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A Computationally Efficient Superresolution Image
Reconstruction Algorithm

Nhat Nguyen, Peyman MilanfaBenior Member, IEEEand Gene Golub

Abstract—Superresolution reconstruction produces a high-reso- whose intersection contains the HR estimate and successively
lution image from a set of low-resolutionimages. Previous iterative projected an arbitrary initial estimate onto these constraint
methods for superresolution [9], [11], [18], [27], [30] had not ade- sets. Others [4], [20], [23] adopted a related method, the

quately addressed the computational and numerical issues for this iterative back iecti thod. f " di t
ill-conditioned and typically underdetermined large scale problem. iierative back=projection menod, irequently Used in computer

We propose efficient block circulant preconditioners for solving aided tomography. Cheeseman al. [9] used the standard
the Tikhonov-regularized superresolution problem by the conju- Jacobi’'s method, and Hardit al. [18] proposed a steepest
gate gradient method. We also extend to underdetermined systems descent based algorithm in combination with block matching
the derivation of the generalized cross-validation method for au- to compute simultaneously the HR image and the registration

tomatic calculation of regularization parameters. Effectiveness of t Alth hth I bust t . dall
our preconditioners and regularization techniques is demonstrated parameters. oug €y are USually TobUStLo NoISe and allow

with superresolution results for a simulated sequence and a for- SOme modeling flexibility, projection-based algorithms are also

ward looking infrared (FLIR) camera image sequence. known for their low rate of convergence. More recently, Hardie
Index Terms—Circulant preconditioners, generalized cross-val- et al.. (18], Conn.olly and Larje [10] and Chaat al. [6] hf';\ve
idation, superresolution, underdetermined systems. considered conjugate gradient (CG) methods for Tikhonov

regularized superresolution. However, to a large degree, com-
putational and numerical difficulties of superresolution have
not been addressed adequately. For instance, Hardike[18]
HYSICAL constraints limit image resolution quality inand Connolly and Lane [10] did not consider preconditioning
many imaging applications. These imaging systems yieldr their CG algorithm, and Chaet al. [6] preconditioner is
aliased and undersampled images if their detector arrayoily applicable for multisensor arrays. Superresolution is a
not sufficiently dense. This is particularly true for infraredcomputationally intensive problem typically involving tens of
imagers and some charge-coupled device (CCD) camerti®usands unknowns. For example, superresolving a sequence
Several papers have developed direct and iterative techniqaés0 x 50 pixel LR frames by a factor of 4 in each spatial
for superresolution: the reconstruction of a high-resolutictimension involve200 x 200 = 40000 unknown pixel values
(HR) unaliased image from several low-resolution (LR) aliaséd the HR image. Furthermore, the matrix system is typically
images. Proposed direct methods include Fourier domain amderdetermined and ill-conditioned, which can exacerbate
proaches by Tsai and Huang [34], Tekalpal.[33], [27], [26], System noise and blurring effects. In this paper, we present
and Kim et al. [22], [21] where high-frequency information efficient circulant block preconditioners that take advantage
is extracted from low-frequency data in the given LR framesf the inherent structures in the superresolution system matrix
Several methods [29], [1] have used an interpolation-restoratign accelerate CG. We adopt the generalized cross-validation
combination approach in the image domain. Ur and Gross [38CV) method, which is often used to calculate regularization
and Shekarforoush and Chellappa [31] considered superresplarameters for Tikhonov-regularizedverdeterminedleast
tion as generalized sampling problem with periodic samplesjuares problems without accurate knowledge of the variance
In this paper, we are mainly interested in the computational noise, to ourunderdeterminegbroblem. Golubet al. [14]
issue for iterative methods. Projection type methods have beiggested that GCV can be used for underdetermined problems,
used by several researchers. Pattial. [27] and Stark and and Mcintosh and Veronis [24] successfully implemented GCV
Oskoui [32] proposed projection onto convex sets (POCS)Y their underdetermined tracer inverse problems. However,
algorithms, which defined sets of closed convex constrairgiice the derivation for the GCV formulation by Golub,
Heath, and Wahba [14] applies only for overdetermined least
squares problems, we extend their derivation in this paper
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preconditioners and approximate convergence bounds are /_\

tailed in Section IV. We present the experimental resultsinSe = o ___________

tion V and draw some conclusions in Section VI. OOoooo 5 ii X i
000000

Il. THE MODEL Oloolooo I

Conceptually, superresolution, multichannel, and multisenspixel (1,1) [ 01 10 0 0 U
data fusion are very similar problems. The goal is to combirefarether [ 1 O O O O T T

| [N} |
information about the same scene from different sources. ™™ OO OO0 O : i i :
perresolution, in particular, the LR frames typically represer e
different “looks” at the same scene from slightly different di- High resolution image Low resolution frame
rections. Each frame contributes new information used to inter-
polate subpixel values. To get different looks at the same scene, Fig. 1. Superresolution model.

