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A Computationally Efficient Superresolution Image
Reconstruction Algorithm

Nhat Nguyen, Peyman Milanfar, Senior Member, IEEE, and Gene Golub

Abstract—Superresolution reconstruction produces a high-reso-
lution image from a set of low-resolution images. Previous iterative
methods for superresolution [9], [11], [18], [27], [30] had not ade-
quately addressed the computational and numerical issues for this
ill-conditioned and typically underdetermined large scale problem.
We propose efficient block circulant preconditioners for solving
the Tikhonov-regularized superresolution problem by the conju-
gate gradient method. We also extend to underdetermined systems
the derivation of the generalized cross-validation method for au-
tomatic calculation of regularization parameters. Effectiveness of
our preconditioners and regularization techniques is demonstrated
with superresolution results for a simulated sequence and a for-
ward looking infrared (FLIR) camera image sequence.

Index Terms—Circulant preconditioners, generalized cross-val-
idation, superresolution, underdetermined systems.

I. INTRODUCTION

PHYSICAL constraints limit image resolution quality in
many imaging applications. These imaging systems yield

aliased and undersampled images if their detector array is
not sufficiently dense. This is particularly true for infrared
imagers and some charge-coupled device (CCD) cameras.
Several papers have developed direct and iterative techniques
for superresolution: the reconstruction of a high-resolution
(HR) unaliased image from several low-resolution (LR) aliased
images. Proposed direct methods include Fourier domain ap-
proaches by Tsai and Huang [34], Tekalpet al. [33], [27], [26],
and Kim et al. [22], [21] where high-frequency information
is extracted from low-frequency data in the given LR frames.
Several methods [29], [1] have used an interpolation-restoration
combination approach in the image domain. Ur and Gross [35]
and Shekarforoush and Chellappa [31] considered superresolu-
tion as generalized sampling problem with periodic samples.
In this paper, we are mainly interested in the computational
issue for iterative methods. Projection type methods have been
used by several researchers. Pattiet al. [27] and Stark and
Oskoui [32] proposed projection onto convex sets (POCS)
algorithms, which defined sets of closed convex constraints
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whose intersection contains the HR estimate and successively
projected an arbitrary initial estimate onto these constraint
sets. Others [4], [20], [23] adopted a related method, the
iterative back-projection method, frequently used in computer
aided tomography. Cheesemanet al. [9] used the standard
Jacobi’s method, and Hardieet al. [18] proposed a steepest
descent based algorithm in combination with block matching
to compute simultaneously the HR image and the registration
parameters. Although they are usually robust to noise and allow
some modeling flexibility, projection-based algorithms are also
known for their low rate of convergence. More recently, Hardie
et al. [18], Connolly and Lane [10] and Chanet al. [6] have
considered conjugate gradient (CG) methods for Tikhonov
regularized superresolution. However, to a large degree, com-
putational and numerical difficulties of superresolution have
not been addressed adequately. For instance, Hardieet al. [18]
and Connolly and Lane [10] did not consider preconditioning
for their CG algorithm, and Chanet al. [6] preconditioner is
only applicable for multisensor arrays. Superresolution is a
computationally intensive problem typically involving tens of
thousands unknowns. For example, superresolving a sequence
of pixel LR frames by a factor of 4 in each spatial
dimension involves unknown pixel values
in the HR image. Furthermore, the matrix system is typically
underdetermined and ill-conditioned, which can exacerbate
system noise and blurring effects. In this paper, we present
efficient circulant block preconditioners that take advantage
of the inherent structures in the superresolution system matrix
to accelerate CG. We adopt the generalized cross-validation
(GCV) method, which is often used to calculate regularization
parameters for Tikhonov-regularizedoverdeterminedleast
squares problems without accurate knowledge of the variance
of noise, to ourunderdeterminedproblem. Golubet al. [14]
suggested that GCV can be used for underdetermined problems,
and McIntosh and Veronis [24] successfully implemented GCV
for their underdetermined tracer inverse problems. However,
since the derivation for the GCV formulation by Golub,
Heath, and Wahba [14] applies only for overdetermined least
squares problems, we extend their derivation in this paper
to the underdetermined case. We also propose an efficient
technique to approximate the GCV expression. Finally, we
show reconstruction results from two test image sequences
to demonstrate the effectiveness of our preconditioners and
regularization techniques.

