaining columns and their antipodes, {±di}i=1..k̂..L. Then the MAP-synthesis problem
obtained by removing dk from D is equivalent to the original one.

Redundant columns in D can be safely removed without altering the MAP-synthesis
solution, and by locating these we may be able to prune the dictionary, generally obtaining
a simpler formulation. The problem of determining whether some vector X is a convex
combination of the set {Y i} can be formulated as a linear-programming (LP) problem, and
thus locating all redundant columns in D requires L executions of LP. As an alternative to
removal, we may choose to elongate the redundant atom such that it becomes a vertex of the
MAP-synthesis defining polytope, and thus expressed by the prior. However, increasing a
dictionary atom may have the effect of assimilating a different one into the convex hull. One
simple method to ensure none of the columns in D are redundant is to normalize them to a
fixed length (see section 3.3.3 and specifically claim 3).

3.3. Consequences of the geometrical viewpoint

The geometrical analysis leads to some important consequences concerning the two MAP
methods. In this section we describe a few of these conclusions.

3.3.1. The analysis-synthesis gap. From the geometrical viewpoint, we find that in contrast
to the algebraic similarity, the analysis and synthesis structures are actually very different.
As we have seen, the two polytopal structures asymptotically differ in their vertex counts.
A parallel difference exists in the neighbourliness properties of these polytopes; since every
vertex has a linear number of neighbours in the MAP-analysis case (while their total number is
exponential) it follows that the probability of any two vertices to be neighbours approaches 0 as
N → ∞. In contrast, Donoho [21] has recently shown that, for MAP-synthesis polytopes, the
probability of any two (non-antipodal) vertices to be neighbours approaches 1 as N → ∞.6

We find that while MAP-analysis polytopes feature very large numbers of vertices with
very low neighbourliness, MAP-synthesis polytopes exhibit low vertex counts and very high
neighbourliness. Combined with the high regularity of the MAP-analysis polytopes, we see
that the two approaches actually describe very different structures. These theoretical gaps
indeed translate to very concrete behavioural differences between the two methods, and this
will be shown in the experiments section.

3.3.2. MAP-synthesis as a superset of MAP-analysis. An interesting consequence of
the geometrical description is that any �1 MAP-analysis estimator may be reformulated as
an equivalent MAP-synthesis one. This is accomplished by simply taking all the MAP-
analysis defining polytope vertices—one of each antipodal pair—and setting them as the
MAP-synthesis dictionary atoms. Since both methods will have the same defining polytope,
they will be completely equivalent. This establishes the generality of MAP-synthesis over
MAP-analysis in �1:

6 The dictionary is assumed to be of linear size in N, as well as to fulfil certain randomness conditions; see theorem 1
in [21].
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Theorem 4 (overcomplete �1 case—generality of MAP-synthesis). For any �1 MAP-
analysis form with full-rank analysing operator Ω (L � N), there exists a dictionary D(Ω)

describing an equivalent �1 MAP-synthesis form. The reverse is not true.

The reverse direction fails due to the strict regularity imposed on the MAP-analysis defining
polytopes. Since this regularity does not apply to MAP-synthesis, it may clearly describe
structures not represented in the MAP-analysis form.

The actual equivalence transform presented here has little practical value; except for the
special case of N = 2, where the size of D(Ω) will be equal to (or even smaller than) that of
ΩT , the size of D(Ω) will generally grow exponentially. Nonetheless, the theorem describes
a definite one-way relationship between the two formulations: the synthesis formulation is
clearly more general than the analysis one, with indeed a vast collection of MAP-synthesis
priors unrepresented by the stricter MAP-analysis form.

3.3.3. MAP principal signals. The constructive nature of MAP-synthesis provides a good
understanding of the signals which are most ‘favoured’ by this prior; in essence, these are the
dictionary atoms and their sparse combinations. The parallel entities for the MAP-analysis
prior, however, are difficult to derive using algebraic tools. The geometric interpretation
enables us to define these qualitative terms in a precise manner, and give a description of the
MAP-analysis counterparts of the synthesis atoms.

Roughly speaking, we consider a signal to be favoured by some prior when this prior
is capable of recovering the signal well given deteriorated versions of it; intuitively, these
should be the signals with maximal a priori probability. However, we observe that both MAP
structures are energy dependent; therefore, the most probable signals for both are simply the
zero signal and its immediate neighbourhood. Moreover, the intuition itself here is not entirely
accurate: a highly probable signal will not be well recovered if there exists a near-by signal
with even higher probability.

