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Abstract—To correct geometric distortion and reduce space and time-varying blur, a new approach is proposed in this paper capable

of restoring a single high-quality image from a given image sequence distorted by atmospheric turbulence. This approach reduces the

space and time-varying deblurring problem to a shift invariant one. It first registers each frame to suppress geometric deformation

through B-spline-based nonrigid registration. Next, a temporal regression process is carried out to produce an image from the

registered frames, which can be viewed as being convolved with a space invariant near-diffraction-limited blur. Finally, a blind

deconvolution algorithm is implemented to deblur the fused image, generating a final output. Experiments using real data illustrate that

this approach can effectively alleviate blur and distortions, recover details of the scene, and significantly improve visual quality.

Index Terms—Image restoration, atmospheric turbulence, nonrigid image registration, point spread function, sharpness metric

Ç

1 INTRODUCTION

A long-distance imaging system can be strongly affected
by atmospheric turbulence, which randomly changes

the refractive index along the optical transmission path,
generating geometric distortion (motion), space and time-
varying blur, and sometimes even motion blur if the
exposure time is not sufficiently short [1], [2], [3], [4], [5].
Aside from hardware-based adaptive optics approaches [6],
several signal processing approaches have been proposed to
solve this problem [7], [8], [4], [5], [9], [10]. These approaches
attempt to restore a single high-quality image from an
observed frame sequence distorted by air turbulence. As
with these other works based on videos or image sequences,
we work under the assumption that the scene and the image
sensor are both static and that observed motions are due to
the air turbulence alone. The imaging process can be
modeled as [11], [ 10]

Gk½x� ¼ ðF � hk;x � hÞ½x� þNk½x�; ð1Þ

where� represents a 2D convolution operator. F ,Gk, andNk

denote the ideal image, the kth observed frame, and sensor
noise, respectively.1 The vector x ¼ ðx; yÞT denotes a 2D
spatial location. hk;x represents the space-varying (air
turbulence-caused) point spread function (PSF) for the
position x in the kth frame, which includes both blur and
motion effects [10]. h is the space-invariant diffraction-
limited PSF, typically due to sensor optics and settings.

Because the unknown hk;x is spatially and temporally
changing in (1), restoring the high-quality image F is not
trivial. Some multiframe reconstruction approaches [4], [9]
first employ a nonrigid image registration technique to
register each observed frame with respect to a fixed reference
grid, and use the registration parameters to estimate the
corresponding motion field for each frame. Then, a sharp
image is formed through a Bayesian reconstruction method.
The main problem for such algorithms is that they do not
estimate the actual PSF hk;x. Both [4] and [9] employ a fixed
Gaussian model to approximate the PSF, which strongly
limits their performance.

Recently, a method called Efficient Filter Flow (EFF) was
introduced by Hirsch et al. for space-varying blind decon-
volution and has been applied for astronomical imaging to
alleviate turbulence distortion and also for magnetic
resonance imaging (MRI) to reduce blur caused by object
motion [10]. This method first divides each frame into
overlapping patches. Because the size of these patches is
small, they can be viewed as isoplanatic regions—small
regions containing space-invariant blur [6], [5]—and thus can
be processed through a multiframe blind deconvolution
algorithm [12]. Given an isoplanatic patch sequence of a local
region extracted from the input video, the blind deconvolu-
tion algorithm estimates the PSF separately for each patch. Final
output is then generated by a nonblind image estimation
step. Though capable of suppressing turbulence effects, the
EFF method cannot remove diffraction-limited blur since the
blind deconvolution step does not utilize much prior
knowledge of the ideal sharp image except for a nonnega-
tivity constraint and a simple Tikhonov regularizer. Besides,
due to the limited accuracy of the local PSF estimation and
probably also due to the sensor noise effect, the results can
contain strong deblurring artifacts, such as ringing [12].

Another class of approaches called “lucky imaging”
employs image selection and fusion methods to reduce
the blurring effects caused by turbulence [13], [14], [8], [5].
The image selection technique attempts to find frames of the
best quality (lucky frames) from a short-exposure video
stream. The output image is produced by fusing these lucky
frames together [13], [14]. This method is based on the
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observation that for short-exposure images, turbulence
creates “mutations” in image quality and randomly makes
some images sufficiently sharp (see examples in Fig. 1) [14],
[15], [16], [17]. This strategy is favored in many astronom-
ical imaging applications where the image of the object of
interest (e.g., a star) is usually taken inside an isoplanatic
angle. In [17], Vorontsov et al. proposed a “lucky region”
restoration approach for anisoplanatic scenarios. Small lucky
(isoplanatic) regions are detected by a local sharpness
metric (which can be viewed as being blurred only by the
diffraction-limited PSF) and are fused to produce a large
high-quality image. In another similar method developed
by Joshi and Cohen [18], a local block-based image
alignment is first carried out to reduce geometric distortion
caused by turbulence; then a lucky imaging-based weight-
ing scheme is employed to generate a single image that is
sharp everywhere. The weighting scheme is carefully
designed to balance between noise reduction and sharpness
preservation. A dehazing process is finally used to enhance
the visual quality. One difficulty with such a method is that
even though turbulence-caused blur is strongly alleviated
through the lucky imaging process, the output still suffers
from the blur caused by the diffraction-limited PSF [5], [11].
Besides, the blur in lucky regions would inevitably be
increased once temporal averaging is used for noise
suppression [18].

Due to the isoplanatism of turbulence effects (including
blurring and geometric deformation) in small local regions,
lucky imaging focuses on patch-wise restoration. However,
limited patch size also limits the restoration performance.
As Levin et al. pointed out in [19], PSF estimation can be
much improved as the size of the observed patch increases.
In other words, if PSF can be estimated from a large region
(e.g., the whole image), then we may be able to achieve
better deconvolution performance. However, to achieve this
goal the PSF spatial variation needs to be reduced.

