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A WAVELET-BASED 
INTERPOLATION-RESTORATION 
METHOD FOR 
SUPERRESOLUTION (WAVELET 
SUPERRESOLUTION)* 

Nhat Nguyen 1 and Peyman Milanfar 2 

Abstract. Superresolution produces high-quality, high-resolution images from a set of 
degraded, low-resolution images where relative frame-to-frame motions provide differ- 
ent looks at the scene. Superresolution translates data temporal bandwidth into enhanced 
spatial resolution. If considered together on a reference grid, given low-resolution data 
are nonuniformly sampled. However, data from each frame are sampled regularly on a 
rectangular grid. This special type of nonuniform sampling is called interlaced sampling. 
We propose a new wavelet-based interpolation-restoration algorithm for superresolution. 
Our efficient wavelet interpolation technique takes advantage of the regularity and structure 
inherent in interlaced data, thereby significantly reducing the computational burden. We 
present one- and two-dimensional superresolution experiments to demonstrate the effec- 
tiveness of our algorithm. 
Key words: Superresolution, wavelet interpolation, interlaced sampling. 

1. Introduction 

Image superresolution refers to image processing algorithms that PrOduce high- 
quality, high-resolution (HR) images from a set of low-quality, low-resolution 
(LR) images. There is always a demand for better-quality images. However, the 
level of image detail is crucial for the performance of several computer vision 
algorithms. Target recognition, detection, and identification systems are some 
of the military applications that require the highest-quality achievable images. 
License plate readers, surveillance monitors, and medical imaging applications 
are examples of civilian applications with the same requirement. In many visual 
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applications, the imaging sensors have poor resolution outputs. When resolution 
cannot be improved by replacing sensors, either because of cost or hardware phys- 
ical limits, we resort to using a superresolution algorithms. Even when superior 
equipment is available, superresolution algorithms are an inexpensive alternative. 

Superresolution, at its core, ~s a process by which one gains spatial resolution 
in return for temporal bandwidth. Temporal bandwidth refers to the availability 
of multiple nonredundant images of the same scene. Lukosz [8], [9] was first 
to realize this possibility. However, superresolution cannot perform miracles. We 
cannot expect to extract subpixel information from a sequence of identical images; 
there must be nonredundant information among the images. We must be able to 
translate data temporal bandwidth into subpixel image content. Each LR flame 
provides a different "look" at the same scene. Theoretically, by providing different 
lighting conditions or different sensors, superresolution can be achieved without 
relative scene motion. This is the multichannel data fusion superresolution prob- 
lem. In this paper, however, we assume one imaging device and the same lighting 
conditions, and we require that there be some relative motion from frame to frame. 
Frame-to-frame motion can be a combination of camera platform motion relative 
to the scene, moving objects in the scene, and camera jitters. For example, in 
satellite imaging, images of the ground below are captured as the camera orbits 
the earth, whereas in surveillance and monitoring applications, the camera is 
placed on a fixed platform, and observed objects move within the scene. Motion 
and nonredundant information are what make superresolution possible. With this 
information, we are able to extract subpixel content at a higher resolution than in 
each individual frame. 

Figure 1 illustrates the problem setup. The figure shows three 4 x 4 pixel LR 
frames on an 8 • 8 HR grid. Each symbol (square, circle, triangle) indicates the 
sampling points of a frame with respect to the HR grid. We pick an arbitrary frame 
as a reference frame; in this case, the frame marked by the circular symbols. The 
sampling grid for the triangular frame is a simple translation of the reference 
frame grid. The motion between the sampling grid for the square frame and the 
reference frame grid includes translational, rotational, and magnification (zoom) 
components. 