To resolve this, we confine ourselves to a fixed-energy sphere; on this sphere we seek
the most effectively recovered signals by the specific MAP method. Since the recovery is
a local process, we will further be interested in the local maxima of the distribution on this
sphere rather than the global ones. Our line of thought can be described as follows. Consider
an energy-preserving denoising process, where the denoised solution is post-processed by
re-normalizing it to the magnitude of the input (thus eliminating its decay to zero caused
by the low-energy preference of the prior). Under these conditions, the MAP estimation
essentially searches the neighbourhood of the input on the fixed-energy sphere, outputting a
higher-probability (and presumably less noisy) signal near the input. A signal will therefore be
well recovered when its prior probability is maximal relative to a significant enough part of its
neighbourhood on the fixed-energy sphere. Specifically, the local maxima of the distribution
will be the most effectively recovered signals on the sphere.

Reducing without loss of generality to the unit sphere, we refer to the local maxima of
the distribution as the principal signals of the distribution. Formally,

Definition 1. Let Prob{X} be any MAP-analysis or MAP-synthesis distribution. Then the
principal signals of this distribution are defined as the {local} maxima of the optimization
problem

Argmax
X

Prob{X} Subject To ‖X‖2 = 1.

As we will soon see, in the synthesis case these signals are tightly related to the MAP-synthesis
dictionary atoms.
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(a) (b)

Figure 1. Principal signals and the MAP defining polytope. The dotted circles denote the unit
sphere in 2D signal space. The two polygons are different scales of the same MAP defining
polytope. (a) A principal signal, intersected by a vertex of the defining polytope. (b) A vertex
which is not a principal signal.

The geometry of the MAP defining polytope directly dictates the behaviour of the
distribution on the unit sphere, and consequently the locations of the principal signals on
it. For both priors, the boundaries of the defining polytopes define iso-surfaces of signals
with equal a priori probability; these have the form r · ∂�Ω or r · ∂�D—where r ∈ R

+ is
a non-negative scaling factor—and, for increasing r, represent decreasingly probable signals.
Beginning with such an iso-surface r · ∂�Ω or r · ∂�D, with small enough r such that it is
entirely bounded by the unit sphere, then as r is increased, the surface intersects the sphere at
decreasingly probably locations, until finally completely enclosing it. Clearly, to be a local
maximum a signal must be intersected by the inflating iso-surfaces before its surrounding
neighbourhood. Consequently, such a local maximum is intersected by an extreme point—a
vertex—of the polytope. We conclude that the MAP principal signals project to vertices of
the MAP defining polytope.

We immediately point out, however, that projection onto a vertex is only a necessary
condition for principality, as demonstrated in figure 1. Simulation results show a dramatic
difference in the recovery performance of principal versus non-principal polytope vertices.

For a vertex to be principal, it must be maximally distant from the origin relative to all the
directions about it on the boundary of the defining polytope. Luckily, determining this only
requires examining those directions from the vertex to its one-dimensional incident edges (this
follows from the fact that for any scalar function, the convex combination of a set of descent
directions is also a descent direction).

In the case of MAP-synthesis, its defining polytope vertices are a subset of the dictionary
atoms; hence the principal signals are a subset of these atoms. However, not all atoms constitute
polytope vertices, and only a few of these are actually principal. Furthermore, determining
which of the atoms are vertices is a difficult task, and so is the task of determining the incident
edges of each vertex. However, given an atom d, a simple work-around to determine its
principality is to examine all line segments connecting d with the remaining atoms and their
antipodes. If d is found to be maximally distant relative to all these line segments, clearly it
is a vertex as well as a principal signal; on the other hand, if d is found not to be maximal
relative to some segment, it immediately follows that it is not principal.

In practice, many MAP-synthesis dictionaries have their atoms normalized to a fixed
length. As we mentioned earlier (without proof), this ensures that all the atoms constitute
defining polytope vertices. However, for such dictionaries, a stronger claim can be made:
indeed, when the atoms are normalized, they all constitute principal signals of the MAP
distribution. We have the following result, whose proof is provided in the appendix.
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Claim 3 (principal signals of MAP-synthesis with a normalized dictionary). Let D be
a MAP-synthesis dictionary with fixed-energy columns. Then the dictionary atoms coincide
with the principal signals of the MAP-synthesis prior.