Another important factor that may affect restoration is
sensor noise. High shutter speed is favored in long-distance

imaging systems in general to avoid motion blur caused by
turbulence, and this would inevitably increase the noise
level. Noise can strongly affect the performance of deblur-
ring as it distorts image details and produces ringing
artifacts [20]. Fortunately, the frames within a sequence are
highly correlated with each other, and such a correlation
can be used to advantage denoising in the temporal
domain.

In this paper, a new framework is proposed for restoring a
single image from an image sequence acquired in general
anisoplanatic scenarios. The 3D physical scene is assumed to
be static, as is the imaging sensor, while the air between the
scene and sensor is affected by atmospheric turbulence. Our
approach is designed to reduce the spatial variation of PSFs
over the whole image space so that the blur can be
approximately treated as spatially invariant and the latent
image content can be estimated globally instead of by local
deconvolution. By doing this, we can improve the estimation
accuracy and, more importantly, natural image statistics can
be introduced so that diffraction-limited blur can be
effectively removed. An image with reduced PSF variation
(which we call the near-diffraction-limited (NDL) image) is
generated through a fusion process. To avoid noise effects in
the subsequent deconvolution, temporal kernel regression is
employed in our approach for denoising.

Note that this restoration framework can be viewed as an
extended version of the one in our earlier paper in ICCP 2011
[21]. However, the fundamental ideas behind the two are
quite different. The framework in [21] is based on a simplified
least-square estimation derived from the imaging model with
several assumptions on image statistics and approximations.
The key point of the present paper is reducing the variance of
spatially and temporally changing PSFs through nonpara-
metric kernel regression. Compared with [21], the idea in this
paper is much cleaner and technically sounder. It also
requires far fewer a priori assumptions than [21].

The paper is organized as follows: Section 2 describes the
restoration framework in detail. Experimental results are
given in Section 3 to show the performance as compared
with other methods, and finally we conclude and discuss
directions of future research in Section 4.

2 RESTORATION ALGORITHM

The proposed restoration framework contains three main
steps (see the diagram in Fig. 2):

1. nonrigid image registration,
2. near-diffraction-limited image reconstruction,
3. single image blind deconvolution.
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Fig. 1. Isoplanatic patches from the short exposure image sequence
Building taken through hot air, where a variation of blur can be observed.
(d) illustrates a lucky frame example which is much sharper than the
others.

Fig. 2. Block diagram for the proposed restoration framework.



Given an observed sequence fGkg, step 1 of our proposed
approach registers each frame onto a fixed reference grid,
generating a new sequence fRkg without geometric defor-
mation. This process makes sure that for a given pixel located
at a position, say x, the most correlated pixels in each frame
across time are aligned at this same position. This step
improves the performance of the subsequent temporal
filtering.

Step 2 restores a single image Z from the registered fRkg.
For each local region, the sharpest patch (convolved by a
diffraction-limited PSF) can be detected from the patch
sequence. Next, patch-wise temporal kernel regression is
carried out to reduce the noise level. An image Z is then
generated by fusing all the denoised sharp patches together.
This image is still blurred by a diffraction-limited PSF,
which can be approximately viewed as spatially invariant.

Finally, a single image blind deconvolution algorithm
based on natural image statistics is implemented on Z to
further remove the diffraction-limited blur and to enhance
image quality. Details of each step are given in the following
sections.

2.1 Nonrigid Image Registration

In [9], we introduced a B-spline based registration algo-
rithm to estimate the motion field in each observed frame.
This method can be implemented in the proposed frame-
work to remove geometric deformation. In this section, we
give a review of this registration algorithm. Assume G
represents a given observed distorted image and R denotes
a reference image without turbulent deformation (which
can be obtained by averaging the frame sequence [4]). A
nonrigid deformation model can be employed to describe
the geometric distortion between these two images. In this
model, the complex motion is represented by the movement
of m control points, whose initial positions x̂0i ¼ ðx̂0i; ŷ0iÞT ,
i ¼ 1; . . . ;m, are equally spaced on the reference image R.
The displacement of all the control points on the given
image G is denoted as the deformation vector: p!¼
½�x̂1; . . . ;�x̂m;�ŷ1; . . . ;�ŷm�T , where �x̂ and �ŷ (also
called deformation parameters) are the horizontal and
vertical displacement from the initial position [22], [4].
The deformed position of any given pixel located at x ¼
ðx; yÞT from image R can then be described as

Wðx; p!Þ ¼ xþAðxÞp!; ð2Þ

where AðxÞ denotes the basis function matrix for x:

AðxÞ ¼ c1 . . . cm 0 . . . 0
0 . . . 0 c1 . . . cm

� �
; ð3Þ

and AðxÞp! is the motion vector, which is a linear
combination of the movements of all control points. The
weight (or spline basis) ci is determined by the distance
between x and x̂0i using B-spline functions:

ci ¼ �
x� x̂0i

�x

� �
�

y� ŷ0i

�y

� �
; ð4Þ

�ð�Þ ¼
2=3� ð1� j�j=2Þ�2; if 0 � j�j � 1
ð2� j�jÞ3=6; if 1 < j�j < 2
0; otherwise;

8<: ð5Þ

where �x and �y are the horizontal and vertical intervals
between neighboring control points. This model guarantees
local smoothness of the turbulence-caused motion field.