The forward relationship between a degraded, LR flame and the ideal HR 
image can be described as follows [5]: 

fk = D C E k x  + Ilk, 1 < k < p ,  (i)  

where D is the downsampling operator, C is the blurting/averaging operator, 
Ek 'S  are the affine transforms that map the HR grid coordinate system to the 
LR grid systems, x is the unknown ideal HR image, and nk's are the additive 
noise vectors. The LR frames fk are given, and the decimation operator D is 
known. Because Charge-Coupled Device (CCD) sensors on the same array have 
practically identical characteristics, C is spatially linear shift invafiant. In this 
paper, we assume that frame-to-frame motion and blurring parameters are known 
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Figure 1. Low-resolution data on a high-resolution grid. 

Frame 2 

Frame 3 

a priori or have been estimated (cf. [12], [13]) from given data and that frame- 
to-frame motion is purely translational or has been corrected to be so. Finally, 
with multiple independent sources of error, the central limit theorem allows us 
to assume Gaussian normal distribution for the additive noise vectors nk with 
possibly unknown variance. 

The shift invariance property allows the operators C and Ek to commute. 
Hence, (1) can be rewritten as 

fk = D E k C x  + nk, 1 < k < p. (2) 

Equation (2) and Figure 1 motivate our two-step approach to superresolution. 
First, using the LR data frame samples fk, 1 < k < p, we interpolate for Cx, 
the blurred version of the original HR image. Next, we deconvolve the blur C to 
obtain an estimate for x. Deconvolution has been a thoroughly studied problem, 
and several robust techniques are available. The rest of the paper will therefore 
mostly address the interpolation step of the algorithm. 

There is inherent structure and regularity in the grid of LR sampling points 
for superresolution. In Figure 1, if pixel values from all frames are considered 
together, the data are irregularly sampled. However, for each frame, data points 
are sampled on a rectangular grid. This special case of irregular sampling is 
called interlaced sampling [15]. Our interpolation method takes advantage of this 
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sampling structure. The method is based on the multiresolutional basis fitting 
reconstruction (MBFR) method, described in the paper by Ford and Etter [6]. 
In particular, we extend the work of Ford and Etter to two-dimensional (2D) 
interlaced sampling grids. 

1.I. Previous  work  

Superresolution reconstruction from multiple frames is a relatively new class 
of restoration problems. Most techniques proposed for superresolution fall into 
one of three main categories: frequency domain, iterafive spatial domain, and 
interpolation-restoration. In this paper, we will examine the last class. 

Sauer and Allebach [14] were the first to consider superresolution as an inter- 
polation problem with nonuniformly sampled data. They used a projection onto 
convex sets (POCS) algorithm to reconstruct the unknown values. Namely, they 
considered 

~-(/+1) = Pn " " P2 PI f i  "(l), (3) 

where .fi-(l) is the lth approximate of the ideal HR image .T, and Pi are projecuon 
operators that correct for errors between 5 r(l) and ~- and impose band-limitedness 
constraints. The solution to the fixed-point iteration (3) is their estimate to .T. 

Aizawa et al. [1] also modeled superresolution as an interpolation problem 
with nonuniform sampling and used a formula related to the Shannon sampling 
theorem to estimate values on an HR grid. The work of both [1] and [14] ignored 
the effect of sensor blurring. Tekalp et al. [18] later extended these algorithms to 
include blurring and sensor noise and proposed the additional restoration step for 
the interpolation algorithms. Ur and Gross [19] considered Papoulis' generalized 
multichannel sampling theorem for interpolating values on a higher-resolution 
grid. Because light detectors are not ideal lowpass filters, some high-frequency 
information about the scene is represented in the image in aliased form. Papoulis' 
theorem reconstructs this aliased high-frequency content by taking a properly 
weighted sum of the spectral information from the LR frames. Sbekarforoush and 
Chellappa [15] extended Papoulis' theorem for merging of nonuniform samples 
of multiple channels into high-resolution data. 

Previous work did not consider the implications of the 2D interlaced sam- 
piing structure on the computational complexity of the resulting algorithms. The 
computational complexity for existing algorithms for 2D data is squared that 
for 1D data. As we will show, by exploiting sampling regularity, the computa- 
tional burden for our algorithm does not drastically increase for 2D data. In fact, 
computational complexity of the algorithm for 2D data is only twice that for 1D 
problems. 