The proof is given in appendix D.
In the general case, however, the MAP-synthesis principal signals remain a subset of the

dictionary atoms. Since dictionaries in practice are commonly normalized, this distinction is
not usually made. Nevertheless, when the dictionary atoms are not normalized, the difference
in recovery performance can be substantial; while the principal signals are truly ‘favoured’ by
the prior, other atoms might not be at all.

In the MAP-analysis case, the distinction becomes more significant. The number of MAP-
analysis vertices is exponentially large, and empirical evidence suggests that most of these
are non-principal and not well recovered. Unfortunately, we are not currently aware of any
simple analytical method for characterizing the MAP-analysis principal signals. Nonetheless,
these signals can be generated by a computer. For the simulations in this paper we used a
simple traversal algorithm for locating these signals; this enabled us to produce large sets of
MAP-analysis principal signals and study their behaviour.

Our traversal algorithm locates one principal signal at a time. Beginning with some
initial vertex v, we examine its incident edge-loops, and for each loop, we determine
u such that {v, u} orthogonally span the plane in which the loop exists. Assuming a
small enough ε, v’s infinitesimal neighbours on this edge loop can be approximated by
v+ = (v + εu)/‖Ω(v + εu)‖1 and v− = (v − εu)/‖Ω(v − εu)‖1, where the normalization is
applied to ensure ‖Ωv+‖1 = ‖Ωv−‖1 = 1. By comparing the �2 norms of v, v+ and v−, we
determine whether v is maximal relative to its two incident edges on this edge loop. Now, if
v is found to be maximal relative to all its incident edges, it is a principal signal. Otherwise,
it is not maximal relative to some incident edge. In this case we replace it with a vertex with
larger �2-norm from the violating edge loop (in our implementation, we choose the one with
largest �2-norm in the loop), and continue the traversal. This swapping continues until a local
maximum is encountered, providing one MAP-analysis principal signal. The entire process is
then repeated using a new vertex as a starting point.

4. Numerical results

The geometrical viewpoint reveals a large gap between the two formulations in the over-
determined �1 case. In this section we provide some simulation results, demonstrating this
theoretical gap.

4.1. Synthetic experiments

The following synthetic experiments demonstrate how the gap can be easily brought to an
extreme even in a simple case. To obtain these results we compared the two methods on their
most favourable signals: their principal signals.

For the experiment, we selected the pseudo-inverse relation between the dictionary and
analysis operator; this is a natural choice for bridging the two methods, however in reality,
it may lead to very different behaviours of the two methods. We selected the 128 × 256
identity-Hadamard dictionary D = 1√

2
[I H] and its pseudo-inverse Ω = DT = 1√

2
[I H]T as

the synthesis dictionary and analysis operator. This is an interesting choice as the two feature
the same two-ortho structure, and furthermore D is a near-optimal Grassmanian frame, making
it favourable for MAP-synthesis methods [22, 23].
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Figure 2. Denoising MAP principal signals. (a) Results for MAP-analysis principal signal
(10 000 examples): distributions of optimal errors obtained using MAP-analysis (above) and
MAP-synthesis (below). (b) The same for MAP-synthesis principal signals (256 examples).

The dictionary size immediately limits the number of distinct MAP-synthesis principal
signals to a mere 256. In contrast, MAP-analysis boasts an enormous number of them:
our traversal algorithm easily produced 10 000 such signals. What is more, our program
was designed to reject new signals if these resided in a radius of <0.1 from any existing
principal signal; however, after 10 000 generated signals, the rejection rate remained negligible,
suggesting that the true number of such signals is much greater (with an only known upper
bound of order ( L

N−1 ) = ( 256
127 ) ≈ 1075 ). These are obviously impressive numbers compared

to the modest number of MAP-synthesis principal signals.
An interesting point in this experiment is that the MAP-synthesis principal signals in our

case all double as MAP-analysis principal signals. To sharpen the comparison, we therefore
generated additional sets of preferable MAP-synthesis signals, which we obtained on low-
dimensional faces of the MAP-synthesis defining polytope (i.e. sparse combinations of atoms).
For the experiment, we generated 1000 signals on 2D faces, 1000 on 3D faces, and so on up
to 12D faces.