some relative scene motions must be recorded from frame to

frame. These scene motions can be due to controlled motiongial, this is not the case, and the system of equations above is un-

the imaging system, e.g., images acquired from orbiting satekrdetermined. The techniques presented here can be extended

lites, or uncontrolled motions within the scene itself, e.g., olbe the more general framework to allow for any shifts. This ex-

jects moving within view of a surveillance camera. If these scemension is addressed in the first author’s thesis [25].

motions are known or can be estimated within subpixel accu-For each framek, we approximate the relative motions

racy, superresolution is possible. between that frame and a reference frame by a single motion
We model each LR frame as a noisy, uniformly down-sanmyector. In the case where the scene motions are controlled, the

pled version of the HR image which has been shifted and blurrgtbtion vectors are known. Otherwise, they may be estimated

[11]. More formally by some image registration algorithm; see survey by Brown
[5]. For completeness, we include in Appendix A a simple
by = Dy CrLFipx + ny, 1<k<p (1) algorithm we used to compute scene motion vectors. We will

assume that the point spread function (PSF) which generates
wherep is the number of available framds, is an/V x 1 vector the blurring operator is known and spatially invariant. Blind
representing théth m x n (N = mn pixels) LR frame in superresolution or superresolution without knowledge of the
lexicographic order. If is the resolution enhancement factor ilPSF is a challenging topic under development which will be
each directionx is ani? N x 1 vector representing then x In  reported in a subsequent submission.
HR image in lexicographic ordef}, is ani*N x >N shift
matrix that represents the relative motions between frénaasl [1l. REGULARIZATION

i i izd2 2
a reference frame.y is a blur matrix of size€" ' x I°N, Dy The PSF is derived from the discretization of a compact oper-

. 5 i i i . .
IS the V x I”V" uniform down-sampling matrix, and is the ator (i.e., the image of eve?-bounded sequence of functions

N x 1 vector representing additive noise. has at least one converging subsequence [16}, sall-condi-

Fig. 1 illustrates our model conceptually. A pixel value in al ned [2]. Thus, even small changeskirean result in wild os-

LR frame is a weighted "average” value over a box of plxel&Ilations in approximations t& when (2) is solved directly. To

in the HR image. In the figure, the (1,1) pixel of the LR frame .. :

S . : R btain a reasonable estimate fowe reformulate the problem
to the right is a weighted “average” over the dashed box, while : S
. . . . » _ as aregularized minimization problem
the (1,1) pixel in another frame is a weighted “average” over
the solid box. The relative motion from the dashed box to the min a|b — Hx|2 +x7Qx 3)

solid box is 1 HR pixel down and to the right. Each LR frame
contributes new and different information about the HR imagﬁ/hereQ is some symmetric, positive definite matrix, ands

Combining the equations in (1), we have related to the Lagrange multiplier. In this formulatiéh serves
as a stabilization matrix, and the new system is better condi-

by Dyl n; tioned. While a simple and effective regularization matrix can
= : x4+ | be the identity/, @ can also incorporate some prior knowl-
' ' edge of the problem, e.g., degree of smoothness [16]. §jrise
by Dp,CpFy np symmetric, positive definite, we have the Cholesky decomposi-
b=Hx+n. (2) tionQ@ = LT L, whereL is an upper triangular matrix. Letting

y = Lx, A = HL™!, then reduces (3) to the standard form
In this paper, we consider only shifts of integral multiples of ) y y
one HR pixel. A nonintegral shift is replaced with the nearest min alb — Ay|lz + [lyllz- (4)
integral shift. In this case, at most nonredundant LR frames
are possible for superresolution with enhancement faciar The solution of the underdetermined least squares problem (4)
each dimension. If all possible combinations of subpixel hor@bove is
zontal and vertical shifts are available, the above linear system is - - 1 1
square and reduces to essentially a deblurring problem. In gen- y=A" (A4 +ADTb, A=~
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which gives us B. Generalized Cross-Validation for Underdetermined Systems
Here we derive the closed-form for regularization parameter