The outline of the rest of the paper is as follows. We briefly review multiresolu- 
tion analysis with orthogonal wavelets in Section 2. In Section 3, we describe our 
1D and 2D wavelet interpolation method for interlaced data. Section 4 discusses 
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implementation and complexity issues for the algorithm. Section 5 shows inter- 
polation and superresolution experiments demonstrating the effectiveness of our 
techniques. We conclude with some comments in Section 6. 

2. Multiresolution analysis with orthonormal wavelets 

The fundamental concept behind wavelet theory is the decomposition of sig- 
nals into components at different scales or resolutions. The advantage of this 
decomposition is that signal trends at different scales can be isolated and stud- 
ied. Global trends can be examined at coarser scales, whereas local variations 
are better analyzed at fine scales. This section will present a brief summary of 
orthonormal wavelet multiresolution analysis of 1D and 2D signals. We will only 
review essential ideas necessary for the material in later sections. For more de- 
tailed treatments of wavelets, the reader is referred to the excellent books by 
Strang and Nguyen [17] and Mallat [10]. 

2.1. Multiresolution analysis for 1D signals 

Let L2(R) be the vector space of square-integrable 1D signals f ( t ) .  There exists 
a sequence of nested approximation subspaces V j ,  j ~ Z, and a scaling function 
q~ (t) satisfying the following requirements [ 17]: 

(i) Vj C Vj+I and ['~j~zVj .~- {0} and [.Jj~zVj .= L2(R) 
(ii) f ( t )  ~ Vj  r f (2 t )  ~ V j+l 

(iii) f ( t )  ~ V0 4:~ f ( t  - k) ~ V0 
(iv) V0 has an orthonormal basis {~b(t - k)} 

Because the set {~b(t-k)} is an orthonormal basis for V0, dilations and translations 
of ~b(t), { ~ b j , k ( t  ) = 2 J / 2 q s ( 2 J t  - -  k)}k~Z, form an orthonormal basis for Vj. 
Furthermore, because Vo C V1, the scaling function ~b(t) satisfies the following 
two-scale dilation equation: 

dp(t) = ~ _ ,  ctqb(2t - k), (4) 
k 

for some set of expansion coefficients c~. 
For a function f ( t )  e La(R), the projection f j ( t )  of f ( t )  onto the subspace 

Vj represents an approximation of that function at scale j .  The approximation be- 
comes more accurate as j increases. The difference in successive approximations 
gj (t) = f j+l  (t) - f j  (t) is a detail signal that lives in a wavelet subspace Wj.  In 
fact, we can decompose the approximation space V j+l as 

Vj+I = Vj (~ Wj.  (5) 

Equation (5) shows us one of the fundamental reasons why wavelets have been 
used so successfully in signal processing. Signals can be nearly broken down into 
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a coarse approximation signal and a fine detail signal. Any f ( t )  ~ L2(R) can be 
written as a sum of its approximate at some scale J along with the subsequent 
detail components at scale J and higher. Hence, 

L2(R) = Vj  ~ ~ Wj.  (6) 
j___J 

As in the approximation spaces case, the wavelet spaces Wj are spanned by a 
set of orthonormal basis functions {TeLl(t) = 2J/2~p(2Jt - k)}ksZ, which are 
dilations and translations of a single wavelet function 7t(t). Furthermore, the 
wavelet function satisfies the wavelet equation 

~p (t) = ~ E dkq~ (2t -- k), (7) 
k 

for some set of expansion coefficients dk. 
By equation (6)' we can expand any function f ( t )  ~ LZ(R) as follows: 

f (t) = E aLk(PLk(t) + E E bj,k*[tJ ,k(t)' (8) 
k~Z j>_J k~Z 

where 

aJ,k = f f(t)dPJ, k(t) dt 

bj,k = f f ( t )~j ,k(t)dt  

are the expansion coefficients for f ( t) .  