The rest of the paper is organized as follows. In Section II,
we describe our model for the relationship between high- and
low-resolution images in superresolution. Section III outlines
our approach to regularization and formulation for GCV. The
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preconditioners and approximate convergence bounds are de-
tailed in Section IV. We present the experimental results in Sec-
tion V and draw some conclusions in Section VI.

II. THE MODEL

Conceptually, superresolution, multichannel, and multisensor
data fusion are very similar problems. The goal is to combine
information about the same scene from different sources. In su-
perresolution, in particular, the LR frames typically represent
different “looks” at the same scene from slightly different di-
rections. Each frame contributes new information used to inter-
polate subpixel values. To get different looks at the same scene,
some relative scene motions must be recorded from frame to
frame. These scene motions can be due to controlled motions in
the imaging system, e.g., images acquired from orbiting satel-
lites, or uncontrolled motions within the scene itself, e.g., ob-
jects moving within view of a surveillance camera. If these scene
motions are known or can be estimated within subpixel accu-
racy, superresolution is possible.

We model each LR frame as a noisy, uniformly down-sam-
pled version of the HR image which has been shifted and blurred
[11]. More formally

(1)

where is the number of available frames, is an vector
representing the th ( pixels) LR frame in
lexicographic order. If is the resolution enhancement factor in
each direction, is an vector representing the
HR image in lexicographic order, is an shift
matrix that represents the relative motions between framesand
a reference frame, is a blur matrix of size ,
is the uniform down-sampling matrix, and is the

vector representing additive noise.
Fig. 1 illustrates our model conceptually. A pixel value in an

LR frame is a weighted “average” value over a box of pixels
in the HR image. In the figure, the (1,1) pixel of the LR frame
to the right is a weighted “average” over the dashed box, while
the (1,1) pixel in another frame is a weighted “average” over
the solid box. The relative motion from the dashed box to the
solid box is 1 HR pixel down and to the right. Each LR frame
contributes new and different information about the HR image.
Combining the equations in (1), we have

...
...

...

(2)

In this paper, we consider only shifts of integral multiples of
one HR pixel. A nonintegral shift is replaced with the nearest
integral shift. In this case, at most nonredundant LR frames
are possible for superresolution with enhancement factorin
each dimension. If all possible combinations of subpixel hori-
zontal and vertical shifts are available, the above linear system is
square and reduces to essentially a deblurring problem. In gen-

Fig. 1. Superresolution model.

eral, this is not the case, and the system of equations above is un-
derdetermined. The techniques presented here can be extended
to the more general framework to allow for any shifts. This ex-
tension is addressed in the first author’s thesis [25].

For each frame , we approximate the relative motions
between that frame and a reference frame by a single motion
vector. In the case where the scene motions are controlled, the
motion vectors are known. Otherwise, they may be estimated
by some image registration algorithm; see survey by Brown
[5]. For completeness, we include in Appendix A a simple
algorithm we used to compute scene motion vectors. We will
assume that the point spread function (PSF) which generates
the blurring operator is known and spatially invariant. Blind
superresolution or superresolution without knowledge of the
PSF is a challenging topic under development which will be
reported in a subsequent submission.

III. REGULARIZATION

The PSF is derived from the discretization of a compact oper-
ator (i.e., the image of every -bounded sequence of functions
has at least one converging subsequence [16]), sois ill-condi-
tioned [2]. Thus, even small changes incan result in wild os-
cillations in approximations to when (2) is solved directly. To
obtain a reasonable estimate forwe reformulate the problem
as a regularized minimization problem

(3)

where is some symmetric, positive definite matrix, andis
related to the Lagrange multiplier. In this formulation,serves
as a stabilization matrix, and the new system is better condi-
tioned. While a simple and effective regularization matrix can
be the identity , can also incorporate some prior knowl-
edge of the problem, e.g., degree of smoothness [16]. Sinceis
symmetric, positive definite, we have the Cholesky decomposi-
tion , where is an upper triangular matrix. Letting

, then reduces (3) to the standard form

(4)

The solution of the underdetermined least squares problem (4)
above is
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which gives us

(5)

and when

(6)

In the above formulation, is the regularization parameter. A
larger corresponds to a better conditioned system, but the new
system is also farther away from the original system we wish
to solve. We will adopt GCV (cf. [14]), a technique popular in
overdetermined least squares, for calculating the regularization
parameter.