_ —1 7T —1 7T —1
x=QTH (HQTH" + AI)™'b ©) by GCV for underdeterminedgystemsdy = b. We start by
and whenQ = T examining the following expression for the regularized under-
determined least squares solution to the equation above
x=HY"(HH" + \I)™'b. (6)

y =AT(AAT + XI)"'b
In the above formulation} is the regularization parameter. A A ! b
Sl |

largerX corresponds to a better conditioned system, butthe new = } [Ai aJT] + )\I) { bfr

system is also farther away from the original system we wish aj J

to solve. Wg will adopt GCV (cf. [14]), a te_chnique populc_';\r in S A}Ag Y A}a]T -1 by
overdetermined least squares, for calculating the regularization = [A} a,»] - - [ } .
parameter. a;A; aja; + Al b;

L Let
A. Cross-Validation
-1

]

ajAT aja? + Al

The idea of cross-validation is simple. Namely, we divide the {Z} } B
i

data set into two parts; one part is used to construct an approxi-
mate solution, and the other is used to validate that approxima-
tion. For example, the validation error by using thie pixel as then
the validation set is

Zj

' y= A;»WZf + afzj (10)
CV;(A) = [Ib; — a;™ (N)II3
and
where the notatiogtis used to indicate variables corresponding T T
to the system without thgth pixel/row and (ApAf + M)zy + Apaj 2 =Dy (11)
ajA}:zj; + (aja;‘»F + )\I)Zj = bJ (12)

v’ (N) = AF(Ap AT + D) oy 7

Multiplying both sides of (11) by A, AT + AI)~!
is the regularized underdetermined least squares solution of the pying (11) by, 4; + A1)

original system without thgth pixel, A; y= = by, with (A}AT + )\I)*lbj._ =z; + (A}AT + )\I)flA}asz
3 3 J )
[ A ] [ 0] Therefore, from (7)
vy = Az»:zj; + Az»:(Aj;A}: + )\I)_lAj;a?zj
a1 bj—l
Ay = , by = . and by (10)
ajt1 bjt1
y =y—-(I- Az(AT»Ag + )\I)_IAT')a?zj.
| ax | e Note that forA > 0,1 — AT (A; AT + A\I) 1Ay = MA AT +
_ o _ M)l So
The cross-validated regularization parameter is the solution to ’
. v =y- A(AiAT + )\I)_la?zj. (13)
Acv = afg;nin v, (8)  Next, note that

j=1
. I . - AT A, = ATA - ala,.
GCV is simply cross-validation applied to the original system 7oy 8 &
after it has undergone.e} unitary trapsfqr.mation. GQV is algQt d; = a;(ATA+ )\I)—la]T. By Sherman—Morrison-Wood-
known to be less sensitive to large individual equation errofR ry formula [15]

than cross-validation [24]. For overdetermined systems, it has

been shown that the asymptotically optimum regularization pa- (AjTLAf + At

rameter according to GCV is given by [14] = (ATA 4 D)

I(AAT + A1)~ 1b||2 + (ATA+ M) el (1 - dy) (AT A+ AT
tr((AAT + A1)~

Agoy = arg min (9)
A which leads to
In the next subsection, we derive this same expression for our - T 1
underdetermined system and in Appendix B, we describe an aj(Aj Ay + AN a; =d; +d;(1—d;)™ d;
efficient way to obtain a suboptimal solution for (9). =d;(1- dj)*l. (14)
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From (10) and (12) we get Note thatd AT + A1 = W(S¥ + )W 7 is a circulant matrix.
Hence,D = X diag((AAT +XI)~1)is amultiple of the identity.
a;y + )\Zj = bJ (15) ThUS,
By (13) D=2 tr(AAT + A1)~
m
b —auv = b —a. A '(ATA' )\I)*lT . _)\ T -1
i Y i — Ay + Aa;(Ay Ay + a; zj =—tr((AA" + A)7H)I.
m
which, using (14) and (15), leads to Hence, from (17) we can formulate GCV as follows:
by —a;yT =z + Aaj(AiAf + )\I)_la?zj argmin A2||D7(AAT 4+ AI)"'b||
I)\(1+dj(1—dj)_l) Zj A . R
=M1 —dj)" = arg min I(AAT + AL "b]l,
T —1
=(1—d))"L(b; — a;y). (16) A W((AAT +HADT