In the classic B-spline-based registration approach, the
deformation vector is estimated by minimizing the follow-
ing cost function [22]:

Cðp!Þ ¼
X

x

GðWðx; p!ÞÞ �RðxÞ
�� ��2: ð6Þ

However, because the above formulation lacks prior
constraint, the resulting estimate is unstable and easily gets
stuck in local minima. To improve this method, a stabiliza-
tion constraint is proposed in [4], which makes the estimated
deformation parameters remain small in the regions that
have less texture (low image gradient). However, in the
present application, we know that the deformation caused
by atmospheric turbulence is independent of image content.
In other words, such stabilization constraint would bring
unnecessary bias into the estimation.

Instead, to accurately estimate the deformation (motion)

vectors from image gridR toG, we introduce a more natural

symmetry constraint [23], [24] into the B-spline registration

algorithm. This constraint is based on the important

property that the registration should be symmetric or

inverse consistent [23]. Let p! denote the deformation vector

that transforms reference grid R into G (forward deforma-

tion) and let p denote the inverse vector that transforms G

into R (backward deformation). Then, approximately,2 we

should have: p!¼ �p (see Fig. 3). Combining the two

vectors into one, pT ¼ ½p!T
; p T �, the proposed cost function

to minimize becomes

CðpÞ ¼
X

x

jGðWðx; p!ÞÞ �RðxÞj2 þ
X

x

jRðWðx; p ÞÞ

�GðxÞj2 þ �ðp!þ p ÞT ðp!þ p Þ;
ð7Þ

where scalar � controls the effect of the soft symmetry
constraint.

The Gauss-Newton method is used to minimize CðpÞ,
and the update of the parameter set p can be derived as
follows:

plþ1 ¼ pl �E�1b; ð8Þ
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2. The forward and backward motion vectors for each point in the
physical world should be the exact opposite of each other. However, in the
registration model the motion field is indexed by pixel locations instead of
physical points. Thus, the motion vectors for the same position in the
reference and the target image are not exactly the opposite of each other
since they belong to slightly different points. So do the deformation vectors.

Fig. 3. Symmetry constraint, where forward motion vector and backward
motion vector are the inverse of each other.



where

E ¼ E
!þ �I �I

�I E
 þ �I

" #
;

E
!¼

P
x d
!ðxÞd!ðxÞT ; E

 ¼
P

x d
 ðxÞd ðxÞT ;

d
!ðxÞT ¼

@G
�
W
�
x; p!l��

@W
AðxÞ;

d
 ðxÞT ¼

@R
�
W
�
x; p l��

@W
AðxÞ;

and

bT ¼
	�

b
!þ p!l þ p l�T

;
�
b
 þ p!l þ p l�T 


;

b
!¼

X
x

d
!ðxÞ

	
G
�
W
�
x; p!l���RðxÞ
;

b
 ¼

X
x

d
 ðxÞ

	
RðW

�
x; p l���GðxÞ
:

In the above algorithm, the computational cost for calculat-
ing the matrices E

!
and E
 

is tremendous if it is implemented
directly. Instead, we designed a fast implementation method
to alleviate this problem. Details can be found in [9]. Once the
deformation vector p is estimated for each frame, a registered
sequence fRkg is generated through bilinear interpolation.

2.2 Near-Diffraction-Limited Image Reconstruction

In this section, we estimate a diffraction-limited image Z from
fRkg, which can be globally deconvolved. A concise descrip-
tion of the reconstruction procedure is provided in Algo-
rithm 1 (see the diagram in Fig. 4).

To better understand this procedure, let us consider a
patch-wise imaging model under the isoplanatic scenario
(see Fig. 4):

gk ¼ f � hk � hþ nk
¼ f � h� hk þ nk
¼ z� hk þ nk;

ð9Þ

where gk can denote any local patch of size L� L extracted
from frame Gk, and its corresponding latent patch is
denoted by f . Differently from (1), turbulence-caused PSF
hk is now patch-wise constant and temporally changing.
We call z ¼ f � h the diffraction-limited patch, which is
convolved by the space and time invariant h, and thus can
be accurately deconvolved in a larger scene [19] (such as the
whole image). nk represents local noise, which is assumed
to be zero-mean and IID.

The motion field estimated from the nonrigid image
registration in Section 2.1 is smooth, and the registration

process can be viewed approximately as patch-wise constant
translational movement (see an example given in Fig. 5). So
the relationship between an observed local patch gk and the
corresponding registered one rk extracted from Rk can be
described as

rk ¼ gk � ��x; ð10Þ

where ��x represents a 2D Kronecker Delta function shifted
by the local registration vector �x. Hence, (9) and (10) can
be combined as follows:

rk ¼ z� hk � ��x þ nk � ��x

¼ z� ~hk þ ~nk

¼ qk þ ~nk:

ð11Þ

The PSF ~hk ¼ hk � ��x is simply a shifted version of hk,
which means the registration process preserves the shape
(and spectrum) of local PSFs. Similarly, the shifted noise
patch ~nk also has the same statistical properties as nk. As
mentioned before, the registration process increases the
correlation among the pixels in the same position from
different patches across time. Such a correlation can be
utilized for estimating the noise-free sequence fqkg, as we
will describe in Section 2.2.2.

Algorithm 1. Procedure for Restoring A Near-Diffraction-

Limited Image from Registered Frames
1. Given a registered sequence fRkg, divide each frame

into L� L overlapping patches centered at each pixel, and

calculate the intensity variance of each patch as a local

sharpness measure.

2. For a patch sequence frkg centered at location x, detect

the sharpest one rk� by maximizing local sharpness

measure (outliers need to be detected and excluded).

3. Set rk� as a reference patch, and restore its center pixel
value using temporal kernel regression. Assign this value

to the pixel Z½x�.
4. Go to the next pixel and return to step 2.

2.2.1 Diffraction-Limited Patch Detection

As mentioned in Section 1, once sufficient observations are
collected, relatively sharp image patches that occasionally
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Fig. 4. Block diagram for the near-diffraction-limited image reconstruc-
tion step.