To quantify the performance of a specific method on a set of signals, we generated
noisy versions of the signals in the set, and applied the method (in its energy-preserving
form), with varying a values, to each of the contaminated signals. We then selected,
for each signal individually, the optimal a value aopt and its associated relative error
erropt = ‖X̂MAP(aopt) − X‖2/‖Y − X‖2 to represent the performance of the method on this
signal. We collected the optimal errors for all signals in the set, and these were used to
characterize the performance of the method on the entire set.

Figures 2–4 summarize the results. The first two present histograms of the optimal errors
obtained on the principal signal sets and the MAP-synthesis 2D and 3D signal sets. The final
figure summarizes the results for all 12 sets of MAP-synthesis signals.

The results demonstrate several points. First, we see that each method is indeed successful
in recovering its own sets of principal signals; this agrees with the predictions of the geometrical
model. Also interesting is the fact that the two methods exhibit comparable performance when
evaluated each on their own set of principal signals; this observation is particularly evident
from figure 2(b), where the signals are simultaneously principal to both MAP-analysis and
MAP-synthesis.
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Figure 3. Denoising signals on low-dimensional MAP-synthesis faces. (a) Results for signals on
2D faces (1000 examples): distributions of optimal errors obtained using MAP-analysis (above)
and MAP-synthesis (below). (b) The same for signals on 3D faces (1000 examples).
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Figure 4. Denoising MAP-synthesis highly recoverable signals. The graphs show the mean
optimal errors obtained versus the MAP-synthesis face dimension; error bars correspond to the
standard deviation of the errors.

On the other hand, the results also depict a clear disparity between the two methods. We
see that MAP-analysis completely fails in recovering the MAP-synthesis favourable signals,
while MAP-synthesis performs notably poorly compared to MAP-analysis on its massive
number of principal signals. The results also illustrate the asymptotical nature of the gap
between the two approaches in the number of principal signals each one accepts.

The acute inconsistencies lead to the inevitable conclusion that the pseudo-inverse relation
does not bridge between the two methods. Moreover, we see here that the difference in
complexity between the two structures has a strong expression in practice, indicative of an
inherent gap between the two formulations. Though the experiment specifically utilizes the
pseudo-inverse relation, the gap depicted here cannot be associated with this specific choice;
indeed, any reasonably sized MAP-synthesis dictionary will be limited in the number of
favourable signals it can accommodate, and consequently in its ability to handle the large
number of MAP-analysis principal signals. In the other direction, any attempt to adapt a
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Figure 5. Image denoising using the redundant DCT transform. Solid lines (left to right): MAP-
analysis with block shifts of 1, 2 and 4 pixels; dashed lines (left to right): MAP-synthesis with
block shifts of 1, 2 and 4 pixels; dotted line: MAP-analysis/MAP-synthesis with a block shift
of 8 pixels (unitary transform). Images are of size 128 × 128. (a) Results for Lenna; (b) results
for Barbara. Images downloaded from http://www.wikipedia.com, and downscaled using bilinear
interpolation.

MAP-analysis prior to a given set of MAP-synthesis signals is bound to give rise to an
enormous number of additional (unwanted) favourable signals.

4.2. Real-world experiments

In this section we present some comparative denoising results obtained for actual image data.
For these experiments we selected the overcomplete DCT transform; this transform partitions
the image into overlapping blocks, and applies to each block a unitary DCT transform. The
overcomplete DCT transform constitutes a tight frame when all image pixels are covered by
an equal number of blocks. Our experiments used 8 × 8 blocks, with a shift of either 1, 2 or 4
pixels between neighbouring blocks. We also used shifts of 8 pixels (i.e. no overlap, leading
to a unitary transform) as reference. Boundary cases were handled by assuming periodicity,
ensuring the tight frame condition.

Since the transform is tight, the synthesis dictionary was simply taken as the transpose of
the analysis operator, leading to a dictionary constructed of 8 × 8 DCT bases in all possible
shifts over the image domain. Motivations for choosing this transform include: (1) the
transform is widely used in image processing, and has been employed in both analysis and
synthesis frameworks; (2) it is a tight frame, and has an efficient implementation; and (3) it is
highly redundant, whilst offering a convenient way for controlling its redundancy (specifically,
4× for a shift size of 4, 16× for a shift size of 2 and 64× for a shift size of 1).

We ran the experiments on a collection of standard test images, including Lenna, Barbara
and Mandrill. Each of these was downscaled to a size of 128 × 128 to reduce computation
costs. We added white Gaussian noise to each source image, producing 25 dB PSNR inputs.
Each input was denoised using both MAP-analysis and MAP-synthesis with varying λ values,
and the output PSNR was determined for each value.

The results for Lenna and Barbara are shown in figure 5. The results for Mandrill
were similar. As can be seen in the figures, the results are quite surprising: MAP-
analysis actually beats MAP-synthesis—in a convincing way—in every test. Compared
to the baseline unitary transform (dotted line), where both methods coincide, MAP-analysis

http://www.wikipedia.com
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(solid) shows a significant gain when introducing overcompleteness, which slightly improves
as the redundancy increases; in contrast, MAP-synthesis (dashed) shows slightly degraded
performance as the overcompleteness is increased. As a consequence, the distance between
the two methods grows with the redundancy.

The experiments presented here were also carried out using the Contourlet transform
[13], which has a 4:3 redundancy factor. In these experiments the two methods led to almost
identical outputs, an outcome which conforms with the low redundancy of the transform.
Interestingly, however, the picture remained the same: in all tests, MAP-analysis actually
showed a small edge over MAP-synthesis.

The reasons for the superiority of MAP-analysis in the denoising scenario require further
study; however, in our context we see that the gap indeed exists, and can become dramatic
even in practical situations. One possible explanation for this could be the advantage of MAP-
analysis discussed in section 1.3: since MAP-analysis utilizes all its filters simultaneously
to support the recovery process, it may be more robust in the presence of noise compared
to MAP-synthesis, whose compact representation may be unstable when noise is introduced,
leading to recovery errors. A different possibility is that the high overcompleteness in MAP-
synthesis, rather than positively enriching its descriptiveness, leads to a reverse effect where
the dictionary becomes ‘too descriptive’, representing a wide range of undesirable signals.
This effect does not apply to MAP-analysis where increasing the number of filters still requires
the signal to agree with all existing ones.

5. Conclusions: analysis versus synthesis revisited

We began our discussion presenting two popular MAP-based methods for inverse problem
regularization—the MAP-analysis and the MAP-synthesis approaches—and showing the
algebraical similarity between the two. We saw that the two are equivalent in the square non-
singular case as well as in the undercomplete denoising case; however, in the overcomplete
case the two methods were shown to depart. We concentrated on the interesting �1 case, and
found that the geometrical structures underlying the two exhibited very different properties.
This perspective has led to a generality relation of MAP-synthesis over MAP-analysis, as well
as to the characterization of the MAP-analysis parallels of the MAP-synthesis atoms.

The geometrical model does not provide a definite answer to the question of which
is better. It does, however, shed some light on the real gap that exists between the two
approaches, a gap which is not evident from the algebra alone. We have used the geometrical
model to locate those signals where the gap is expected to be the largest, leading us to the
results of the synthetic experiments; we saw that for these signals the gap indeed becomes
large. The experiments also demonstrated the asymptotical nature of the difference between
the two structures in their number of principal signals. Our real-world experiments showed
that this gap exists not only in theory, and, no less important, that MAP-synthesis should not
be a priori considered to be superior to MAP-analysis.

Our results are not to be interpreted as a recommendation for this method or another.
The synthetic experiments indicate that each of the methods is successful, only on different
sets of signals. The real-world experiments, which demonstrated a significant advantage to
MAP-analysis, should be regarded as a sample case rather than a conclusion. MAP-synthesis
remains advantageous in its simplicity of dictionary design, and we further emphasize that the
interesting �0 MAP-synthesis case, though generally close to the �1 case, has not been treated.
Nonetheless, as MAP-analysis is significantly simpler to solve, our results come to emphasize
that despite the recent blossom of MAP-synthesis methods both approaches are still worthy
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candidates for inverse problem regularization. The question of which will actually be better
for a specific application and family of signals remains open.
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Appendix A. Equivalence in the undercomplete case

Theorem 2 (undercomplete denoising case—near-equivalence). MAP-analysis denoising
with a full-rank analysing operator Ω ∈ M [L×N] (L � N) is nearly equivalent to MAP-
synthesis with the dictionary D = Ω+. This is expressed by the relation X̂MAP-A =
X̂MAP-S + Y D⊥, with Y D⊥ representing the component of the input orthogonal to the columns
of D.

Proof. In the following, we assume the relation D = Ω+; we additionally assume that Ω
has full row-rank (equivalently, that D has full column-rank), and thus D = ΩT (ΩΩT )−1 and
ΩD = I . We introduce the notation Z = ZD + ZD⊥ to denote the (single) decomposition of a
signal Z to the part ZD in the column-span of D and the part ZD⊥ in the orthogonal subspace.

We begin with the MAP-analysis formulation in (2):

X̂MAP-A = Argmin
X

‖Y − X‖2
2 + λ · ‖ΩX‖p

p.

Decomposing in respect to the column-span of D, we obtain

X̂MAP-A = Argmin
XD,XD⊥

‖Y D + Y D⊥ − XD − XD⊥‖2
2 + λ · ‖Ω(XD + XD⊥)‖p

p

= Argmin
XD,XD⊥

‖Y D − XD‖2
2 + ‖Y D⊥ − XD⊥‖2

2 + λ · ‖ΩXD + ΩXD⊥‖p
p.

We note that Z is orthogonal to the columns of D iff it is orthogonal to the rows of Ω: since
ΩΩT is invertible, we have 0 = DT Z ⇐⇒ 0 = (ΩΩT )DT Z = (ΩΩT )(ΩΩT )−1ΩZ = ΩZ.
This implies ΩXD⊥ = 0, leading to

X̂MAP-A = Argmin
XD,XD⊥

‖Y D − XD‖2
2 + ‖Y D⊥ − XD⊥‖2

2 + λ · ‖ΩXD‖p
p.

Obviously any solution to this problem will satisfy X̂
D⊥ = Y D⊥, as there is no additional

penalty term for XD⊥. Therefore the MAP-analysis problem reduces to an optimization

problem for X̂
D
MAP-A:

X̂
D
MAP-A = Argmin

XD
‖Y D − XD‖2

2 + λ · ‖ΩXD‖p
p.

Signals XD spanned by the columns of D have a representation as XD = Dγ . We can
thus reformulate the above as an optimization on γ , leading to

X̂
D
MAP-A = D · Argmin

γ
‖Y D − Dγ ‖2

2 + λ · ‖ΩDγ ‖p
p

= D · Argmin
γ

‖Y D − Dγ ‖2
2 + λ · ‖γ ‖p

p.
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We see that the solution to X̂
D
MAP-A comes from a MAP-synthesis structure with D = Ω+, and

applied to Y D. We conclude by showing that Y D in this formulation may be replaced with Y .
We do this using similar arguments to those applied above, in a reverse manner:

X̂
D
MAP-A = D · Argmin

γ
‖Y D − Dγ ‖2

2 + λ · ‖γ ‖p
p

= D · Argmin
γ

‖Y D − Dγ ‖2
2 + ‖Y D⊥‖2

2 + λ · ‖γ ‖p
p

= D · Argmin
γ

‖Y D + Y D⊥ − Dγ ‖2
2 + λ · ‖γ ‖p

p

= D · Argmin
γ

‖Y − Dγ ‖2
2 + λ · ‖γ ‖p

p.

Summing up, for the (under-)determined case, and with the relation D = Ω+, we have
shown that given a signal Y = Y D + Y D⊥, the MAP-analysis solution and the MAP-synthesis
solution are related by X̂MAP-A = X̂MAP-S + Y D⊥, as claimed. �

Appendix B. MAP-analysis defining polytope

Lemma 1 (facets of the MAP-analysis defining polytope). Let X ∈ ∂�Ω, where �Ω is the
MAP-analysis defining polytope {X|‖ΩX‖1 � 1}. If ΩX has no vanishing elements, then
X resides strictly within a facet ((N − 1)-dimensional face) of the MAP-analysis defining
polytope.

Proof. Let fA(X) = ‖ΩX‖1 (the MAP-analysis target function), and assume ΩX has no
vanishing elements; then ∇fA(X) = ΩT sign(ΩX), and is defined at X. Also, since all
elements of ΩX are finite and non-zero, there exists a ball Bε(X) around X such that, for
all x ∈ Bε(X),Ωx has no vanishing elements. Now consider the intersection ∂�Ω ∩ Bε(X):
this is a neighbourhood of X on the boundary of the defining polytope, and for all x in
it, Ωx has no zero coordinates. From continuity of Ωx, we conclude that none of its
coordinates change sign within this neighbourhood, so for all x in it, sign(Ωx) = sign(ΩX)

and also ∇fA(x) = ∇fA(X). As the defining polytope is a level-set of fA,∇fA (where
defined) designates the direction of the normal to this polytope. We therefore have a finite
neighbourhood of X on the boundary of the polytope where the normal is fixed, and thus X

must reside strictly within a facet of this polytope. �

We now bring the proof of claim 1, generalizing the above lemma.