. |IWUT(AAT + M)~ 1b|2
Define D(\) = diagl — A(ATA + A\I)71AT) to be the di- = arg i tr((AAT + A1)
agonal matrix with the same diagonal entried as A(AT A +
M)~ AT, Again, using the fact that— A(AT A+ A1)t AT =

|(AAT + A1)~'b||,

= & ) i . 18
A(AAT + AI)~ ! for A > 0, we can rewriteD = Adiag(AAT + I (AT ) e
AI)~1. From (8), the optimal cross-validation regularization pa- o ) )
rameter is Not surprisingly, this formulation has the same form as that of

the overdetermined case.
K
arg min Z CV;(N) IV. PRECONDITIONING FORCONJUGATE GRADIENT

j=1 . . o .
As we described earlier, superresolution is computationally

intensive. The number of unknowns, the same as the number
of pixels in the HR image, is typically in the tens or hundreds
of thousands. The convergence rate for CG [36] is dependent on

K

= arg min Z ||bj - ajyj_Hg
P

. K 1 ) the distribution of eigenvalues of the system matrix. The method

= arghn Z 11 = ;)™ (b — a;y)ll2 works well on matrices that are either well-conditioned or have
=1 just a few distinct eigenvalues; see [15, p. 525]. Preconditioning

= argmin ||D7HT — AAT(AAT + XI)"Hb||3 is a technique used to transform the original system into one
A with the same solution, but which can be solved by the itera-

= argmin A2||[ D~ (AAT + AI)"'b|2. (17) ti\_/g solver more quickl_y_[28, p. 245]. For C_:G, we seek precon-
A ditioners with preconditioned system having eigenvalues clus-

: . . , ... tering around 1. In these situations, CG converges very rapidly.
We have just derived the matrix formulation of cross—vahdauoaur preconditioners approximaté by exploiting its structure.

for underdetermined systems. Generalized cross-validationgi$<ee this. we reorder the columnsibiand the elements of
simply a rotation-invariant form of cross-validation. FOHOWir'Q:orrespond'ingly as follows. We partition the HR imagint(;

[14], consider the singular value decompositionof N regions each of siziex 7, and we enumerate the pixels in each
region in lexicographic order 1 t&¥. The desired ordering is
A=UxVT, thenqil) .. q](\}) q£2) . q](\%) . qglz) . qg\l,z), where
() ; R ) i S .
. . . . 1s thejth pixel in theith region. From our spatial invariance
Now let W be the matrix representing the Fourier transfornglssurnption ofthe PSF, the reordered mafitias the following
that is, form: '
1 ik . Ti T v Tir
(W)k = = CQﬁ“k/nv Js k= 17 27 e, M. i 12 1
’ Vn Ty Tyx - Typ
T=| 7 . : (19)
The GCV estimation for regularization parametercan be ‘
thought of as cross-validation on the transformed system: Ty T2 - T
0i— T, where each blockK;; is anN x N “nearly”t Toeplitz upper
=wu band matrix, that is7;; only has nonzero entries on a single su-
=WeVly + WU e perdiagonal. For example, in the simple case of superresolving
Ay + WU”e.

(AAT £ X7 =WUT(AAT 4 AI)™ . TAImost all entries along the diagonals Bf; are constant.
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a sequence of foug, x 4 pixel, LR frames by a factor of twoin  Our second preconditioner, developed by Hanke and Nagy
each dimensiorf/>3 has the following structure: [17], is an approximate inverse preconditioner for an upper
banded Toeplitz matriXl’y x; with bandwidth less than or