Fig. 5. PSF distortion after the registration step. (a) Magnitude of a
motion field estimated from a real frame distorted by air turbulence
(video Moon Surface in Fig. 12) using the proposed registration method.
(b) A Gaussian shaped diffraction-limited PSF before alignment. (c)-(e)
PSFs after the alignment using the local motion fields given in the
squares A, B, and C, respectively, from (a), where it can be observed
that since the local movement could be treated as translational, the
shapes of the PSFs are preserved.



appear due to the turbulence variation can be found.

Suppose a k�th patch is a diffraction-limited one: rk� �
zþ ~nk� , then simply denoising rk� provides a good

estimation of the patch z.
In practice, diffraction-limited patches can be detected

through various local sharpness measures. For example, in

astronomical imaging, Strehl ratio is widely used, which is

the ratio of the peak intensity in the aberrated PSF to the

diffraction-limited PSF [6]. This can be easily measured if

there exists a reference star inside the patch. However, in

general cases Strehl ratio is difficult to measure, and

alternative metrics based on local image intensity are

preferred [13], [25], [26]. In [26], it was shown that image

intensity variance has a unique relationship with the Strehl
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Fig. 6. Outlier identification example. (a) A fused image without outlier removal, where patch A contains outlier pixels and patch B does not contain
any outlier, (b) zoomed patch A from (a), (c) patch A after deblurring, where outlier effect is magnified, (d) deblurred patch A with outlier removal
process, (e) intensity variance of patch A over 100 frames, (f) intensity variance of patch B over 100 frames, (g) histogram of (e), (h) histogram of (f).

Fig. 7. Latent sharp image used for simulation.



ratio and can be used for patch selection. The intensity

variance of an L� L patch rk is defined as

sk ¼
1

L2 � 1

X
x

rk½x� � �rkð Þ2; ð12Þ

where �rk represents the mean value of patch rk. This metric

is employed in this step.
Sharp patch selection by maximizing the above metric can

be sensitive to outliers, such as those caused by objects

incorrectly registered or moving objects occasionally appear-

ing in the scene (e.g., a bird flying through the field of view).

Examples are illustrated in Fig. 6a, where some artifacts can

be observed in flat regions (see patch A). These artifacts are

caused by registration error and can be strongly magnified
(see Fig. 6c) after the consequential deblurring process
(Section 2.3). In Fig. 6e, we can observe extremely high values
among the sharpness measures for patch A. Patch B gives
another example (see Fig. 6f) where no outlier exists.3

Histograms of these two patches are given in Figs. 6g and 6h,
where the sharpness values for the outlier-free patch have a
roughly symmetric distribution, while outlier-contaminated
distributions contain a long tail corresponding to high
values.
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3. Patch B contains strong structure (high SNR), and thus its sharpness
measures have values much higher than patch A (see Figs. 6e and 6f). This
also explains why the registration accuracy is lower in patch A compared
with patch B.

Fig. 8. Simulated experiments. (a)-(c) Simulated frames with three turbulence levels (weak, medium, strong). (d)-(f) Near-diffraction-limited images
from the three test sequences with noise variance �2

n ¼ 1 and turbulence level weak, medium, and strong, respectively. (g)-(i) Final outputs deblurred

from (d)-(f).



To alleviate the outlier problem, Hampel’s outlier

identification method is employed [27]. We use a Gaussian

modelNð�; �Þ to approximate the distribution of outlier-free

samples (which are sharpness measurements in our case).

A given sample sk is identified as an outlier if

jsk � �j > %1�	=2�; ð13Þ

where %x is the x quantile of the Nð0; 1Þ distribution and 	
denotes the confidence level. Hampel suggested using the
median and median absolute deviation (MAD) method [28]
to robustly estimate the data mean � and the standard
deviation �, respectively [28]. In our experiment, we set
%1�	=2 ¼ 6 to strongly suppress the type I error. Any sample sk
that is above the threshold 
 ¼ 6�̂ is detected as outlier and
would be ignored when maximizing the local sharpness
metric to select the diffraction-limited patch. In Fig. 6d we can
see that with outlier removal the artifacts caused by incorrect
registration are successfully eliminated from the fused image.

2.2.2 Patch-Wise Temporal Kernel Regression

To avoid possible artifacts that may appear in the subsequent
deconvolution step, noise in the selected diffraction-limited

patches needs to be suppressed. We formulate this denoising
problem under a general temporal regression framework,
where the imaging model is

rk ¼ qk þ ~nk: ð14Þ

The value of a pixel at x in the lth frame (ql½x�) can be
estimated through zeroth order kernel regression [29], [30]:

q̂l½x� ¼ arg min
ql ½x�

X
k

ðrk½x� � ql½x�Þ2Uðx; k; lÞ; ð15Þ

where the weight Uðx; k; lÞ is a positive function measuring
the “similarity” between ql½x� and qk½x�. One simple but
effective way of defining Uð	Þ is based on patch-wise
photometric distance and a Gaussian kernel function:

Uðx; k; lÞ ¼ exp
�kqk � qlk2

L2�2

 !
: ð16Þ

Here, L2 is the total number of pixels in the patch and the
scalar � is called the smoothing parameter [29]. The noise-free
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TABLE 1
Performance of the Restoration Approaches Evaluated in PSNR Values (dB)

Fig. 9. Image registration results using 100 frames taken from the video Chimney distorted by real atmospheric turbulence.



photometric distance 1
L2 kqk � qlk2 can be unbiasedly esti-

mated using the following function [31]:

kqk � qlk2

L2
� krk � rlk

2

L2
� 2�2

n; ð17Þ

where the noise variance �2
n can be estimated using, for

example, the MAD method [28].
The solution to (15) is

q̂l½x� ¼
P

k Uðx; k; lÞrk½x�P
k Uðx; k; lÞ ; ð18Þ

which is nothing but a filter generated by normalizing the

kernel Uð	Þ. According to (16), the kernel value within a patch

is independent of the pixel position and space-invariant,

which means the spatial constancy of the PSF in the

estimated patch q̂l is preserved after the regression.
Of course, in this step we only estimate the center pixel in

the selected k�th patch, which will be assigned to the output
image Z according to the reconstruction procedure given in
Algorithm 1. One important issue is that in the proposed

regression, all the weights are positive, which means that
when restoring the diffraction-limited value, the output is
always more blurry than the observed rk� ½x�. That is why we
call the restored image near-diffraction-limited.