2.2. Multiresolution analysis for 2D images 

The wavelet model in the previous section for 1D signals can be extended to 2D 
images. We describe in this subsection a separable multiresolution analysis of 
L2(R 2) studied by Meyer [11] and Mallat [10]. Given a multiresolution analysis 
(v~l))jeZ of L2(R), a set of nested subspaces (V~2))j~z forms a multiresotution 

approximation of LZ(R 2) with each vector space ~r being a tensor product of 
identical 1D approximation spaces 

Vj(2) ~--- vj(l) ~ v)l), (9) 

Furthermore, the scaling function O(t, s) for the 2D multiresolution subspaces 
can be decomposed as 

�9 (t, s) = 4 , ( t )~(s) ,  (10) 

where ~b(t) is the 1D scaling function of the multiresolution analysis (V (~) J r j~Z" 
The set of functions 

�9 j,k,l(t,  S) = dpj,k(t)~j,l(S), j ,  k,  1 E Z (i  1) 



WAVELET SUPERRESOLUTION 327 

(2) (2) The 2D wavelet subspaces Wj are generated is an orthonormal basis for Vj . 
by three wavelets to capture detail information in the horizontal, vertical, and 
diagonal directions: 

tph(t, s) = ~lr(t)qb(s) (12) 

qJv (t, s) = q~(t)q/(s) (13) 

qjd (t, s) = ap(t)Tt(s). (14) 

(2) is the set The corresponding orthonormal wavelet basis for Wj 

qjh, k,t(t, s) = ~tj,~(t)4~j,l(s), (15) 

qJ~,k,t(t, s) = d?j,k(t)~pjj(s), (16) 

W:k,l(t,  s) = ~j,k(t)~j , l(S),  j ,  k, l 6 Z. (17) 

Analogous to the 1D case, any image f ( t ,  s) ~ L2(R 2) can be expanded as a sum 
of its approximate image at some scale J in V (2) along with subsequent detail 
components at scale J and higher. 

f(t,S) = Z aJ,k,l~J,k,l(t,s)+ E E bh, k,l*h, kd (t's) 
k,l~Z j> J k,l~Z 

+ E Z Z E (18) 
j> J k,16Z j>_J k,l~Z 

with 

aj,~,z = f f f(t,s)q~j,k,l(t,s)dtds 
b h j,k,~= f f f(t,s)*h,kj(t,s)dtds 

f f  J , k , l  = f ( t ,  s)qJ~,k,l(t, s) dt  ds 

b d = J,k,l f f f ( t , s )qJJ ,  k , l ( t , s )d t  ds 

The first term on the right-hand side of (18) represents the coarse-scale approx- 
imation to f ( t ,  s). The second term represents the detail component in the hor- 
izontal direction, the third and fourth the detail components in the vertical and 
diagonal directions, respectively. 

3. Wavelet interpolation of interlaced data 

This section will describe our interpolation technique for interlaced data. We use 
the expansion formulas (8) and (18) to first estimate for the wavelet coefficients. 
Using these estimates, we interpolate for the function values at the HR grid points. 
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3.1. Interpolation for nonuniformly sampled 1D signals 

We first consider the case of nonuniformly sampled 1D signals. Suppose that we 
have a function f ( t )  for which we would like to compute M uniformly distributed 
values, say, at t = 0, 1 . . . .  , M - 1. We are given P nonuniformly sampled data 
points o f f ( t )  at t = to, tl . . . . .  tp-1, 0 < ti < M, where typically, P < M. 