A. Cross-Validation

The idea of cross-validation is simple. Namely, we divide the
data set into two parts; one part is used to construct an approxi-
mate solution, and the other is used to validate that approxima-
tion. For example, the validation error by using theth pixel as
the validation set is

CV

where the notation is used to indicate variables corresponding
to the system without theth pixel/row and

(7)

is the regularized underdetermined least squares solution of the
original system without theth pixel, , with

...

...

...

...

The cross-validated regularization parameter is the solution to

CV (8)

GCV is simply cross-validation applied to the original system
after it has undergone a unitary transformation. GCV is also
known to be less sensitive to large individual equation errors
than cross-validation [24]. For overdetermined systems, it has
been shown that the asymptotically optimum regularization pa-
rameter according to GCV is given by [14]

tr
(9)

In the next subsection, we derive this same expression for our
underdetermined system and in Appendix B, we describe an
efficient way to obtain a suboptimal solution for (9).

B. Generalized Cross-Validation for Underdetermined Systems

Here we derive the closed-form for regularization parameter
by GCV for underdeterminedsystems . We start by
examining the following expression for the regularized under-
determined least squares solution to the equation above

Let

then

(10)

and

(11)

(12)

Multiplying both sides of (11) by

Therefore, from (7)

and by (10)

Note that for ,
. So

(13)

Next, note that

Let . By Sherman–Morrison–Wood-
bury formula [15]

which leads to

(14)
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From (10) and (12) we get

(15)

By (13)

which, using (14) and (15), leads to

(16)

Define diag to be the di-
agonal matrix with the same diagonal entries as

. Again, using the fact that
for , we can rewrite diag

. From (8), the optimal cross-validation regularization pa-
rameter is

CV

(17)

We have just derived the matrix formulation of cross-validation
for underdetermined systems. Generalized cross-validation is
simply a rotation-invariant form of cross-validation. Following
[14], consider the singular value decomposition of

Now let be the matrix representing the Fourier transform,
that is,

The GCV estimation for regularization parametercan be
thought of as cross-validation on the transformed system:

Note that is a circulant matrix.
Hence, diag is a multiple of the identity.
Thus,

tr

tr

Hence, from (17) we can formulate GCV as follows:

tr

tr

tr
(18)

Not surprisingly, this formulation has the same form as that of
the overdetermined case.

IV. PRECONDITIONING FORCONJUGATEGRADIENT

As we described earlier, superresolution is computationally
intensive. The number of unknowns, the same as the number
of pixels in the HR image, is typically in the tens or hundreds
of thousands. The convergence rate for CG [36] is dependent on
the distribution of eigenvalues of the system matrix. The method
works well on matrices that are either well-conditioned or have
just a few distinct eigenvalues; see [15, p. 525]. Preconditioning
is a technique used to transform the original system into one
with the same solution, but which can be solved by the itera-
tive solver more quickly [28, p. 245]. For CG, we seek precon-
ditioners with preconditioned system having eigenvalues clus-
tering around 1. In these situations, CG converges very rapidly.
Our preconditioners approximate by exploiting its structure.
To see this, we reorder the columns ofand the elements of,
correspondingly, as follows. We partition the HR imageinto

regions each of size , and we enumerate the pixels in each
region in lexicographic order 1 to . The desired ordering is
then , , where

is the th pixel in the th region. From our spatial invariance
assumption of the PSF, the reordered matrixhas the following
form:

...
...

. . .
...

(19)

where each block is an “nearly”1 Toeplitz upper
band matrix, that is, only has nonzero entries on a single su-
perdiagonal. For example, in the simple case of superresolving

1Almost all entries along the diagonals ofT are constant.
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a sequence of four, pixel, LR frames by a factor of two in
each dimension, has the following structure:

We first approximate by a block matrix , whose
blocks are Toeplitz. We construct from by filling in
the zero entries along nonzero diagonals, so thatis just a
low rank change from . For example, the approximation to

would be

To describe the preconditioners for the block Toeplitz matrix
, we first describe the corresponding preconditioners for stan-

dard banded Toeplitz matrices in the following subsection. Ex-
tensions of these preconditioners and their convergence proper-
ties to the block case are then straightforward [7].

A. Circulant Preconditioners

The first preconditioner, originally developed by Strang [8],
completes a Toeplitz matrix by copying the central diagonals.
For an upper triangular banded Toeplitz matrix

...
...

.. .
...

the preconditioner is simply

...
...

...
. . .

.. .
...

For a block matrix with Toeplitz blocks , the
block version of the preconditioner is , where each
block is Strang’s circulant approximation to . For sys-
tems arising from the regularized underdetermined least squares
problem, , with block Toeplitz matrix , we precon-
dition with , where is the block preconditioner as
described above.

Our second preconditioner, developed by Hanke and Nagy
[17], is an approximate inverse preconditioner for an upper
banded Toeplitz matrix with bandwidth less than or
equal to . It is constructed as follows. First we embedinto an

circulant matrix according to the form

where

...
...

...
. . .

Next, we partition as

where is the leading principal submatrix. The matrix
is the approximate inverse preconditioner for.

For the regularized underdetermined least squares matrices of
the form , we embed into a circulant block matrix

, with each block being a circulant extension of as
described above. For , is nonsingular. We
use , the submatrix with the same set of rows and columns in

as the rows and columns of entries ofin ,
as the approximate inverse preconditioner to

In practice, aside from the identity, , the Poisson op-
erator, or some operators derived from discrete approximation
to the th derivative are also popular choices. With a proper ar-
rangement of the rows, these operators also have banded block
Toeplitz–Toeplitz block structure, and we can extend the pro-
posed techniques to precondition (5).

B. Complexity, Convergence, and Implementation

A preconditioner for a matrix should satisfy the fol-
lowing criteria [3, p. 253]:

• cost of computing should be low;
• computational cost of solving a linear system with coeffi-

cient matrix should be low;
• iterative solver should converge much faster with

than with .
We will demonstrate that our preconditioners satisfy the three
criteria described above. In particular, circulant matrices have
the useful property that they can be diagonalized by discrete
Fourier transforms (cf. [8]). The eigendecomposition of a cir-
culant matrix can be written as follows:

where is the unitary discrete Fourier transform matrix andis
a diagonal matrix containing the eigenvalues of. We can com-
pute the eigenvalues of by taking the FFT of its first column.
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Using this special property, we do not need to construct our pre-
conditioners explicitly. We only need to store the entries of their
first columns. Therefore, the cost of constructing the precon-
ditioners is negligible. Additionally, operations involving cir-
culant matrices can be done efficiently by FFTs. The cost of
solving a linear system with a circulant coefficient matrix is
two FFTs. For a block matrix with circulant blocks such as our
preconditioners, we need to solve a linear system with a block
coefficient matrix with diagonal blocks in addition to the two
FFTs. The asymptotic computational complexity for the FFT is

, where is the dimension of the matrix, and cor-
respondingly, for the linear solver with a block diagonal coeffi-
cient matrix, the complexity is , where is the number
of blocks. Thus, the cost of solving a linear system with our pre-
conditioners as the coefficient matrix is inexpensive. To study
the convergence behavior of preconditioned CG described here,
we have the following results, the proofs of which are omitted,
but may be found in [25].

Theorem 1: Let be an upper banded Toeplitz matrix with
bandwidth less than or equal to, be the nonsingular ex-
tension of , and be the circulant approximation to. If
is either or the leading principal submatrix of
then

where .
The theorem abovemeans thatat mosteigenvaluesof the pre-

conditionedsystemarenotequal to1.Soforanycirculantprecon-
ditioned banded Toeplitz matrix with bandwidth, at most
preconditionedCGiterationsareneededforconvergence.Thisre-
sult is one of the reasons we chose our preconditioners over other
circulant preconditioners, which can only claim eigenvalues of
the preconditioned system “clustering” around one [7]. We can
also bound the amount of work to solve a banded Toeplitz system
by CG to with Strang’s circulant preconditioner
and withtheapproximateinverseprecon-
ditioner.Thenext theorembounds the bandwidthof eachblock in
thesuperresolutionsystemmatrix.Finally,Theorem3boundsthe
number of preconditioned CG iterations needed to solve a block
matrix system with banded Toeplitz blocks using the proposed
circulant preconditioners.

Theorem 2: The matrix in (19) and its block Toeplitz ap-
proximate have blocks with bandwidths bounded by ,
where is the width of an LR frame.

Theorem 3: Let be a block matrix with upper banded
Toeplitz blocks

...
...

.. .
...

with the bandwidths of the blocks bounded by some constant
. If is either the circulant or approximate inverse precondi-

tioner to as described in Section IV-A, then

where .

Combining Theorems 2 and 3, we get as an approx-
imate upper bound on the number of preconditioned CG iter-
ations for superresolution, with being the number of frames
and the width of an LR frame. In our experience, as we will
demonstrate in Section V, this bound is quite loose, and within
at most ten iterations or so, we have effective convergence. Fur-
thermore, in practice, the two preconditioners achieve compa-
rable results.

V. EXPERIMENTS

The first test sequence consists of artificially generated LR
frames. In this experiment, we compare the quality of superres-
olution against the original image. We blur a single
pixels image with a Gaussian PSF with standard deviation
of one and down-sample to produce 16 LR frames. Using
nine (randomly chosen) out of the complete set of 16 frames,
we reconstruct an estimate for the original HR image. Fig. 2
presents the results from our superresolution algorithm. The top
left portion displays a sample LR frame, the top right the result
of bilinearly interpolating one LR frame by a factor of four in
each dimension, the bottom left the result from superresolution
after four iterations, and the bottom right the original image. We
stop the algorithm when the relative residual2 tolerance of
is reached. We use regularization parameter calcu-
lated with our approximate GCV criterion as described in Sec-
tion III-B. In Fig. 3, we compare convergence rates for precondi-
tioned CG versus unpreconditioned CG and steepest descent. To
reach tolerance threshold, four iterations of preconditioned CG
are required for either preconditioner while 31 iterations are re-
quired for unpreconditioned CG and 101 iterations for steepest
descent. The runtime for preconditioned CG for this simulated
sequence on a Sun Sparc-20 is 17.7 s versus 42.1 s for unpre-
conditioned CG. For a qualitative comparison, we show in Fig. 4
reconstruction results from steepest descent, unpreconditioned,
and preconditioned CG after exactly four iterations. These ex-
periments demonstrate the advantage of using preconditioned
CG over unpreconditioned CG and steepest descent. Our ex-
periments show that in the first few iterations, steepest descent
and unpreconditioned CG have similar convergence rate. How-
ever, steepest descent exhibits oscillatory convergence behavior
as the number of iterations increases.

The low-resolution FLIR images in our second test sequence
are provided courtesy of B. Yasuda and the FLIR research group
in the Sensors Technology Branch, Wright Laboratory, WPAFB,
OH. Results using this data set are also shown in [18]. Each
image is pixels, and a resolution enhancement factor
of five is sought. The objects in the scene are stationary, and
16 frames are acquired by controlled movements of a FLIR
imager described in [18]. Fig. 5 has similar subplot arrange-
ments as in Fig. 2 except now the bottom right shows the rela-
tive residual graphs for steepest descent, unpreconditioned and
preconditioned runs. For this sequence, we again set the relative
residual tolerance to and use regularization parameter

as calculated with our approximate GCV criterion. Six

2Relative residual is defined as the ratio(kr k=kr )k, wherer is the initial
residual andr is the current residual afterk iterations. The residual is defined
asr = b�Ax , and the vectorx is the current estimate of the solution.
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Fig. 2. Superresolution on simulated sequence.

Fig. 3. Convergence plot for Stanford sequence.

iterations are required for preconditioned CG with Strang’s pre-
conditioner and eight iterations for Hanke and Nagy’s approxi-
mate inverse preconditioner versus 20 for unpreconditioned CG,
to reach the residual threshold. Again, we see the oscillatory be-

havior of steepest descent for superresolution. Preconditioned
CG runtime for this FLIR sequence on our Sparc 20 is 93.6 s
versus 111.3 s for unpreconditioned conjugate gradient.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented an efficient and robust algorithm
for image superresolution. The contributions in this work are
twofold. First, our robust approach for superresolution recon-
struction employs Tikhonov regularization. To automatically
calculate the regularization parameter, we adopt the generalized
cross-validation criterion to our underdetermined systems. Al-
though generalized cross-validation is a well-known technique
for parameter estimation for overdetermined least squares prob-
lems, to our knowledge, the derivation forunderdetermined
problems is new.

Secondly, to accelerate CG convergence, we proposed
circulant-type preconditioners based on previous work by
Strang, Hanke and Nagy. These preconditioners can be easily
constructed, operations involving these preconditioners can be
done efficiently by FFTs, and most importantly, the number
of CG iterations is dramatically reduced. In practice, we
observed that preconditioned CG takes at mostthe number
of iterations of unpreconditioned CG, leading to significant
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Fig. 4. Comparison of reconstruction quality.

improvement in runtime. Typically, we stop after five precondi-
tioned CG iterations because results obtained thereafter are not
significantly different visually. By these experiments, we have
demonstrated that with the use of appropriate preconditioners,
image superresolution is computationally much more tractable.