2.3 Single Image Deconvolution

Finally, a single image deblurring algorithm is required as a
postprocess to deconvolve the near-diffraction-limited
image Z. The degradation model is

Z ¼ F � hþ "; ð19Þ

where " represents error caused by the process generating
the estimate of Z. Such a blind deconvolution algorithm can
be described generally using the following:

< bF; ĥ> ¼ arg min
F;h
kZ � h� Fk2 þ �1RfðF Þ þ �2RhðhÞ;

ð20Þ

whereRf andRh are the regularization terms based on prior
knowledge about the latent sharp image F and the PSF h.
Recent research on natural image statistics has shown that
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(a) Averaged image (b) Ground truth (c) [10]

(d) [9] (e) Near-diffraction-limited (f) Proposed approach

(g) Zoomed (b) (h) Zoomed (c) (i) Zoomed (d) (j) Zoomed (f)

Fig. 10. Image reconstruction results using 100 frames taken from the video Chimney distorted by real atmospheric turbulence.



image gradients obey heavy-tailed distributions that have
most of their mass on small values but give significantly
more probability to large values than Gaussian distributions
[32]. Based on these studies, several sparse regularization
methods have been introduced and have achieved great
success in solving the blind deconvolution problem [32], [33],
[20]. One example is the method proposed by Shan et al. [20],
which is directly implemented in this step to calculate a final
output. This method uses basically the same estimation form
as (20) with the following sparse regularization term:

RfðF Þ ¼ k
ðFxÞ þ 
ðFyÞk1; ð21Þ

where Fx and Fy denote the derivatives of F in horizontal
and vertical directions, respectively, and


ð�Þ ¼ ��1j�j � � lt
�ð�2�

2 þ �3Þ � > lt:

�
ð22Þ

Here, lt, �1, �2, and �3 are all fixed parameters [20]. Sparsity
is also utilized in regularizing h [20]:

RhðhÞ ¼ khk1: ð23Þ

The cost function (20) is optimized by alternating the
estimation of f and h [33], [20].

In what follows, we used the default parameter settings
as described in the authors’ project page4 for [20] except the
noise level parameter “noiseStr,” which is chosen in the
range ½0:01; 0:05� according to the actual noise level
observed in the given data. We refer interested readers to
[20] for details.

3 EXPERIMENTS

In this section, we will illustrate the performance of the
proposed approach using both simulated and real image
sequences. Throughout all the experiments, the intervals of
the control points in the registration step are set as �x ¼ �y ¼
16 pixels and the symmetry constraint parameter: � ¼ 5;000.
In implementing the restoration step in Section 2.2, we set
the patch size L ¼ 9. Results of the lucky-region algorithm
from [17], the multiframe reconstruction approach from [9],
and the EFF approach from [10] are also shown for
comparison.5
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Fig. 11. Image reconstruction results using 100 frames taken from the video Building distorted by real atmospheric turbulence.

4. http://www.cse.cuhk.edu.hk/~leojia/projects/motion_deblurring/
index.html.

5. In this section, the outputs of method [9] are generated using the
original code. The EFF outputs are directly from the authors of [10]. The
outputs of method [17] are produced by our own implementation.



3.1 Simulated Experiments

To quantitatively evaluate the algorithm performance, a set
of image sequences with different degrees of turbulence
and noise are generated. The latent sharp image6 (300 �
300) is shown in Fig. 7. The sequences are produced using
the imaging model described in (1) and (9), where motion
fields, spatially variant PSFs, and spatially invariant
diffraction-limited PSF are required. To produce the motion
fields, we first randomly generate a set of deformation
vectors through a Gaussian distribution, and then calculate
a motion field for each frame through the B-spline model
(2)-(5). The turbulence strength is determined by the
variance of the Gaussian distribution. The spatially variant
PSFs are simulated also using a Gaussian function, where
the variance of a local PSF is proportional to the magnitude
of the corresponding local motion vector. The diffraction-
limited PSF is generated using a disc function. Three
degrees (weak, medium, and strong) of turbulence are
produced (see Figs. 8a, 8b, and 8c). Also, different levels of
white Gaussian noise (with variance �2

n ¼ 1; 9; 25) are added
into the sequences. Each sequence contains 100 frames.

Due to the space limits, we only provide results of three
sets of sequences with noise variance �2

n ¼ 1 in Fig. 8. It is
clear that the proposed approach significantly improved the
visual quality, and recovered many high-frequency details
of the image content.

Table 1 gives the Peak Signal-to-Noise Ratio (PSNR) values
for all the outputs with four different restoration algorithms
and the averaged PSNR values of each input sequence. It can
be seen that the proposed approach outperforms in all test
sequences in terms of PSNR. Results of the near-diffraction-
limited images are also provided in this table, from which we
can tell that the final blind-deconvolution step generally
increases the PSNR by 1-1.5 dB.