We take the unit-time spacing grid to be resolution level V0. By repeated appli' 
cation of (5), we can decompose V0 in the following fashion: 

- I  

V0 = V~ ~ ~ )  Wj,  J _< - 1 .  (19) 
j=J 

Hence, we can separate f ( t )  ~ V0 into its approximation and detail compo- 
nents and further expand these components in the orthonormal bases of V j  and 
{Wj }- 1>__j>__J: 

- I  

f ( t )  = f j ( t )  + Z g j ( t ) ,  f j ( t )  ~ V j ,  gj(t) ~ Wj  (20) 
j=J 

-1 

= ~ aj,kcbj,k(t) + Z Z bj,k~j,k(t), (21) 
k j=J k 

aj,k = f f(t)(pLk(t) dt 

bj,k = [ f( t)q/j ,k(t)dt .  
d 

Substituting in the values of the sampled data, we have a set of P linear equations 

-1  

f ( t i ) = Z a j , k d p j , k ( t i ) §  i = 0  . . . . .  P - l .  (22) 
k j=J  

Suppose that [0, N] is the support interval for ~p(t) and let trnax = max/t~ and 
train = mini ti. In the first summation on the right-hand side of (22), only finitely 
many terms are nonzero because d?j,k(ti) = cp(2Jti - k) is nonzero if and only if 
2Jti - k is in the support interval for ~b(t), i.e., 

0 < 2Jti - -  k < N. (23) 

Therefore, 

- N  + [2Jtmin] < k < L2Jtmaxj. (24) 

Similar arguments can be made for the wavelet basis functions ~pj,~ (ti). Let Ss = 
{ - N  -+- [2Jtmin] . . . . .  [2JtmaxJ } be the set of shifts with nonzero contribution on 
the right-hand side of (22). We can now rewrite (22) as 

-1  

f ( t i )  = ~ aJ,k~J,k(ti) q- ~ ~ bj ,k~j ,k(t i) ,  i = 0 . . . . .  P -- 1, (25) 
k~Sj j=J k6S) 
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which, in vector form, becomes 

-1 

f = G j a j  + E Hjb j ,  (26) 
j=J 

where 

f =  ( f ( t , ) ) i = 0 . . . p _ 1 ,  , ,  = b j  = 

.',kESj kcSj 
a j  = (epJ,k(to)i=o ..... e - l ,  H j  = ( vj,k(ti))i=0 ..... p _ l .  

To construct G j  and Hi, we need to know basis function values at sampling points 
{ti }. For most wavelet bases, there are no closed-form expressions for basis func- 
tions {dpj,k(t), a/sj,k(t)}. However, basis function values at dyadic points can be 
calculated efficiently by recursion. At scale K and for scaling function with sup- 
port on [0, N], the set of dyadic points is defined to be �9 = {0, 1/2 K . . . . .  N - 
1/2K}. We choose K large enough so that the set of sampling points {2Jti - 
k, 2Jti - k} can be well approximated by a subset of 7)g. 

From Equation (26), we can approximate the coarse-scale approximation coef- 
ficients a j  by ignoring the detail components and considering just 

f ~ G j a j .  (27) 

Ford and Etter [6] recommend that J be chosen so that the system above can 
be solved in a least-squares sense; that is, P > k2Jtmaxj - F2Jtrran] + N + 1. 
The scale chosen is dependent on the total number of sample points, the interval 
spanned by these points, and the support size of the scaling and wavelet func- 
tions. Because (27) is an approximation, we solve for a regularized least-squares 
estimate in the wavelet domain 

aJ = argminaj I[f - G j a j  It~ + 3.llas 112, (28) 

or equivalently, 

aj  = (GT G j q -3 . l ) - lG~f  (29) 

for some regularization parameter 3.. The regularization parameter 3. plays a bal- 
ancing role in (28) and (29). If 3. is too large, the solution obtained will be too far 
away from the original system we wish to solve. If 3. is too small, noise effects 
are exacerbated in the solution of the under-regularized system. The least-squares 
estimate ~j of the coefficients yields a coarse-scale estimate of f, denoted by f j ,  

b = a . , a j .  (30) 

The difference between f and }j can then be used to approximate the wavelet 
coeffcients b j  

gj  = f - f j  

= f -  G j f i j  

,~ H j b j .  (31) 
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Because the number of  nonzero coefficients bj,n is the same as the number of  
nonzero coefficients aj,n, equation (31) can also be solved in the least-squares 
sense for a regularized estimate of  bj.  In general, the reguiarization parameter is 
chosen to be small for the coarse-scale approximation and large for the fine-scale 
detail because the signal-to-noise ratio tends to be smaller in the fine scale. In 
fact, an estimate for X can be computed using prior information or a statistical 
model for the wavelet coefficients (cf. [16], [3]). The desired values of  f ( t )  at the 
HR grid points t = 0, 1 . . . . .  M - 1 can then be computed using the estimated 
coefficients: 

f (t) ~ ~ gtj, kdPJ,k(t ) + ~ bJ,k~J,k(t), t = 0, t . . . . .  M - 1. (32) 
kcS1  k ~ S j  

For wavelet superresolution, the data is sampled nonuniformly but in a recur- 
ring manner. This type of sampling is called nonuniform recurring sampling or 
interlaced sampling [15]. More specifically, we are given sampled data on an LR 
grid in terms of  "frames," which are sets of data points separated by a uniform 
shift. Let r be the resolution enhancement factor, m be the number of  data points 
per flame, and n be the number of given frames. The available samples are 

{f(6i) ,  f ( r  + ~i), f ( 2 r  + Ei) . . . . .  f ( ( m  - 1)r + ~i)}, 

0 < E l  < r ,  i = l  . . . . .  n. 

Given these mn sample points, we would like to reconstruct values of  f ( t )  for the 
HR grid points t = 0, 1 . . . . .  mr - 1. 

Following (27) and putting the data in vector form, we get the following set of  
equations to solve for the coarse-scale coefficients a j :  

f(i) ~ G ~ ) a j ,  i = 1 . . . . .  n, (33) 

where 
- . k ~ S l  

f(i) = ( f ( p r  + Ei))p=0,...,m_ ! , G(j ) = ( ~ b j , k ( p r  -q- Ei))p=O,. . .om_ 1 , 

We estimate the wavelet coefficients by and the values of  f ( t )  on the HR grid in 
the same fashion described previously. 

3.2. Interpolation for interlaced 2D images 

In image superresolution, the data frames are LR rectangular grids of  sample 
points. Let h, to denote the height and width (in units of pixels) of  an LR ffame~ 
The set of  available data is then 

[ f ( p r  + 6it, qr + eis)} , 0 < Ei;~ Eis < r, 
p = 0  . . . . .  h - l ,  q = 0  . . . . .  t o - - l ,  i = 1  . . . . .  n. 

From these nhto sample points on LR grids, we would like to reconstruct values o f  
f (t, s ) on HR grid points { (t, s ) It = 0, . . . ,  h r -  1, s = 0 ,  . . . .  w r -  1 }. Analogous 
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to the 1D case, we substitute in sample values of f(t,  s) to obtain a set of linear 
equations and solve a least-squares system for the coarse-scale coefficients; 

f(pr + Ei,, qr + El,) ~ Z Z aj,k,l~y,k,l(pr -t- Ei t, qr + Eis ) (34) 
k~S h IESj s 

= ~ Z al,k,lfbJ,k(pr-]- ei,)dpj,l(qr + Eis). (35) 
k~Sj t l~Sj s 

In matrix form, the double sum above can be written as a Kronecker product of 
1D wavelet transform matrices 

f(i) ,~ (G~t) | G~))aj,  (36) 

where f(i) is the vector with the pixel values of the ith frame reordered rowwise, 
a j  is the vector of unknown coarse-scale coefficients, and the entries G~t)," G(ijs )- 
are basis function values at sampling points of flame i along the horizontal and 
vertical directions, respectively. Proceeding as in the 1D case, we solve (36) for 
a regularized least-squares estimate fij of a j .  The difference between f(i) and its 
coarse-scale estimate (G(j.) | Gq))~j can next be used to estimate the horizontal 

detail coefficients b~: 
g~) = f(i) _ (G~)  | G~?)'~j (37) 

(G~,) | Hj(1))bh. (38) 

Continuing as before, the residual is then used to calculate b~ and b d. The choice 
of scale J makes a crucial difference in reconstruction quality. We pick the finest 
scale J so that the number of sample values is more than the number of unknown 
coefficients in (36) and (38). 

4. Implementation and computational complexity 

We discuss an efficient implementation and the computational complexity of our 
interpolation approach for interlaced data in this section. We first consider the 
1D interlaced frames equation (33). The regularized least-squares solution can be 

fi~= "G~l)r'"G(f)r] Gi  ) +)~' [G(J)r'"G(jn)r] " 

n T ~ - 1  n 
(i) (i) = ~ G j Gj -t- )~I ~ G(j )Tf(,) (40) 

i=1 J i=1 

The equation above can be solved most efficiently by an iterative method such as 
the conjugate gradient method (cf. [2]). We only need to compute matrix-vector 

expressed as 
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products involving En=l G ~)TGJ) +)~I and not its explicit inverse. Furthermore, 

because of the finite support of q~(t), G~ ) have a banded structure that may be fur- 
ther exploited. We can derive similar expressions for wavelet detail coefficients. 
For 2D interlaced images, the regularized least-squares estimate for the coarse- 
scale wavelet coefficients from equation (36) is 

~ ,  = (G(tl,) | G (J ] )T  �9 �9 �9 (G ( f )  |  T- �9 + L I  

G (n) | G (n) 

[ t G 0 )  o, GO)' ,  r G(n) r " . (41)  "L' " ~  J,J ""(G~)| .1,/] f(~)j 

Recalling the following properties of the Kzonecker product: 

(i) (A | B) T = A T | B r. 
(ii) (AB) | (CD) = (A | C)(B | O). 

(iii) (A | B)reshape(V) = reshape(AVBT), where reshape(.) reorders the 
entries of a matrix in rowwise order into vector format, 

and applying these properties to equation (41), we have 

n . T , [G( i )TG( i )  ~ )T | a ( i ) T ~ f  (i) (42) = ( c ?  ,, , 
i=1  

n T |  -~-,~.I~-1 n 
= {X-"tG (i) Gq)~ [G(i)rG(i)'~ "~/"( ~ ,..& :, |L..A J, J, , ,, & , ] ~_..,.G.,, )TFfi,~(i)'~ (43) 

\i=1"= i=1 

where F (i) denotes the ith frame in matrix form. Similar forms for wavelet di- 
rectional detail coefficients estimates can be derived in the same manner. Analo- 
gous to the 1D case, equation (43) can be solved most efficiently by an iterative 

v~n [r.,2(i)Tg,2(i)'~ method. Matrix-vector products involving the system matrix z_.i=l ~'-' j, '~j, ) | 

(G~) TG~))+LI can take advantage of computational properties of the Kronecker 
product. We quantify the computational complexity of solving (40) and (43) in 
more detail in the following discussion. 

The computational burden for the method is comprised of two main compo- 
nents. The first component is the cost of constructing the matrices of wavelet basis 
functions evaluated at the sampling points. In the 1D case, at scale K and with 
wavelet support of size N, the cost for generating the matrices of sampled wavelet 
basis functions is O(N22(K+I)). Our 2D wavelet basis is a separable basis, so the 
construction of the matrices of sampled wavelet basis functions only costs twice 
as much as in the 1D case. 

The second component of computational burden is the least-squares solution 
of (40) and (43). We use conjugate gradient for an iterative solution. Complexity 
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per iteration of conjugate gradient can be based on the cost of a matrix-vector 
product with the system matrix. In the ID case, the system matrix is 

n (i)  T (i) 
E G Gj + LI, 
i=1 

with G~ ) a matrix approximately m x (2Ymr + N + 1) in dimensions, where 
m is the number of samples per frame. The computational complexity for this is 
O(nm (2Jmr + N)). Analogously, the system matrix for interlaced interpolation 
in two dimensions is 

n [~( i )TG( i )  ~ 

i ----I 

where G(jt) and G (i) 2s are matrices approximately h x (2Jhr + N + 1) and w x 

(22wr + N + 1) in dimensions, respectively. The variables h and w denote the 
height and width of an LR frame, respectively, in units of samples or pixels. The 
computational complexity for a matrix vector product with the system matrix is 
O(nh(2Jhr + N) + nw(2Jwr + N)). By taking advantage of the interlacing 
structure and the Kronecker product representation, the computational cost for 
our interpolation approach only doubles for the 2D case as compared to the 1D 
case. 

5. Numerical experiments 

This section presents numerical results for interpolation experiments with 1D 
signals and superresolution experiments for 2D images. 

5.1. Wavelet interpolation experiments for 1D signals 

In this first set of experiments, we will use the wavelet techniques described 
above to interpolate values of a 1D signal. We start with an original signal of 
length 168. The signal is then blurred with a Gaussian point spread function with 
variance 1 and downsampled by a factor of 3 to generate three LR frames, each 
with 56 sample points. We keep only one of those LR frames, leading to a severely 
underdeterrnined interpolation problem. The given frame has sample values of 
f ( t)  at t = 0, 3 . . . . .  165. The algorithm attempts to reconstruct the signal at time 
t = 0, 1 . . . . .  167. Figure 2 displays the result of wavelet reconstruction using a 
Daubechies DB6 filter [4]. 
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Figure 2. Top to bottom. Tile first plot shows the original signal. The second contains she av~ilabJe 
data samples. The third plot displays the result of a coarse-scale approximation at scale J = -2. The 
last graph plots the final result against the given samples. 

5.2. Wavelet superresolution experiments for 2D images 

The setup for the first 2D superresolution experiment is similar to the 1D experi- 
ments. A 172 x 172 pixel HR image (upper left comer of Figure 3) is blurred with a 
Gaussian point spread function of variance 1 and downsampled by a factor of 4 to 
simulate 16 LR frames. We randomly choose 10 of those LR frames, each of size 
43 x 43 pixels, again leading to a severely undersampled superresolution problem. 
The resolution enhancement factor is 4. The wavelet interpolation-restoration 
process first interpolates for blurred values at the HR grid points. An estimate 
for the original HR image is obtained by deconvolving the interpolated values 
with the known blur. Figure 3 shows the result of wavelet superresolution for our 
test 2D sequence using Daubechies DB4 filter interpolation in combination with 
Tikhonov regularized restoration (cf. [ 12]). 

The LR forward looking infrared (FLIP,) images in our second superresolution 
experiment are provided courtesy of Brian Yasuda and the FLIR research group in 
the Sensors Technology Branch, Wright Laboratory, WPAFB, Ohio. Each image 
is 64 x 64 pixels, and a resolution enhancement factor of 5 is sought. The objects 
in the scene are stationary, and 16 frames are acquired by controlled movements 
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Figure 3. The first (upper left) display is the original Stanford HR image. The second (upper right) 
shows a sample LR frame. Subsequent images are the coarse-scale approximation plus various 
incremental levels of detail refinements. 
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Figure 4. The first (upper left) display is a sample FLiR LR frame. The subsequent images are the 
coarse-scale approximation plus various incremental levels of detail refinements. 
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of an FLIR imager described in [7]. Figure 4 contains the results of wavelet super- 
resolution for the FLIR test sequence using Daubechies DB4 filter interpolation, 
along with regularized restoration. 

6. Summary 

This paper presents a new wavelet interpolation-restoration method for image 
superresolution. In contrast to previous interpolation-restoration approaches, our 
method exploits the interlacing structure of the sampling grid in superresolu- 
tion. Using a separable orthonormal wavelet basis for 2D images, we derive a 
wavelet decomposition using Kronecker products. As a result, the computational 
properties of the Kronecker products allow efficient calculation of the wavelet 
coefficients. Computational complexity of our method applied to 2D interlaced 
data increases only by a factor of 2 compared to that for 1D data. 
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