Claim 1 (faces of the MAP-analysis defining polytope). Let X ∈ ∂�Ω, and let k denote the
rank of the rows in Ω to which X is orthogonal to. Then X resides strictly within a face of
dimension (N − k − 1) of the MAP-analysis defining polytope.

Proof. Assume a signal X ∈ ∂�Ω. Let {w1, . . . , wk} orthonormally span the rows in Ω to
which X is orthogonal to, and let {u1, . . . , uN−k} span their complementary space. We denote
U = Span{ui} and W = Span{wj }. Clearly X ∈ U , from orthogonality to {wj }.

First, we consider the space U . Any vector v ∈ U may be written as v = Uα(v), where
U = [u1| . . . |uN−k] is an N × (N − k) matrix, and α(v) = UT v. Since v ∈ U , it is orthogonal
to all the rows in Ω to which X is orthogonal to; therefore, letting Ω̂ be the matrix obtained
by discarding these rows from Ω, then for any v ∈ U , we have ‖Ωv‖1 = ‖Ω̂v‖1. Note that
since we assume Ω is full rank, then after removing from it the rows whose span is W , the
remaining rows of Ω̂ still span at least the complement space U .
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Now, define ω = Ω̂U; we have ‖Ωv‖1 = ‖Ω̂v‖1 = ‖Ω̂Uα(v)‖1 = ‖ωα(v)‖1 for any
v ∈ U . Multiplying Ω̂ to the left of U is essentially an orthogonal projection of its rows on
the subspace U ; since the rows of Ω̂ span U , the rank of the result must be equal to that of U.
Therefore the rank of ω is (N − k), so it must have at least this number of rows, and is thus
an overcomplete analysis operator on the α-space.

Since X ∈ U , all the equalities above hold for X. Specifically, ‖ωα(X)‖1 = ‖ΩX‖1 = 1,
so by definition α(X) ∈ ∂�ω. In other words, α(X) must reside on the boundary of the
defining polytope corresponding to the (N − k)-dimensional MAP-analysis problem for the
α-space with operator ω. We further know that Ω̂X has no vanishing elements, since all such
elements have been removed, so ωα(X) = Ω̂X has no vanishing elements. We have thus
established all the conditions of lemma 1 for α(X), and it follows that α(X) resides strictly
within a facet of the (N − k)-dimensional polytope �ω.

Given this, we know there exists an (N − k − 1)-dimensional ball about α(X) such that
this ball is entirely contained within the boundary of �ω. By applying U to the points of this
ball, we orthonormally inject it to the N-dimensional signal space, obtaining an (N − k − 1)-
dimensional ball about X = Uα(X). This ball resides entirely on the boundary of �Ω, since
for any signal x = Uα(x) in this ball, x ∈ U and so ‖Ωx‖1 = ‖ωα(x)‖1 = 1. Evidently,
we have an (N − k − 1)-dimensional ball about X, residing entirely on the boundary of the
defining polytope; therefore X must reside on a face of dimension at least (N − k − 1) of
this polytope. To conclude the proof, we show this residence is strict; in other words, we
prove that there does not exist a ball of higher dimension about X residing entirely within the
polytope’s boundary.

Consider a d-dimensional ball about X, contained entirely within the boundary of the
defining polytope; then for any point X + ε in this ball, the point X − ε is also in the ball.
Now, write ε as

ε =
∑

i

aiui +
∑

j

bjwj ,

where {ui} and {wj } are the orthonormal bases as defined above. Since both points are on the
boundary of �Ω, we have ‖ΩX‖1 = ‖Ω(X + ε)‖1 = ‖Ω(X − ε)‖1 = 1. Written explicitly,
these expand to

Ω(X ± ε) = Ω
[
X ±

(∑
aiui +

∑
bjwj

)]
.

Since
(
X ±∑

aiui

) ∈ U , all vanishing coefficients in ΩX also vanish in Ω
(
X ±∑

aiui

)
.

As to the second part, assume by contradiction that
∑

bjwj ∈ W is non-zero. Clearly the
same coefficients cannot all vanish in Ω

∑
bjwj , as the corresponding rows in Ω span W .