3.2 Real Video Experiments

Several real videos are tested to illustrate the performance
of the proposed restoration framework in practical situa-
tions.7 We first show results on data taken under controlled
but real conditions. The two sets of videos (see Chimney and
Building in Figs. 9, 10, and 11) of size 237� 237 were
captured through hot air exhausted by a building’s vent,
which could be closed to take “ideal” images of the same
scene [10]. Each sequence consists of 100 frames degraded
by strong turbulence effects (see Figs. 9a, 9b, 9c, and 11b ). In
the Chimney experiment, some registration results are also
given in Figs. 9d, 9e, and 9f, where we can see geometric
deformation with respect to the averaged image Fig. 10a has
effectively been removed. From the output images in
Figs. 10c, 10d, and 10f we can observe that EFF (c) and the
proposed method (f) provide the best restoration results and
faithfully recover details of the object. The proposed result
(f) looks even sharper, while the EFF output (c) contains
some halo artifacts in the edge regions. Similar restoration
results can be observed in the Building experiment shown in
Fig. 11. The near-diffraction-limited image generated from
the Chimney sequence is also provided in Fig. 10e.

Additional sets of video data taken from long-distance
imaging systems are processed next. The first set of images
(410� 380� 80) shows the moon’s surface taken from a
ground-based telescope (see Fig. 12a). From Fig. 12b we can
see that though the output image of [17] looks slightly
sharper than one of the observed frames, it is still quite
blurry, probably due to the diffraction-limited blur and the
limited number of frames. The method in [9] provides a
better result but with some details (like small craters)
vanished (Fig. 12c). The proposed method gives a sig-
nificant improvement in visual quality (Fig. 12d). It
successfully removed blur and meanwhile recovered many
small craters on the surface (Fig. 12h) that can hardly be
seen from either the original frame (Fig. 12e) or the outputs
of the other two methods (Figs. 12f and 12g).

The scene of the next video stream consists of a water
tower located above the ground, imaged at a (horizontal)
distance of 2.4 kilometers. The (300� 220) video is quite
noisy and highly blurred (due to long exposure time).
Eighty frames were taken from the video to produce the
result shown in Fig. 13. Again, the lucky region method did
not provide much improvement in the result and slightly
changed the object shape (Fig. 13b). The reconstruction
method in [9] slightly increased the sharpness (Fig. 13c).
The output of the proposed method looks much sharper
and clean, with many details well restored (Fig. 13d).

4 DISCUSSION AND CONCLUSIONS

In this paper, we proposed a new approach for restoring a
single high-quality image from an image sequence distorted
by air turbulence. The proposed algorithm first registers the
frames to suppress geometric deformation using B-spline-
based nonrigid image registration, which incorporates a
symmetry constraint to effectively improve the estimation
accuracy. Next, a regression-based process is carried out to
produce an image convolved with a near-diffraction-limited
PSF, which can be viewed as spatially invariant. Finally, a
blind deconvolution algorithm is implemented to remove
diffraction-limited blur from the fused image to generate
the final output. Experiments using controlled and real data
illustrate that this approach is capable of alleviating
geometric deformation and space-time varying blur caused
by turbulence, recovering unprecedented details of the
scene and significantly improving visual quality.

Another technique which may be related to the present
work is seeing through water [34], [35]. Compared with air
turbulence, in most cases the geometric warping effect
induced by water is much stronger, but the blur effect is
relatively milder. In the following experiments, we replace
the image registration step in Section 2.1 with a robust
iterative registration algorithm from a seeing through water
approach [34]. The sequence Chimney with severe turbu-
lence motion is tested. Results are given in Fig. 14, where (a)
shows the direct output of method [34], which is highly
blurry since it is just the temporal mean of the registered
sequence. We then take the registered sequence to generate
a near-diffraction-limited image (b) using the temporal
regression step described in Section 2.2, this intermediate
result is much sharper than (a). The final deblurred output
is given in (c), which is visually very close to the proposed
result given in Fig. 10f except for a mild shape change at the
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6. The pixel intensity range here is ½0; 255�.
7. Videos and experimental results are given on the webpage: http://

users.soe.ucsc.edu/~xzhu/doc/turbulence.html.
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(a) One observed frame (b) [17]

(c) [9] (d) Proposed approach

(e) Zoomed part of (a) (f) Zoomed part of (b) (g) Zoomed part of (c) (h) Zoomed part of (d)

(i) Zoomed part of (a) (j) Zoomed part of (b) (k) Zoomed part of (c) (l) Zoomed part of (d)

Fig. 12. Image reconstruction result using 80 frames taken from the video Moon Surface distorted by real atmospheric turbulence.



top part of the Chimney. Similar experiments using test
video Building are illustrated in Fig. 15. Probably the robust
registration algorithm addressing water distortions is
capable of correcting strong geometric deformations quite
well, but it seems that the registration step in Section 2.1 is
sufficient for handling most air induced motion.

One limitation of the proposed framework is that the
near-diffraction-limited patch reconstruction step requires
the existence of a diffraction-limited isoplanatic patch for all
the local regions. This requirement may be hard to achieve
if we do not have sufficiently many frames. However, in
that case it is still possible to deconvolve the diffraction-
limited patch z. We can consider the local imaging model:

gk ¼ z� hk þ nk;

as a single-input multioutput (SIMO) system [36]. Such
systems have been thoroughly studied in the past few years

and one group of algorithms restoring z is multichannel
deconvolution filters [36], [37]. These are defined as