8 (t) (t) 8 8 8 8 8 equal tob. It is constructed as follows. First we embdEdnto an
0000000 (N +b) x (N +b) circulant matrixC 5 according to the form
0O 0 0 0 0 0 0O T 1Tis
on=[7. 3
0O 0 0 0 0 ¢t 00 HN Tyy Do
0O 0 0 0 0 0 ¢t O
00000O0GO0O0 ¢ where
LO 0O 0 0 0 0 0 04 to t1 -+ ty_1
- - t BRI 7
We first approximate/” by a block matrix7” = (7;;), whose T3, = ¢ b2 ,
blocks7;; are Toeplitz. We construdt;; from 7;; Igy filling in
the zero entries along nonzero diagonals, so #ais just a to
low rank change fron¥;;. For example, the approximation to 0 t
723 would be
0 ¢+ 0000 0 07 Tn=[L 0 0], Ti= |0}, L=/:
00t 00000 L t t
0O 0 0 ¢t 0 0 0O .
) 0000+000 Next, we partitionC'; % as
23=10 0000t 00 ) M M
0000O0O0 ¢ 0 CHN:M21M22
0 0 0 0 0 0 0 ¢
L0 00O OO 0O O 0 whereM is theN x N leading principal submatrix. The matrix

] » ) M is the approximate inverse preconditioner far
To describe the preconditioners for the block Toeplitz matrix o the regularized underdetermined least squares matrices of

7, we first describe the corresponding preconditioners for stafs torm777 + M, we embed’ into a circulant block matrix

dard banded Toeplitz matrices in the following subsection. E¥: \vith each blockC: : being a circulant extension &, as
’ 2) 5]

tensions of these preconditioners and their convergence propglzcribed above. For > 0, CCT + A is nonsingular. We
ties to the block case are then straightforward [7]. useM, the submatrix with the same set of rows and columns in
(CCT + AI)~! as the rows and columns of entriesBin C,

as the approximate inverse preconditionef " + AI.

The first preconditioner, originally developed by Strang [8], |n practice, aside from the identit) = A, the Poisson op-
completes a Toeplitz matrik by copying the central diagonals.erator, or some operators derived from discrete approximation
For an upper triangular banded Toeplitz maffix to thekth derivative are also popular choices. With a proper ar-

to -t rangement of the rows, these operators also have banded block
Toeplitz—Toeplitz block structure, and we can extend the pro-
posed techniques to precondition (5).

A. Circulant Preconditioners

T = to - 14
: B. Complexity, Convergence, and Implementation
to A preconditionerC' for a matrix 7" should satisfy the fol-
lowing criteria [3, p. 253]:
« cost of computing” should be low;

[to - -t T e computational cost of solving a linear system with coeffi-
. cient matrixC' should be low;

to e e 1 . iterativc_e solver should converge much faster with* 7"
£ to oo tyq | than withT".
We will demonstrate that our preconditioners satisfy the three
criteria described above. In particular, circulant matrices have
Ltr - b to | the useful property that they can be diagonalized by discrete
For a block matrixI” = (T;;) with Toeplitz blocksT};, the Fourier transforms (cf. [8]). The eigendecomposition of a cir-
block version of the preconditioner @& = (C;;), where each Culant matrixC can be written as follows:
block C;; is Strang’s circulant approximation ;. For sys- C = F*AF
tems arising from the regularized underdetermined least squares
problem, 777 4+ XI, with block Toeplitz matrixZ’, we precon- wherefF’ is the unitary discrete Fourier transform matrix anig
dition with CC”T + AI, whereC is the block preconditioner as a diagonal matrix containing the eigenvalue€ofVe can com-
described above. pute the eigenvalues @f by taking the FFT of its first column.

the preconditione€s is simply

Cs =
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Using this special property, we do not need to construct our pre-Combining Theorems 2 and 3, we gét. + 1) as an approx-
conditioners explicitly. We only need to store the entries of theimate upper bound on the number of preconditioned CG iter-
first columns. Therefore, the cost of constructing the precoations for superresolution, with being the number of frames
ditioners is negligible. Additionally, operations involving cir-andn the width of an LR frame. In our experience, as we will
culant matrices can be done efficiently by FFTs. The cost démonstrate in Section V, this bound is quite loose, and within
solving a linear system with a circulant coefficient matrix igt most ten iterations or so, we have effective convergence. Fur-
two FFTs. For a block matrix with circulant blocks such as ouhermore, in practice, the two preconditioners achieve compa-
preconditioners, we need to solve a linear system with a blocble results.

coefficient matrix with diagonal blocks in addition to the two

FFTs. The asymptotic computational complexity for the FFT is V. EXPERIMENTS

O(N log N), whereN is the dimension of the matrix, and cor- . . e
respondingly, for the linear solver with a block diagonal coeffi- The first t‘?St sequence consists of artificially _generated LR
cient matrix, the complexity i© (BN ), whereB is the number ffa”?es- In t_h|s experiment, we compare the qu_ahty of superres-
of blocks. Thus, the cost of solving a linear system with our prglunon against the original image. We blur a single2 x 172

conditioners as the coefficient matrix is inexpensive. To stugffels Image with al x 4 Gaussian PSF with standard deviation
e

the convergence behavior of preconditioned CG described h one and down-sample to produced 43 LR frames. Using

we have the following results, the proofs of which are omitted'"® (randomly chosen) out of the complete set of 16 frames,

but may be found in [25]. we reconstruct an estimate for the original HR image. Fig. 2

Theorem 1: Let T" be an upper banded Toeplitz matrix wit resents the results from our superresolution algorithm. The top
bandwidth less than or equal loCy; v be the nonsingular ex- eft portion displays a sample LR frame, the top right the result

tension of?’, andCs be the circulant approximation tb. If M of bilinearly interpolating one LR frame by a factor of four in
is eitherc_l' orthe N x IV leading principal submatrix af;; each dimension, the bottom left the result from superresolution
S HN

after four iterations, and the bottom right the original image. We

then ) . .
stop the algorithm when the relative resicdualerance ofil0—?2
MT=I+K is reached. We use regularization parameter 0.001 calcu-
whererank(K) < b. lated with our approximate GCV criterion as described in Sec-

The theorem above means that at nb@sgienvalues of the pre- t!on l1I-B. In Fig. 3, we compare convergence rates for precondi-

conditioned systemare notequalto 1. Soforany circulantprecé'r?—ned CG versus unprecondltloned C_G and steepest_c_iescent. To
ditioned banded Toeplitz matrix with bandwidtrat mos® + 1 reach tol_erance threshold, four_ |_terat|ons_ of pr_econc_zlmoned CG
preconditioned CGiterations are neededforconvergence. Thiste required for e|the.r precondmoner Wh"? sl |.terat|ons are re-
sultis one of the reasons we chose our preconditioners over ot’ﬂlé'rred for unprecqndmoned CG an_d 101 |terat|ons. for-steepest
circulant preconditioners, which can only claim eigenvalues gescent. The runtime for precqndmoned CG for this simulated
the preconditioned system “clustering” around one [7]. We caffduence on a Sun Sparc_—20_ Is17.7's Versus 42.1s f_or unpre-
also bound the amount of work to solve a banded Toeplitz syst&ﬁpd't'oned CG. Fora qualitative comparison, we show in Fig. 4

by CG to@ (b log(IV)) with Strang’s circulant preconditionerreconStr“Ction results from steepest descent, unpreconditioned,

ando(b( N +b) log(N+b)) with theapproximateinverseprecon-and preconditioned CG after exactly four iterations. These ex-
ﬁriments demonstrate the advantage of using preconditioned

ditioner. The nexttheorem bounds the bandwidth of each block] =
over unpreconditioned CG and steepest descent. Our ex-

the superresolution system matrix. Finally, Theorem 3 boundstﬁg‘, X ) . ,
number of preconditioned CG iterations needed to solve a blgAgriments show that in the first few iterations, steepest descent

matrix system with banded Toeplitz blocks using the propos@&d unpreconditioned CG hgve smylar corvergence rate. HOV\_"
circulant preconditioners. ever, steepest descent exhibits oscillatory convergence behavior
Theorem 2: The matrix7 in (19) and its block Toeplitz ap- &S e number of iterations increases.

proximate7 have blocks with bandwidths bounded fy+ 1 The low-resolution FLIR images in our second test sequence
wheren is the width of an LR frame. " are provided courtesy of B. Yasuda and the FLIR research group

Theorem 3:Let T be a block matrix with upper bandedinthe SensorsT_eChno_Iogy Branch, Wright Laborat(_)ry, WPAFB,

Toeplitz blocks QH. Rgsults using this data set are :_ilso shown in [18]. Each
image is64 x 64 pixels, and a resolution enhancement factor

T T -+ Ty of five is sought. The objects in the scene are stationary, and
Ty Tao -+ Ty 16 frames are acquired by controlled movements of a FLIR

: T : imager described in [18]. Fig. 5 has similar subplot arrange-
ments as in Fig. 2 except now the bottom right shows the rela-
tive residual graphs for steepest descent, unpreconditioned and
with the bandwidths of the blocks bounded by some constagreconditioned runs. For this sequence, we again set the relative
b. If M is either the circulant or approximate inverse precondiesidual tolerance tt0~2 and use regularization parametes
tioner to7I'"" + \I as described in Section IV-A, then 0.0076 as calculated with our approximate GCV criterion. Six

T =

Ty Tho - T

MTT" + A =1+K

2Relative residual is defined as the rajpr,.||/||r0)||, wherer, is the initial
. residual and;. is the current residual aftériterations. The residual is defined
whererank(K) < min(k, D)b. asr, = b — Ax,, and the vectok; is the current estimate of the solution.
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Fig. 3. Convergence plot for Stanford sequence.

120

havior of steepest descent for superresolution. Preconditioned
CG runtime for this FLIR sequence on our Sparc 20 is 93.6 s
versus 111.3 s for unpreconditioned conjugate gradient.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented an efficient and robust algorithm
for image superresolution. The contributions in this work are
twofold. First, our robust approach for superresolution recon-
struction employs Tikhonov regularization. To automatically
calculate the regularization parameter, we adopt the generalized
cross-validation criterion to our underdetermined systems. Al-
though generalized cross-validation is a well-known technique
for parameter estimation for overdetermined least squares prob-
lems, to our knowledge, the derivation fanderdetermined
problems is new.

Secondly, to accelerate CG convergence, we proposed
circulant-type preconditioners based on previous work by
Strang, Hanke and Nagy. These preconditioners can be easily
constructed, operations involving these preconditioners can be

iterations are required for preconditioned CG with Strang’s prdene efficiently by FFTs, and most importantly, the number
conditioner and eight iterations for Hanke and Nagy’'s approxdf CG iterations is dramatically reduced. In practice, we
mate inverse preconditioner versus 20 for unpreconditioned Céhserved that preconditioned CG takes at mig8tthe number

to reach the residual threshold. Again, we see the oscillatory loé-iterations of unpreconditioned CG, leading to significant
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Fig. 4. Comparison of reconstruction quality.

improvement in runtime. Typically, we stop after five precondienpreconditioned version. The ratio of the number of unprecon-
tioned CG iterations because results obtained thereafter areditibned iterations over the number of preconditioned iterations
significantly different visually. By these experiments, we haviecreases for smaller regularization parameters. Thus, time sav-
demonstrated that with the use of appropriate preconditionergys with preconditioning increase with under-regularization.
image superresolution is computationally much more tractable An important and practical extension of the algorithm is
Image superresolution can be generalized to video superrég implementation of the positivity constraint within pre-
olution [12], [13] where a sequence of superresolved imagesinditioned CG. We note that each CG iteration computes an
obtained from a sequence of LR video frames. Under such castimate for the terniH H + AI)~'b in (6). However, the
ditions, the computational advantage of our preconditionersdsnstraint should be applied to the HR estimateAn inter-
compounded. esting topic of future research would be an efficient algorithm
There is a strong relationship between the size of the rego-incorporate positivity constraint into our framework. We
larization parameter, the condition number of the regularizé@ve assumed in this work that the parameters for the camera’s
system, the number of iterations of CG (unpreconditioned aR&F are known. In many applications, this is not necessarily
preconditioned) required to solve the system and time savirthe case. Blind superresolution or superresolution without
with preconditioning. As we increase the regularization pararaecurate knowledge of the camera parameters is a challenging
eter), the condition number of the system decreases, leadingdpic. A blind superresolution algorithm must reconstruct
a faster convergence rate for both preconditioned and unprecestimates for both the PSF and the HR image. In order to make
ditioned CG. However, as mentioned before, a larger regularizhis problem feasible, some constraints can be placed on the
tion parameter also moves the regularized system farther aviR§F, e.g., finite support, symmetry. Another important issue in
from the original system we wish to solve. The result is a mommage superresolution is the accuracy of the motion estimation
blurry HR estimate. As we decreasghe system becomes moreprocess. Although a simple algorithm such as the one described
ill-conditioned, and the condition number increases. Precondi-Appendix A would be adequate in most cases, more accurate
tioned CG is less affected by ill-conditioned systems than tlaggorithms are needed for higher resolution enhancement. We
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Fig. 5. Superresolution on FLIR sequence.

are currently working on these problems and will report resulésd we solve the following least squares problemAar and

in subsequent submissions. Ay
APPENDIX A Iflz
MOTION ESTIMATION Join <g($, y)— flz,y) - % Az
In the case of uncontrolled frame to frame motions, we need oY 9
to estimate these motions as a precursor to superresolution. We _ 9f (x, y) Au)
assume that the motion is smooth, and apply Taylor’s series to dy ’
compute its approximation. Lef(x, y, t) be the continuous
frame sequence. By Taylor’'s expansion, we get which leads to & x 2 system
flz+ Az, y+ Ay, At) = f(z, y, 0) + Vf(z, y, 0)TA ,
f (=, y) Af (=, y) 9f (=, y)
where Z < or Z oz ay A
A;L' T,y T,y |: :|
af(z,y) 0f(x, af(x, 2 Ay
NS 3 Sz, y) 9f (2, y) 3 Sz, )
Jz ay ay
At T,y T,
g
Following Irani and Peleg [20], for consecutive frames, Z(g(x, y) — f(z, v)) w
f(z, y) andg(z, ), we write REY v
- of (. )
af(x, af(x, _ ’
ote, )= fe, )+ L5 gy 20 2, (ol 0) = Sl ) =5
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TABLE |
VALUES CALCULATED USING SUBOPTIMAL GCV AND GCV: WITH
MISSING FRAMES
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ments, we found that this formulation produces reasonable reg-
ularization parameters for both the simulated and FLIR image

sequence. Tables | and Il list the values for our suboptimal reg-

Noise Std 0 5 10
Suboptimal A 0.001 0.0085 | 0.0250
Exact A 0.001 0.0083 | 0.0247
TABLE 1l
VALUES CALCULATED USING SUBOPTIMAL GCV AND GVC: WITH il
ALL FRAMES
Woise Std 0 3 10
Suboptimal . 0.001 | 0.0108 | 0.0305 [2]
Exact A 0.001 00110 | 00304 [3]

(4
Note that this idea is a simplification of the gradient constraint 5
equation often used in optical flow calculations

Of (x, y, 1) Az + Of(x, y, 1) Ay + Of (x, y, t)
dy at

(6]
=0.

ox

In Irani and Peleg’s formulation used above, the partial deriva-[7]
tive with respect to time is crudely approximated by the differ- (8]
ence between the given frames.

APPENDIX B [
COMPUTING THE REGULARIZATION PARAMETER

Evaluating (18) as it stands requires intensive computatiorj1o]
We instead approximategcy by replacingA by its precondi-
tionerC's in (18). The alternate formulation is [11]

[(CsCE + M)7'bl2

Acey = mi . [12]
SNV = I W(CsCT + A1)
The motivation here is that sinc€s approximatesA well,  [13]
Agov should be close tdgcov. Even so, calculating the term
tr((CsCL + M)~') exactly is still infeasible. Therefore, [,

we use the unbiased trace estimator proposed by Hutchinson
[19]. Let U be a discrete random variable which takes the
values—1 and +1 each with probabilityl /2, and letu be a
vector whose entries are independent samples ffonThen  [16]
the termu?(CsCZL + A)~'u is an unbiased estimator of
tr((CsCE + AI)~1). (7]

SinceCys is a block matrix with circulant blocks, we can de- [18]
composeCs = F*AF, whereA is a block matrix with di-
agonal blocks, and’ is the block discrete Fourier transform [19
matrix which diagonalizes the blocks 6%. The minimization
problem above becomes

AN+ AD 7 D
N W FR(AA* + AD)LFu’

(20]

[21]
Letb = Fb andii = Fu, since||- ||, is invariant under unitary
transformation, we have

o AT +AD B,
A at (AN AD) e

We solve this minimization problem with Matlab’s CONSTR [24]
subroutine with 0.001 being the lower bound. In our experi-

(22]

(23]

ularization parameté\cgcv along with the optimal GCV value
Agoyv forthe Stanford sequence example. Results under various
noise conditions for ten frames are compiled in Table | and with
all 16 frames in Table II.
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