Image superresolution can be generalized to video superres-
olution [12], [13] where a sequence of superresolved images is
obtained from a sequence of LR video frames. Under such con-
ditions, the computational advantage of our preconditioners is
compounded.

There is a strong relationship between the size of the regu-
larization parameter, the condition number of the regularized
system, the number of iterations of CG (unpreconditioned and
preconditioned) required to solve the system and time savings
with preconditioning. As we increase the regularization param-
eter , the condition number of the system decreases, leading to
a faster convergence rate for both preconditioned and unprecon-
ditioned CG. However, as mentioned before, a larger regulariza-
tion parameter also moves the regularized system farther away
from the original system we wish to solve. The result is a more
blurry HR estimate. As we decrease, the system becomes more
ill-conditioned, and the condition number increases. Precondi-
tioned CG is less affected by ill-conditioned systems than the

unpreconditioned version. The ratio of the number of unprecon-
ditioned iterations over the number of preconditioned iterations
increases for smaller regularization parameters. Thus, time sav-
ings with preconditioning increase with under-regularization.

An important and practical extension of the algorithm is
the implementation of the positivity constraint within pre-
conditioned CG. We note that each CG iteration computes an
estimate for the term in (6). However, the
constraint should be applied to the HR estimate. An inter-
esting topic of future research would be an efficient algorithm
to incorporate positivity constraint into our framework. We
have assumed in this work that the parameters for the camera’s
PSF are known. In many applications, this is not necessarily
the case. Blind superresolution or superresolution without
accurate knowledge of the camera parameters is a challenging
topic. A blind superresolution algorithm must reconstruct
estimates for both the PSF and the HR image. In order to make
this problem feasible, some constraints can be placed on the
PSF, e.g., finite support, symmetry. Another important issue in
image superresolution is the accuracy of the motion estimation
process. Although a simple algorithm such as the one described
in Appendix A would be adequate in most cases, more accurate
algorithms are needed for higher resolution enhancement. We
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Fig. 5. Superresolution on FLIR sequence.

are currently working on these problems and will report results
in subsequent submissions.

APPENDIX A
MOTION ESTIMATION

In the case of uncontrolled frame to frame motions, we need
to estimate these motions as a precursor to superresolution. We
assume that the motion is smooth, and apply Taylor’s series to
compute its approximation. Let be the continuous
frame sequence. By Taylor’s expansion, we get

where

Following Irani and Peleg [20], for consecutive frames,
and , we write

and we solve the following least squares problem for and

which leads to a system
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TABLE I
VALUES CALCULATED USING SUBOPTIMAL GCV AND GCV: WITH

MISSING FRAMES

TABLE II
VALUES CALCULATED USING SUBOPTIMAL GCV AND GVC: WITH

ALL FRAMES

Note that this idea is a simplification of the gradient constraint
equation often used in optical flow calculations

In Irani and Peleg’s formulation used above, the partial deriva-
tive with respect to time is crudely approximated by the differ-
ence between the given frames.

APPENDIX B
COMPUTING THE REGULARIZATION PARAMETER

Evaluating (18) as it stands requires intensive computation.
We instead approximate by replacing by its precondi-
tioner in (18). The alternate formulation is

tr

The motivation here is that since approximates well,
should be close to . Even so, calculating the term

tr exactly is still infeasible. Therefore,
we use the unbiased trace estimator proposed by Hutchinson
[19]. Let be a discrete random variable which takes the
values and each with probability , and let be a
vector whose entries are independent samples from. Then
the term is an unbiased estimator of
tr .

Since is a block matrix with circulant blocks, we can de-
compose , where is a block matrix with di-
agonal blocks, and is the block discrete Fourier transform
matrix which diagonalizes the blocks of . The minimization
problem above becomes

Let and , since is invariant under unitary
transformation, we have

We solve this minimization problem with Matlab’s CONSTR
subroutine with 0.001 being the lower bound. In our experi-

ments, we found that this formulation produces reasonable reg-
ularization parameters for both the simulated and FLIR image
sequence. Tables I and II list the values for our suboptimal reg-
ularization parameter along with the optimal GCV value

for the Stanford sequence example. Results under various
noise conditions for ten frames are compiled in Table I and with
all 16 frames in Table II.
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