ẑ ¼
X
k

tk � gk; ð24Þ

where tk is a frame-wise filter of size N �N . In [12], the EFF
approach attempts to estimate z and fhkg simultaneously
given fgkg, which can be viewed as a special case of
multichannel deconvolution filtering. Assuming that fhkg
can be exactly estimated in the EFF process, then the EFF
reconstruction can be interpreted as calculating each tk as
the inverse filter of hk and averaging all the filtered frames
to get the final output. In this case, tk needs a large support
N in general. Giannakis and Heath showed that if we have
sufficient observations, it is also possible (in the absence of
noise) to perfectly reconstruct z given ftkg of very small
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Fig. 13. Image reconstruction result using 80 frames taken from the video Water Tower distorted by real atmospheric turbulence.



support [36]. In other words, we can “mildly” deblur each
frame and get a perfectly restored image through fusion.
Furthermore, if the filter size N is reduced to 1, the filtering
process would become a pixel-wise fusion, which is very
similar to what we presented in Section 2.2. An accurate
estimation of z under a more general scenario requires an
accurate PSF estimation procedure, which is difficult to
achieve, especially in noisy cases. Further study should be
carried out in this direction.
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(a) (b) (c)

(d) (e) (f)

Fig. 14. Experiments using the seeing through water method [34]. Video Chimney distorted by real atmospheric turbulence is tested. (a) Output of
method [34]. (b) Near-diffraction-limited image generated using the sequence registered by [34]. (c) Image deblurred from (b). (d) Zoomed ground
truth. (e) Zoomed proposed result (same as Fig. 10j). (f) Zoomed (c).

(a) (b) (c)

(d) (e) (f)

Fig. 15. Experiments using the seeing through water method [34]. Video Building distorted by real atmospheric turbulence is tested. (a) Output of

method [34]. (b) Near-diffraction-limited image generated using the sequence registered by Oreifej et al. [34]. (c) Image deblurred from (b). (d)

Zoomed ground truth. (e) Zoomed proposed result (same as Fig. 11i). (f) Zoomed (c).



and Dr. S. Harmeling from Max Plank Institute for
Biological Cybernetics for sharing with them the sequences
Chimney and Building. This work was supported by US Air
Force Office of Scientific Research Grant FA9550-07-1-0365
and US National Science Foundation Grant CCF-1016018.

REFERENCES

[1] W.E.K. Middleton, Vision through the Atmosphere. Univ. of Toronto
Press, 1958.

[2] M.C. Roggemann and B.M. Welsh, Imaging through Turbulence.
CRC Press, 1996.

[3] D. Li, R.M. Mersereau, and S. Simske, “Atmospheric Turbulence-
Degraded Image Restoration Using Principal Components Ana-
lysis,” IEEE Geoscience and Remote Sensing Letters, vol. 4, no. 3,
pp. 340-344, July 2007.

[4] M. Shimizu, S. Yoshimura, M. Tanaka, and M. Okutomi, “Super-
Resolution from Image Sequence under Influence of Hot-Air
Optical Turbulence,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, June 2008.

[5] R.N. Tubbs, “Lucky Exposures: Diffraction Limited Astronomical
Imaging through the Atmosphere,” PhD thesis, Cambridge Univ.,
Sept. 2003.

[6] R.K. Tyson, Principles of Adaptive Optics. Academic Press, 1998.
[7] M.A. Vorontsov, “Parallel Image Processing Based on an

Evolution Equation with Anisotropic Gain: Integrated Optoelec-
tronic Architectures,” J. Optical Soc. Am. A, vol. 16, pp. 1623-1637,
1999.

[8] M.A. Vorontsov and G.W. Carhart, “Anisoplanatic Imaging
Through Turbulent Media: Image Recovery by Local Information
Fusion from a Set of Short-Exposure Images,” J. Optical Soc. Am. A,
vol. 18, no. 6, pp. 1312-1324, June 2001.

[9] X. Zhu and P. Milanfar, “Image Reconstruction from Videos
Distorted by Atmospheric Turbulence,” Proc. SPIE Electronic
Imaging Conf. Visual Information Processing and Comm., Jan. 2010.

[10] M. Hirsch, S. Sra, B. Schölkopf, and S. Harmeling, “Efficient Filter
Flow for Space-Variant Multiframe Blind Deconvolution,” Proc.
IEEE Conf. Computer Vision and Pattern Recognition, pp. 607-614,
June 2010.

[11] N.M. Law, “Lucky Imaging: Diffraction-Limited Astronomy from
the Ground in the Visible,” PhD thesis, Cambridge Univ., May
2003.

[12] S. Harmeling, M. Hirsch, S. Sra, and B. Schölkopf, “Online Blind
Deconvolution for Astronomical Imaging,” Proc. IEEE Int’l Conf.
Computational Photography, Apr. 2009.

[13] M.C. Roggemann, C.A. Stoudt, and B.M. Welsh, “Image-Spectrum
Signal-to-Noise-Ratio Improvements by Statistical Frame Selection
for Adaptive-Optics Imaging through Atmospheric Turbulence,”
Optical Eng., vol. 33, no. 10, pp. 3254-3264, Oct. 1994.

[14] D.L. Fried, “Probability of Getting a Lucky Short-Exposure Image
through Turbulence,” Optical Soc. Am., J., vol. 68, pp. 1651-1658,
1978.

[15] M. Aubailly, M.A. Vorontsov, G.W. Carhart, and M.T. Valley,
“Image Enhancement by Local Information Fusion with Pre-
Processing and Composed Metric,” Proc. SPIE, vol. 7090, 2008.

[16] S. John and M.A. Vorontsov, “Multiframe Selective Information
Fusion from Robust Error Estimation Theory,” IEEE Trans. Image
Processing, vol. 14, no. 5, pp. 577-584, May 2005.

[17] M. Aubailly, M.A. Vorontsov, G.W. Carhat, and M.T. Valley,
“Automated Video Enhancement from a Stream of Atmospheri-
cally-Distorted Images: The Lucky-Region Fusion Approach,”
Proc. SPIE, vol. 7463, 2009.