Therefore adding or subtracting Ωε to ΩX necessarily increases the absolute-value-sum of
these coefficients. On the other hand, the entire �1 norm of Ω(X ± ε) remains fixed; so,
for the remainder of the coefficients, the addition or subtraction of Ωε must strictly reduce
their absolute-value-sum. However, this may not occur simultaneously for both addition and
subtraction. Therefore, the only resolution to this is to require bj ≡ 0 for all j , implying that
necessarily ε ∈ U . Thus, we have limited the dimension of the ball about X to N − k (the
dimension of U). Finally, X ∈ U , but clearly ‖Ω(X + δX)‖1 �= ‖ΩX‖1 for any δ �= 0. So ε

cannot be proportional to X, and hence the ball about X must be of dimension less than U . We
conclude that d � (N − k − 1), so X can reside strictly within a face of dimension no more
than (N − k − 1). Since we have already shown the existence of such a face, we conclude
that X resides strictly within an (N − k − 1)-dimensional face of the MAP-analysis defining
polytope, as claimed. �
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Appendix C. MAP-synthesis defining polytope

Claim 2 (geometry of the MAP-synthesis defining polytope). The MAP-synthesis defining
polytope �D = D{‖γ ‖1 � 1} is obtained as the convex hull of {±di}i=1,...,L, where {di} are
the columns of D.

Proof. For the proof we note that di = Dei , where {ei} is the standard basis of R
L. We

introduce the notation CH{vi} to denote the convex hull of the set {vi}.
CH{di} ⊆ �D: We have ±ei ∈ {‖γ ‖1 � 1} for all i, and therefore ±di = D(±ei) ∈

D{‖γ ‖1 � 1} = �D. Since �D is convex, it must also contain the convex hull of {±di}.
�D ⊆ CH{di}: Let X ∈ �D, then there exists a representation γ such that X = Dγ ,

where ‖γ ‖1 � 1. Since γ ∈ {‖γ ‖1 � 1}, it is a convex combination of {±ei}, and can be
written as γ = ∑

i{aiei + bi(−ei)}. This implies X = Dγ = ∑
i{aidi + bi(−di)}, so X is a

convex combination of {±di}, and as such exists in their convex hull. �

Appendix D. MAP-synthesis with a normalized dictionary

Lemma 2. Let P be a polytope with fixed-length vertices, i.e., for all vertices v of P, ‖v‖2 = c

for some constant c. Then for every non-vertex point p on the boundary of the polytope,
‖p‖2 < c.

Proof. Consider a facet ϕ of P , defined by the vertices {v1, . . . , vn}. This facet constitutes
the intersection of some (n − 1)-dimensional hyperplane with the polytope. Now, consider
the �2-norm function f (X) = ‖X‖2, constrained to this plane. The iso-surfaces of f on this
plane are a set of concentric ellipsoids about some central point of minimal �2-norm. Since
{v1, . . . , vn} are of a fixed length, they all reside on the same ellipsoid. The facet ϕ, which is
the convex hull of {v1, . . . , vn}, must thus exist entirely within this ellipsoid by definition of
the convex hull as the minimal convex set containing {v1, . . . , vn}. This implies that for every
p ∈ ϕ, ‖p‖2 � c.

To obtain sharp inequality, we assume by contradiction that ‖p‖2 = c while p is not
a vertex. Since p is not a vertex, there exist two points p

1
, p

2
∈ ϕ such that p resides on

the line connecting p
1

and p
2
. However, examining the function f , we have the following

observation: for any point in space, advancing from it in two opposite directions will always
lead to at least one direction of increase in f ; this is due to the fact that when constrained to an
infinite line, f always achieves a single minimum and no maximum on the line. This implies
that at least one of p

1
and p

2
will have �2-norm larger than c, leading to a contradiction.

Hence necessarily ‖p‖2 < c. �

Claim 3 (principal signals of MAP-synthesis with a normalized dictionary). Let D be
a MAP-synthesis dictionary with fixed-energy columns. Then the dictionary atoms coincide
with the principal signals of the MAP-synthesis prior.

Proof. From lemma 2, the proof is trivial. Let us denote the length of the dictionary atoms
by c. Then for any atom d , it follows that it must be a vertex as ‖d‖2 = c. Now, assume by
contradiction that d is non-principal; therefore there exists a direction from d on the boundary
of the defining polytope such that the distance from the origin increases. However, this means
that if we advance from d in this direction a short enough distance, we will obtain a non-vertex
point on the polytope boundary whose length is larger than c, contradicting the previous
lemma. We conclude that d must be a principal signal. �
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