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low reconstruction video quality. However, the differences between
the l1 norm and thel2 norm are slight.

IV. CONCLUSION

In this work, fast motion estimation algorithms in thel1 norm
and fast motion estimation algorithms in thel2 norm are studied
and compared. All these fast algorithms achieve the same estima-
tion accuracy as the exhaustive search algorithm with a consider-
ably reduced computational load. One modified motion estimation
algorithm, which does not rely on the convexity of the motion
compensated residual error surface, is also proposed. This modified
algorithm can provide a further 40% computational load reduc-
tion over the SEA, while keeping almost the same rate-distortion
curve. These fast algorithms provide feasible solutions for reducing
the cost and improving the rate-distortion-computation tradeoff of
a video coder.
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Two-Dimensional Matched Filtering for Motion Estimation

Peyman Milanfar

Abstract—In this work, we describe a frequency domain technique for
the estimation of multiple superimposed motions in an image sequence.
The least-squares optimum approach involves the computation of the
three-dimensional (3-D) Fourier transform of the sequence, followed by
the detection of one or more planes in this domain with high energy
concentration. We present a more efficient algorithm, based on the
properties of the Radon transform and the two-dimensional (2-D) fast
Fourier transform, which can sacrifice little performance for significant
computational savings. We accomplish the motion detection and esti-
mation by designing appropriate matched filters. The performance is
demonstrated on two image sequences.

Index Terms—Discrete Fourier transform, estimation, image line pat-
tern analysis, image motion analysis, matched filters.

I. INTRODUCTION

The problem of motion estimation from an image sequence has
a variety of applications. In particular, the estimation of multiple
superimposed translational motions (displacements) has, more re-
cently, received some attention [3], [5], [14], [17], [22]. Traffic
monitoring, meteorological monitoring of clouds and storms from
satellite imagery, and detection and tracking of airborne or ground-
based targets are all practical examples of the need for fast, real-time,
multiple motion estimation from video.

Most approaches to this problem can be categorized as working
either in the image domain (gradient-based, or region-based), or
in the spectral domain (Fourier transform based) [1], [4]. Image
(pixel) domain algorithms, typically directed at short sequences of
two or three images, use the optical flow brightness constraint to
estimate the motion parameters [5], [7]. Spectral approaches are
based on the notion that if a sequence of images—thought of as a
three-dimensional (3-D) function in two-dimensional (2-D) space and
time—contains a linearly moving pattern, then the energy of the 3-D
Fourier transform (FT) of this function will be concentrated along a
plane through the origin whose orientation is related to the velocity of
the moving pattern [6], [9], [19]–[21]. So by computing the 3-D fast
FT (FFT) and then finding a plane with strong energy concentration,
we can estimate the desired velocity. An important advantage of this
technique is that, because of the linear superposition of the FT, the
existence of multiple superimposed motions will be manifested in the
spectrum simply as energy concentrations along more than one plane
through the origin.

In this work, we pursue a spectral technique for estimating trans-
lational motion, and we build on previous work in this area [15],
[17], [19]–[21]. Specifically, in [17] we presented an algorithm
that comprised of 1) projecting the frames in the image sequence
onto a pair of orthogonal directions followed by 2) computation of
2-D FT’s, and 3) a line-finding algorithm based on array processing
[2]. The fundamental difference between the current work and that
presented earlier in [17] is that the line-finding technique we adopt
here is based on [15] and, while more computationally intensive,
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yields significantly more accurate results even in the presence of
considerable noise.

In [15], the authors computed the 3-D FT of the image sequence
and detected lines inslicesof this 3-D spectrum using geometrically
defined 2-D matched filters. In fact, these slices can be obtained much
more efficiently, and without computation of the 3-D transforms, by
first computing projections of the images in the sequence and then
computing 2-D FFT’s. This idea has been noted and employed before.
For instance, in [16] and [21], the frames were projected along the
coordinate axes and lines were detected in the 2-D spectra computed
from these projections. However, the line detection process was
carried out by identifying peaks along the temporal axis of the 2-D
Fourier transforms. The innovation presented in this correspondence
is precisely in the combination of the projection-based technique and
a reliably efficient technique for the detection of the resulting lines in
the 2-D spectra. Furthermore, it is demonstrated that this combination
is directly applicable to the estimation of multiple superimposed
motions. We will also show that when applied locally to image
sequences containing motion fields that are adequately approximated
as locally translational, the proposed algorithm can produce results
that are comparable to the accuracy of the most popular existing
motion estimation algorithms in current use.

II. PROBLEM AND SOLUTION OUTLINE

If an image is translating according to a motion vectorv =
[vx; vy]

T , we can write the image sequence as a convolution:

f(x; y; t) = f(x; y) � �(x� vxt; y � vyt): (1)

Computing the Fourier transform of both sides of (1) yields

F (!x; !y; !t) = F (!x; !y)�(vx!x + vy!y + !t): (2)

This indicates that all the energy in the 3-D spectrum of the
image sequence must be concentrated along the plane given by
vx!x+vy!y+!t = 0. Furthermore, if multiple translational motions
are superimposed, then due to the linear superposition property of the
FT, the spectrum of the image sequence will simply be concentrated
along several planes.

The (direct) least squares optimal approach [17] to estimating the
displacement1 vector(s)v is to compute the 3-D spectrum of the image
sequence and detect the plane(s) with strong energy concentration. A
different way of describing the planes of interest is to specify a pair
of vectors (or lines) that span them. One such pair, for instance, is
obtained by considering the intersection of these planes with two other
linearly independent planes. An attractive way to accomplish this, and
hence to reduce the dimensionality of the problem to two dimensions,
is to project each frame along a pair of independent directions, and
then to apply 2-D FFT’s. In particular, if these projections are taken
along the rows and columns of the images, the celebrated projection
slice theorem [10] implies that the 2-D FFT’s of these projections are
slices through the 3-D FFT of the image sequence along the planes
!x = 0 and!y = 0, respectively. Hence, the energy of the resulting
2-D spectra will be concentrated along thelinesvx!x+!t = 0, and
vy!y + !t = 0, instead of along planes in 3-D processing.

We define the (discrete) projections along the rows and columns
of the image as follows:

p(x; t) =
y

f(x; y; t); (3)

q(y; t) =
x

f(x; y; t): (4)

1In this work, we use the termsvelocity vectorand displacement vector
interchangeably. Both are assumed to be in units of pixels per frame (ppf).

The shift property of the Radon (projection) transform then implies
that as a result of the motion undergone byf , p(x; t) movesvx
samples per frame, and similarly,q(y; t) moves vy samples per
frame. While this observation is not new [16], [17], [20], [21], it
is worth pointing out that it can be stated in any coordinate system.
That is, for projectionsp�(s) taken onto any axis(s) forming an
angle � with the x-axis, p�(s) will simply undergo a motion of
vx cos(�) + vy sin(�) samples per frame. In this paper, however,
we treat the case of row and column projections only.

The 2-D algorithm proposed here comprises several simple steps.
First, we compute the projection functionsp(x; t) andq(y; t). Then,
the 2-D spectra, denotedP (!x; !t) andQ(!y; !t), of each of these
functions are computed. Next, a matched filter is applied to a function
of the magnitude of each of these spectra, producing the outputs
R(vx) andR(vy). The peak(s) in each output will correspond to the
best estimate of the respective components of the motion vector.

Numerous techniques have been introduced in the past to accom-
plish the line detection task. Among them, the most popular and
widely used are based on the Hough transform [8], [11], and more
recently a clever array processing technique [2], [17]. The technique
that we present here is a version of the Hough transform idea, and
has also been suggested in [15]. The proposed technique is a matched
filter, which is based on integration of energy over pixels along lines
that pass through the origin, whereas the traditional Hough transform
approach looks for all possible lines in the image.

To define a matched filter for the detection of lines through the
origin in P andQ, we write the expression for the distance between
a point and a lineL with (unknown) slope�vx, in thediscreteplane
(!x; !t) as follows:

�(vx) =
j!x(vx=Nx) + !t(1=Nt)j

(vx=Nx)2 + (1=Nt)2
(5)

whereNx and Ny denote the dimensions of each image andNt

denotes the number of frames. Given the definition of�(vx), the set
of all pixels satisfying

�(vx) �
1
2
wd (6)

is a digital line of widthwd pixels, with slope�vx and passing
through the origin. Defining the average “energy” at all such pixels
by R(vx), we have a parametric description of the matched filter
output as follows:

R(vx) =
1

n(vx)
L(v )

jP (!x(i); !t(j))j
� (7)

whereL(vx) = f(!x(i); !t(j)) j �(vx) �
1
2
wdg denotes the set

of all pixels on the digital line with slope�vx, andn(vx) denotes
the total number of pixels on the same line. The estimate ofvx is
then given by

v̂x = arg max
v

R(vx): (8)

The above detector is optimal for the detection of straight-line
patterns in the same sense as the Hough transform (see [18], for
instance), as it is simply a special case of the Hough transform which
seeks lines that pass through the origin. The choice of the scaling
parameter� in effect results in a useful form of preprocessing of the
magnitude spectrum image. Namely, to estimatevx accurately, it is
important that the peak ofR(vx) be well defined (sharp). To ensure
that this happens, we can choose a value of0 < � � 1 to suppress
the typically larger amplitudes at lower frequencies, and expand
the usually smaller amplitudes at higher frequencies. This results
in a more even distribution of energy across the spatio-temporal
frequency plane and hence facilitates the distinction of neighboring
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(a)

(b)

Fig. 1. Aerial photo of Washington, DC, and synthetic cloud.

lines with similar slopes. The choice of� can, in fact, be optimized in
accordance with the spectral content of the image sequence. We found
that the value� = 1 gave the overall most robust results. More formal
variations of this idea are also possible. For instance, one may place
the line detection problem within a robust estimation framework [12].
Such estimators are less sensitive to outliers and would therefore be
useful in the multiple-line detection problem if all but one of the lines
is considered as outliers. We leave this extension for future work.

A. Estimation of Multiple Velocities

When two or more peaks are present, we can devise a technique
to automatically detect multiple peaks corresponding to motions. We

assume that the number of such motions is knowna priori.2 We
proceed by first locating the highest peak(v̂x) according to (8). Next,
we identify an interval about this peak that contains energy related
to the peak at̂vx. Having identified this range, we set all values of
R in this range to zero and invoke (8) again. Repeating this process,
we recover all the peaks in the plot ofR(vx).

To accomplish the task of peak elimination, we assume that the
motion at v̂x corresponds to a line of unit width in the image
jP (!x; !t)j. We take the matched filter for anyvx to consist of

2Techniques such as minimum description length can be used to estimate
the number of motions present.
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Fig. 2. Left to right, from the top: Frames 1, 5, 10, 15, 20, 25, 30, 35, and
40 of the Washington, DC, sequence.

Fig. 3. Matched filter output forx component of Washington, DC, sequence
at SNR = 10 dB, with wd = 2.

a line of widthwd passing through the origin with slope�vx. The
number of pixels in the intersection of the two regions will determine
the interval about̂vx that will be eliminated. It is easily shown that
takingNx = Nt = N , the number of pixelsl in the intersection of
the matched filter and the line we seek is given by

l =
wd=j sin (�̂ � �)j; for !x < N=2,
Nwd(1 + jv̂xj)=

p
1 + v̂2x; !x = N=2

(9)

where jv̂xj = j tan(�̂)j and jvxj = j tan(�)j. The functionl(vx) is
symmetric about the peak atv̂x. If we now pick a valuel such that
l(v̂x)=l is equal to some prescribed percentage value�, then solving
l(vx) = l = �l(v̂x) will yield two valuesvx andvx symmetric about
v̂x that will determine the radiusr(v̂x) = (vx � vx)=2 of the range
that is to be eliminated.

(a)

(b)

Fig. 4. Meanx (left) andy (right) relative error curves for Example 1.

B. Velocity Pairing

If the previous steps have producedk horizontal andk vertical
velocity component estimates, we denote these estimates asVx =
fv̂x(1); v̂x(2); � � � ; v̂x(k)g and Vy = fv̂y(1); v̂y(2); � � � ; v̂y(k)g.
We shall assume that the true velocity components do not have any
x or y components in common,3 (i.e., none of thêvx’s are equal,
and none of thêvy ’s are equal). We need to obtaink displacement
vectorsv1, v2, � � �, vk by matching elements ofVx to those ofVy.

In [17], we described a technique based on computing difference
frames according to all possible pairings and sequentially picking
out the pairings that result in the smallest difference images in
the least squares sense. Although this technique is reliable and
does not require the use of all available frames, it can be replaced
by another technique that relies more directly on the 2-D Fourier
transform. Thetemporal projectionof the frames can be defined as
s(x; y) =

t
f(x; y; t). Again, according to the projection slice

theorem, the Fourier transformS(!x; !y) of s(x; y) is the slice
along the plane!t = 0 of the 3-D Fourier transformF (!x; !y; !t).

3If this condition is violated, it may then be necessary to pick different
projection angles and to repeat the previous steps. This scenario illustrates a
potential drawback of the proposed algorithm.
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Fig. 5. Frame 8 of the Yosemite sequence, with true motion vectors on pixels of interest for Example 2.

Thus, a motion along the vector(vx; vy) will manifest itself as the
line vx!x + vy!y = 0 in this plane. This line passes through the
origin and has slope�vx=vy. Therefore, givenk estimated values
of vx and vy, we can detectk or fewer lines in the planewt = 0
and compute their slopes. For each estimatedvx(i), we can then find
the best matching4 vy(j) by comparing the ratio�vx(i)=vy(j) to
the estimated line slopes from the planewt = 0. Continuing in this
fashion fori = 1; � � � ; k, we can match all velocity components.

III. PERFORMANCE CHARACTERISTICS

As we discussed in the introduction, the optimum approach to the
displacement vector estimation problem will use the 3-D spectrum
of the image sequence. The algorithm derived here is therefore
suboptimal as it only uses projections of the given 3-D data. In [17],
an analytical bound was established for the loss in performance if a
2-D projection-based approach is used instead of the optimum 3-D
approach. This bound is based on computation of local approxima-
tions to the error covariances for both the 2-D and the 3-D motion
estimation approaches under assumptions of high signal-to-noise ratio
(SNR) and small motion. Rather than repeat the analysis, we briefly
state the results.

An aggregate measure of performance for the 2-D technique is the
sum of the variances for the estimates of each motion component.
On the other hand, for the direct 3-D approach, the trace of the
covariance matrix of the estimate can be used. Denoting these two
scalar quantities asC2 andC3, respectively, we showed [17] that the
relative performance loss is bounded as

C3 � C2

C3

�
D2

xy

DxxDyy

(10)

4We assume thatvy(j) 6= 0.

where

Dxx =
x; y; t

@f

@x

2

; Dyy =
x; y; t

@f

@y

2

;

Dxy =
x; y; t

@f

@x

@f

@y
: (11)

Note that the right-hand side of this bound (10) is essentially a
correlation coefficient. That is, the relative performance loss is small
when thegradientsof the images in the selected (in this casex and
y) directions are weakly correlated.

IV. COMPUTATIONAL COMPLEXITY

Assuming that the matched filters have a velocity resolution ofN
bins, and thatNx = Ny = Nt = N , the dominant terms in the
computational complexity of the 2-D algorithm are as follows:

1) the projections, which requireO(N3) operations;
2) the 2-D FFT’s, which requireO(N2 log N) operations;
3) the 2-D matched filtering, which requiresO(N3) operations;
4) velocity component matching which requiresO(N3) opera-

tions.

Therefore, overall, the 2-D approach has complexity that grows
as O(N3). On the other hand, the 3-D FFT-based approach in-
volving detection of planes requiresO(N5) computations, which is
dominated by the 3-D plane detection task.

As a point of comparison, gradient-based optical flow techniques
usinga pair of N �N images would requireO(N3) computations.5

Scaling this toN frames, we getO(N4) complexity. Therefore, on
long image sequences, the 2-D spectral technique is roughly an order
of magnitude faster than gradient-based techniques.

5Taking a local, say 2� 2 � 2, stencil for approximating the spatio-
temporal gradients.
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Fig. 6. Directional error in degrees, for Example 2: mean error= 6.1� and standard deviation= 5.5�.

V. EXPERIMENTAL RESULTS

In this section, we present the results of two experiments that
demonstrate the performance of the proposed algorithm numerically.

Example 1: We performed an experiment that demonstrated the
estimation of two superimposed (added) subpixel motions. To simu-
late the measured frames in this experiment, we used the 475� 720
aerial (ortho) photograph of Washington, DC (courtesy of USGS),
and the synthetic 512� 512 cloud image shown in Fig. 1. These
images were shifted, added asI(t) = 0:3ID:C:(t)+Icloud(t), lowpass
filtered, and downsampled to produce 40 frames of a video sequence.
Each resulting image has dimensions 60� 60, and the sequence
contains two global superimposed subpixel motion components given
by v1 = [1=2; �1=2]T and v2 = [�1=4; 1=4]T , corresponding to
the ground and cloud motions, respectively. For more detail on the
construction of this image sequence, see [17]. For the experiments,
to simulate imperfect sensing conditions, we added Gaussian white
noise to each frame to realize a given SNR value.6 Fig. 2 shows
selected (noiseless) frames from the sequence thus generated. Fig. 3
shows the output of the matched filter corresponding to thex velocity
of the Washington, DC, sequence at SNR= 10 dB, with a matched
filter resolution of 100 bins and a line width ofwd = 2.

To quantify the average performance of the 2-D approach, we
performed Monte Carlo simulations where the two superimposed
motions in the Washington, DC, image sequence were estimated

6The definition of the SNR is

SNR (dB) =
1

T

T�1

t=0

10 log10
x;y

(f(x; y; t)� f(t))2

N2�2

wheref is the spatial average off(x; y; t), N is the spatial dimension of
f , andT is the number of frames. So the SNR is the average SNR per pixel
across all frames.

repeatedly for 25 different realizations of noise at each of various
SNR values. The mean relative error curves are displayed in Fig. 4.
It is clear that the relative errors stay well within 5% of truth for
SNR’s above 0 dB. The systematic bias, likely due to the finite extent
of the data at high SNR’s, is on the order of 1%.

Example 2: In this example, we apply the proposed algorithm to
the famous Yosemite sequence (obtained courtesy of Baronet al. [4]),
which is composed of 15 frames each of dimensions 252� 316. The
eighth frame in the sequence, along with the correct flow field on a
151 � 151 pixel subset of the image (where we will compute the
flow) is displayed in Fig. 5. For pixels in the subregion of interest,
we computed the flow vector by using a 64� 64 � 15 spatio-
temporal window. The projection-based algorithm was then applied
locally to each such window; if a complete 64� 64 window of data
was not available, the available data was zero padded. The matched
filter search was then conducted over the range of velocities[�3; 2]

in each component with a 100-bin resolution, with the matched
filter width selected aswd = 3. The error, as measured according
to the method outlined in [4], is displayed in Fig. 6. The mean
error, over all estimated flow vectors was determined to be about
6.1�, with a standard deviation of 5.5�. We note that the poorest
performance appears to occur at points where the true motion field
and the image are discontinuous. For instance, in the upper right-
hand side of Fig. 6, we can see that the error is large near the
boundary of motion between the mountains and the clouds over them.
This is likely due to the fact that high-frequency components in the
Fourier domain resulting from the abrupt discontinuity corrupt the
estimate of the slope of the lines being detected. Furthermore, perhaps
the Fourier transform is not sufficiently localized in the spatio-
temporal frequency domain to give adequate estimates of motion
across discontinuous fields. This problem may be overcome to some
extent if instead of the Fourier transform, another time-frequency
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transform such as Wigner–Ville, with better localization properties is
used [13]. On the other hand, the interference terms in such transform
must be carefully accounted for if any improved performance is
to be expected.

In any case, comparing the above results to those errors result-
ing from the use of other spectral and gradient-based techniques
on the same image sequence (displayed in [4, Tab VII]), we can
see that the proposed technique compares favorably to these tech-
niques.

VI. SUMMARY AND CONCLUSIONS

In this paper, we demonstrated a simple spectral technique for the
estimation of multiple motions from a (long) sequence of images.
In particular, we developed an efficient and accurate algorithm to
accomplish this task based on the projection of image frames in
a pair of orthogonal directions, followed by the computation of
2-D FFT’s and matched filtering. An analytical comparison to the
optimum 3-D FFT approach shows that, under favorable conditions,
the 2-D approach can perform nearly as well as the optimal 3-
D technique, while incurring a significantly smaller computational
cost. Furthermore, comparing the performance of the proposed al-
gorithm to that of existing local differential and spectral techniques
revealed that this simple algorithm is comparable in performance
and presents an improvement in terms of computational complex-
ity.
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Intrinsic Multiscale Representation
Using Optical Flow in the Scale-Space

Qing Yang and Song De Ma

Abstract—There exists anoptical flow in the scale-spaceif the multiscale
representation of an image is viewed as an ordinary image sequence in the
time domain. This technique can be used to solve the ill-posed tracking
problem in the scale-space.

Index Terms—Multiscale representation, optical flow.

I. INTRODUCTION

A critical problem in linear scale-space theory (see the survey by
Lindeberg [6]) is that local features in the image may be seriously
distorted at large scales. Various nonlinear diffusion equations [1],
[7], [8] have been proposed to deal with this drawback. However, in
many cases the nonlinear strategy is still not satisfactory because of
the essential difficulty in the localization scheme.

A much more thorough method is to track points in the scale-space.
Although this idea has been reported in the literature, we seldom
perform tracking to obtain a better multiscale representation. It is
often believed that this is due to computational complexity. However,
we argue that the main reason is that the tracking problem is ill-posed.
The procedure of regularization must be introduced. This allows us
to define “optical flow in the scale-space” which can be viewed as
a standard optical flow.

Manuscript received May 29, 1997; revised May 14, 1998. This work was
supported in part by the Natural Science Foundation of China under Grant
69790080. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Dapang Chen.

The authors are with the National Laboratory of Pattern Recognition,
Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China
(e-mail: qyang@prlsun6.ia.ac.cn).

Publisher Item Identifier S 1057-7149(99)01562-6.

1057–7149/99$10.00 1999 IEEE