[18] N. Joshi and M. Cohen, “Seeing Mt. Rainier: Lucky Imaging for
Multi-Image Denoising, Sharpening, and Haze Removal,” Proc.
IEEE Int’l Conf. Computational Photography, Mar. 2010.

[19] A. Levin, Y. Weiss, F. Durand, and W.T. Freeman, “Under-
standing and Evaluating Blind Deconvolution Algorithms,” Proc.
IEEE Conf. Computer Vision and Pattern Recognition, 2009.

[20] Q. Shan, J. Jia, and A. Agarwala, “High-Quality Motion
Deblurring from a Single Image,” ACM Trans. Graphics, vol. 27,
article 73, 2008.

[21] X. Zhu and P. Milanfar, “Stabilizing and Deblurring Atmospheric
Turbulence,” Proc. IEEE Int’l Conf. Computational Photography, Apr.
2011.

[22] R. Szeliski and J. Coughlan, “Spline-Based Image Registration,”
Int’l J. Computer Vision, vol. 22, no. 93, pp. 199-218, 1997.

[23] S. Farsiu, M. Elad, and P. Milanfar, “Constrained, Globally
Optimal, Multi-Frame Motion Estimation,” Proc. IEEE/SP 13th
Workshop Statistical Signal Processing, pp. 1396-1401, July 2005.

[24] M.F. Beg and A. Khan, “Symmetric Data Attachment Terms for
Large Deformation Image Registration,” IEEE Trans. Medical
Imaging, vol. 26, no. 9, pp. 1179-1189, Sept. 2007.

[25] R.F. Dantowitz, S.W. Teare, and M.J. Kozubal, “Ground-Based
High-Resolution Imaging of Mercury,” The Astronomical J.,
vol. 119, pp. 2455-2457, May 2000.

[26] J.C. Christou, K.J. Mighell, and R.B. Makidon, “Strehl Ratio and
Image Sharpness for Adaptive Optics,” Proc. SPIE Advances in
Adaptive Optics II, vol. 6272, p. 62721Y, 2006.

[27] L. Davies and U. Gather, “The Identification of Multiple Outliers,”
J. Am. Statistical Assoc., vol. 88, pp. 782-792, Sept. 1993.

[28] F.R. Hampel, “The Influence Curve and Its Role in Robust
Estimation,” J. Am. Statistical Assoc., vol. 69, pp. 383-393, 1974.

[29] M.P. Wand and M.C. Jones, Kernel Smoothing, series Monographs
on Statistics and Applied Probability. Chapman and Hall, 1995.

[30] H. Takeda, S. Farsiu, and P. Milanfar, “Kernel Regression for
Image Processing and Reconstruction,” IEEE Trans. Image Proces-
sing, vol. 16, no. 2, pp. 349-366, Feb. 2007.

[31] A. Buades, B. Coll, and J.M. Morel, “A Review of Image Denoising
Algorithms, with a New One,” Multiscale Modeling and Simulation
(SIAM Interdisciplinary J.), vol. 4, no. 2, pp. 490-530, 2005.

[32] R. Fergus, B. Singh, A. Hertsmann, S.T. Roweis, and W.T.
Freeman, “Removing Camera Shake from a Single Image,” Proc.
ACM Siggraph, 2006.

[33] A. Levin, R. Fergus, F. Durand, and W.T. Freeman, “Image and
Depth from a Conventional Camera with a Coded Aperture,”
ACM Trans. Graphics, vol. 26, article 70, 2007.

[34] O. Oreifej, G. Shu, T. Pace, and M. Shah, “A Two-Stage
Reconstruction Approach for Seeing through Water Clearly,”
Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2011.

[35] Y. Tian and S. Narasimhan, “Seeing through Water: Image
Restoration Using Model-Based Tracking,” Proc. 12th IEEE Int’l
Conf. Computer Vision, 2009.

[36] G.B. Giannakis and R.W. Heath, “Blind Identification of Multi-
channel FIR Blurs and Perfect Image Restoration,” IEEE Trans.
Image Processing, vol. 9, no. 11, pp. 1877-1896, Nov. 2000.

[37] W. Souidene, K. Abed-Meraim, and A. Beghdadi, “A New Look to
Multichannel Blind Image Deconvolution,” IEEE Trans. Image
Processing, vol. 18, no. 7, pp. 1487-1500, July 2009.

Xiang Zhu received the BS and MS degrees in
electrical engineering from Nanjing University,
Nanjing, China, in 2005 and 2008, respectively.
He is currently working toward the PhD degree
in electrical engineering at the University of
California, Santa Cruz. His research interests
are in the domain of image processing (denois-
ing, deblurring, super-resolution, and image
quality assessment) and computer vision. He is
a student member of the IEEE.

Peyman Milanfar received the BS degree in
electrical engineering and mathematics from the
University of California, Berkeley, and the MS
and PhD degrees in electrical engineering from
the Massachusetts Institute of Technology,
respectively. Until 1999, he was a senior
research engineer at SRI International, Menlo
Park, California. He is a professor of electrical
engineering and an associate dean for research
in the Baskin School of Engineering at the

University of California, Santa Cruz. From 1998 to 2000, he was a
consulting assistant professor of computer science at Stanford
University, where he was also a visiting associate professor in 2002.
His research interests include statistical signal, image, and video
processing, and computational photography and vision. He won a US
National Science Foundation (NSF) CAREER award in 2000, and the
best paper award from the IEEE Signal Processing Society in 2010. He
is a member of the Signal Processing Society’s Awards Board, and the
Image, Video and Multidimensional Signal Processing technical
committee. He is a fellow of the IEEE.

170 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 1, JANUARY 2013



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice


